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Abstract: Dyslexia is a neurological problem that leads to obstacles and difficulties in the learning
process, especially in reading. Generally, people with dyslexia suffer from weak reading, writing,
spelling, and fluency abilities. However, these difficulties are not related to their intelligence. An
early diagnosis of this disorder will help dyslexic children improve their abilities using appropriate
tools and specialized software. Machine learning and deep learning methods have been implemented
to recognize dyslexia with various datasets related to dyslexia acquired from medical and educational
organizations. This review paper analyzed the prediction performance of deep learning models for
dyslexia and summarizes the challenges researchers face when they use deep learning models for clas-
sification and diagnosis. Using the PRISMA protocol, 19 articles were reviewed and analyzed, with a
focus on data acquisition, preprocessing, feature extraction, and the prediction model performance.
The purpose of this review was to aid researchers in building a predictive model for dyslexia based
on available dyslexia-related datasets. The paper demonstrated some challenges that researchers
encounter in this field and must overcome.

Keywords: dyslexia detection; dyslexia classification; feature extraction; diagnosing dyslexia;
machine learning; deep learning

1. Introduction

Dyslexia is a common learning difficulty that people encounter throughout their
learning journey, which affects the reading, writing, spelling, fluency, word decoding, and
dictation processes. However, it is not related to an individual’s level of intelligence. The
term originates from the ancient Greek, with the prefix “dis” referring to disorder and the
root “lexia” to language. Hence, dyslexia signifies a language defect or disorder [1]. Many
children with this disorder have normal intelligence and receive appropriate education
and parental support but have difficulty with learning certain skills. Today, dyslexia is
the most frequent childhood learning disorder, accounting for up to 80% of all identified
learning disabilities [2].

The World Federation of Neurology identifies dyslexia as a disturbance where the
child’s spelling, writing, or reading skills fail to meet predicted levels based on age and
intellectual performance despite attending school regularly [3]. From a neuropsychological
approach, these disorders result from one or more malfunctioning learning-related brain
systems [3], where the functions of the left hemisphere are imbalanced, such as impairment
in the area concerned with short-term memory, motor skills, visual perceptions, language
processing, auditory, speed, and speaking (Figure 1).

The early diagnosis of suspected dyslexia in children is essential as it will increase
the likelihood of the dyslexic child benefiting from effective intervention programs and
improving his or her abilities [4]. Traditional tests for diagnosing dyslexia depend on the
evaluation of reading words and text, writing, and working memory. Experts in this field
have defined and normalized the scores of these tests. Some screening tests include CASL,
TAPS, CTOPP-2, WRMT, GSRT, and TEWL, which have become available on the Web due
to ICT that authorized the digitalization of these tests [5]. ICT refers to a varied set of
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resources and technological tools utilized to create, transfer, store, interchange, or share
information. All these tests are available for subscription under specific criteria.
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Neurological aspects have also been considered in modern technologies for diagnosing 
dyslexia, helping to increase detection accuracy and reliability. Medical devices enable the ob-
servation of the brain structure of dyslexics [6]. Habib [7] proposed three triggering mecha-
nisms of dyslexia: attentiveness disturbance (visual–attentional dyslexia), language disturb-
ance (phonological dyslexia), and motor disturbance (a dyspraxic form of dyslexia). 

In “phonological dyslexia,” during the reading, fMRI displays paralysis of three re-
gions that are concerned with language production and grasping (Geschwind’s, Wer-
nicke’s, and Broca’s territory) [8]. Additionally, compared to controls, DTI reveals white 
matter variation in the language area [9]. In visual attentional dyslexia, when dyslexic 
participants are tasked to recognize congruous stimuli pairs, fMRI displays a separation 
between the temporal visual system and parietal attentional system as well as a discon-
nection, in the left hemisphere, of the temporal and occipital zones [9]. In the “dyspraxic 
form of dyslexia,” there is inactivation in the cerebellum–ventral frontotemporal and cer-
ebellum–dorsal frontoparietal pathway [10]. Besides fMRI, the surface measurement of 
brain potential, known as EEG, assists in identifying brain activation patterns. During 
spelling tests, phoneme deletion, the rapid naming of letters, and articulation, increased 
vigor is observed in the theta and delta EEG frequency bands in the frontal and right tem-
poral zones in dyslexics [11]. 

Researchers have suggested different ML methods for predicting dyslexia in children 
utilizing datasets related to dyslexics. Such datasets can be acquired from medical and 
educational institutions as well as through special games constructed specially for them. 
For example, eye tracking, brain imaging, EEG, test scores, and handwriting have been 
used in dyslexia prediction. 

AI refers to the development of machines and systems to enable them to implement 
functions and tasks that demand human intelligence, such as translation, decision mak-
ing, visual perception, and speech recognition. ML is considered a part of AI, which con-
centrates on the evolution of computer programs that use different datasets to learn for 
themselves. DL is a subset of ML that seeks to simulate the human brain, allowing DL 
systems to cluster data and make incredibly accurate predictions. The literature has 
demonstrated the success of ML methods in classification problems, particularly the clas-
sification of diseases. Moreover, ML methods have been found to have outstanding accu-
racy for diagnosing dyslexia [12]. However, traditional ML methods fail to use raw data 

Figure 1. This image shows that any disorder in the brain’s left hemisphere would lead to important
difficulties in a person’s ability to read and write and some other skills.

Neurological aspects have also been considered in modern technologies for diagnosing
dyslexia, helping to increase detection accuracy and reliability. Medical devices enable
the observation of the brain structure of dyslexics [6]. Habib [7] proposed three triggering
mechanisms of dyslexia: attentiveness disturbance (visual–attentional dyslexia), language
disturbance (phonological dyslexia), and motor disturbance (a dyspraxic form of dyslexia).

In “phonological dyslexia”, during the reading, fMRI displays paralysis of three re-
gions that are concerned with language production and grasping (Geschwind’s, Wernicke’s,
and Broca’s territory) [8]. Additionally, compared to controls, DTI reveals white matter
variation in the language area [9]. In visual attentional dyslexia, when dyslexic participants
are tasked to recognize congruous stimuli pairs, fMRI displays a separation between the
temporal visual system and parietal attentional system as well as a disconnection, in the left
hemisphere, of the temporal and occipital zones [9]. In the “dyspraxic form of dyslexia”,
there is inactivation in the cerebellum–ventral frontotemporal and cerebellum–dorsal fron-
toparietal pathway [10]. Besides fMRI, the surface measurement of brain potential, known
as EEG, assists in identifying brain activation patterns. During spelling tests, phoneme dele-
tion, the rapid naming of letters, and articulation, increased vigor is observed in the theta
and delta EEG frequency bands in the frontal and right temporal zones in dyslexics [11].

Researchers have suggested different ML methods for predicting dyslexia in children
utilizing datasets related to dyslexics. Such datasets can be acquired from medical and
educational institutions as well as through special games constructed specially for them.
For example, eye tracking, brain imaging, EEG, test scores, and handwriting have been
used in dyslexia prediction.

AI refers to the development of machines and systems to enable them to implement
functions and tasks that demand human intelligence, such as translation, decision making,
visual perception, and speech recognition. ML is considered a part of AI, which concentrates
on the evolution of computer programs that use different datasets to learn for themselves.
DL is a subset of ML that seeks to simulate the human brain, allowing DL systems to
cluster data and make incredibly accurate predictions. The literature has demonstrated the
success of ML methods in classification problems, particularly the classification of diseases.
Moreover, ML methods have been found to have outstanding accuracy for diagnosing
dyslexia [12]. However, traditional ML methods fail to use raw data to implement these
tasks [13]. To overcome this obstacle, ML models have used a layered learning approach,
known as the DL. The general difference between DL models and traditional ML models
is that DL models do not require the engineering step of feature extraction, which is
inherent to conventional models, as they automatically learn abstract hierarchical feature
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representations from data [14]. ML might be utilized to accomplish specific tasks, for
instance, the identification of objects in images, speech-to-text transformation, and isolation
of items in categories [13].

DL utilizes ANNs that simulate the brain’s function. Since ANNs were introduced,
they have undergone considerable alteration and development; however, the basic principle
has remained the same [13]. The ANN structure essentially comprises nodes and edges
that, together, create a structure that resembles a neuron and are in charge of transmitting
the information [13]. It consists of three strata: input strata, several hidden strata, and
output strata. In each layer, every node is linked to every other node in the next layer.
The network becomes deeper as the number of hidden layers increases, leading to a DNN
model. A DNN converts raw inputs to helpful features. Subsequent layers elicit a group of
features that are considered more abstract and help to achieve a desired task. The essential
processes in DL are feature extraction and selection [13]. DNNs have various architectures.
A basic one is a feed-forward network, in which the structure has links among layers in a
single direction (forward), and there are no existing loops or cycles in the whole structure.
Other architectures include particular functions, such as RNNs, which are implemented
with sequential datasets, whereas CNNs are implemented with grid-structured data-like
images. MLP and CNN models have been applied at different times and places to reveal
and classify dyslexia utilizing special data related to dyslexic children. This review paper
focuses on the use of advanced ML methods (DL) to help in diagnosing dyslexia disorder
and constructing a predictive model for prediction. The following points are investigated:

- The types of datasets that are used by prediction models.
- Different DL models that are utilized to predict dyslexia disorder.
- The performance of DL models in dyslexia prediction.

To the best of our knowledge, this is the first review to investigate current works that
specifically utilized DL models to diagnose dyslexia. This will allow us to investigate the
points above, seeking to find a new way to predict dyslexia. Previous reviews on dyslexia
prediction have focused on ML models in general, not on DL models.

Following this initial introduction, Section 2 provides an overview of related works,
both review papers and systematic reviews, and illustrates the difference between previous
reviews and the current work. Section 3 discusses the search strategy and explains the
stages of the article selection process, including the criteria. Section 4 provides a detailed
explanation of every article in the results section, including information on dataset acquisi-
tion, dataset preprocessing, feature selection, and model prediction performance. Section 5
lists and discusses some challenges related to scanning the articles, and Section 6 presents
concludes the paper.

2. Related Work

Several surveys and review papers have addressed the use of ML in dyslexia disorder
classification. During the research process, we found nine papers that were related to the
diagnosis of dyslexia disorders using ML methods. In a review paper [15], the research
covered several dimensions related to dyslexia prediction with ML methods and image
processing techniques. In addition, regarding design assessment tests and tools for prop
dyslexics, most of the research utilized ML techniques to predict dyslexia. A survey
paper [16] summarized the techniques for diagnosing dyslexia that use ML approaches. It
screened 13 studies that applied ML methods, and only one of these studies applied DL
methods for dyslexia classification. In three review papers [6,17,18], the authors conducted
literature surveys focused on ML methods utilized in dyslexia prediction. The surveys did
not include studies on dyslexia prediction based on handwriting datasets, which started
in 2019. A systematic review [19] has focused on ML and DL methods that have been
utilized for identifying dyslexia and its biomarkers and concluded that Support Vector
Machine (SVM) is the most frequently applied ML method for identifying and predicting
dyslexia. Moreover, it noted that the utilization of DL algorithms is still in its infant stage.
An extensive review [20] focused not only on the prediction of dyslexia disorder using
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ML methods but also included studies on the prediction of attention deficit hyperactivity
disorder. Ahire et al. [21] conducted a comprehensive review on the classification of
dyslexia using ML methods, focusing specifically on studies that used EEG signals for
classification. They found that SVM outperformed other ML methods in EEG signal
classification. Poornappriya and Gopinath [22] considered studies that implemented ML
methods for dyslexia prediction in addition to studies that helped dyslexics to improve
their reading and other skills. Their review was different from the other review papers, as
it focused on the utilization of DL methods in the prediction of dyslexia using different
dyslexia-related datasets.

3. Research Strategy

In this paper, a critical review of the literature has been performed to collect a broad
variety of studies that used DL methods for dyslexia prediction and classification and to
investigate the research points listed above. The identification and selection of pertinent
articles followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [23]. As shown in Figure 2, the article selection process included three
phases: identification, screening, and inclusion phases.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 18 
 

surveys did not include studies on dyslexia prediction based on handwriting datasets, 
which started in 2019. A systematic review [19] has focused on ML and DL methods that 
have been utilized for identifying dyslexia and its biomarkers and concluded that Support 
Vector Machine (SVM) is the most frequently applied ML method for identifying and pre-
dicting dyslexia. Moreover, it noted that the utilization of DL algorithms is still in its infant 
stage. An extensive review [20] focused not only on the prediction of dyslexia disorder 
using ML methods but also included studies on the prediction of attention deficit hyper-
activity disorder. Ahire et al. [21] conducted a comprehensive review on the classification 
of dyslexia using ML methods, focusing specifically on studies that used EEG signals for 
classification. They found that SVM outperformed other ML methods in EEG signal clas-
sification. Poornappriya and Gopinath [22] considered studies that implemented ML 
methods for dyslexia prediction in addition to studies that helped dyslexics to improve 
their reading and other skills. Their review was different from the other review papers, as 
it focused on the utilization of DL methods in the prediction of dyslexia using different 
dyslexia-related datasets. 

3. Research Strategy 
In this paper, a critical review of the literature has been performed to collect a broad 

variety of studies that used DL methods for dyslexia prediction and classification and to 
investigate the research points listed above. The identification and selection of pertinent 
articles followed the Preferred Reporting Items for Systematic Reviews and Meta-Anal-
yses (PRISMA) guidelines [23]. As shown in Figure 2, the article selection process included 
three phases: identification, screening, and inclusion phases. 

 
Figure 2. PRISMA flow diagram for selecting 19 definitive articles. Figure 2. PRISMA flow diagram for selecting 19 definitive articles.

In the identification phase, we searched for appropriate articles from 2010 to 2022 in
different databases (Figure 2), including IEEE Xplore, Google Scholar, PubMed, Springer,
Web of Science (WoS), and Science Direct. The following keywords were used in the
search queries: “Dyslexia classification”, “Dyslexia Prediction”, “ML in Dyslexia”, “Deep
Learning in Dyslexia”, “Diagnosis Dyslexia”, and “CNN in Dyslexia”. The search produced
1995 articles, of which 138 were from IEEE, 667 from Google Scholar, 665 from PubMed,
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217 from Springer, and 248 and 60 from WoS and Science Direct, respectively. We excluded
13 non-English articles and 411 duplicate articles.

In the screening phase, there were 1571 articles we needed to screen. The reviewers
excluded 1428 irrelevant articles. Then, of the remaining 143 articles, 101 articles were
excluded for different reasons. Some of the articles focused on dyslexia with other learn-
ing disorders, some focused on predicting dyslexia using games and applications, and
some others were review papers. Then, the screening advanced after fulfillment of the
inclusion criteria.

As shown in Table 1, the inclusion criteria were as follows: (1) articles released
between 2010 and 2022 in English, (2) articles that utilized a DL method or combinations
with traditional ML for the identification of dyslexia, and (3) articles that utilized datasets
related to dyslexia.

Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Articles released between 2010 and 2022 in
English (AND)

Articles not relevant to dyslexia
classification (AND)

Articles that utilized DL methods (OR) DL
methods combined with traditional ML for the

identification of dyslexia

Articles that used only traditional ML methods
to prediction dyslexia (AND)

(AND) Articles that utilized datasets related
to dyslexia Articles that did not meet the inclusion criteria

Subsequently, in the inclusion phase, the articles were reviewed for further considera-
tion of their eligibility, based on the criteria shown in Table 1. Ultimately, only 19 articles
were chosen for critical review. Following a previous study [13], we included ANN and
MLP models in this review, where ANN include DL feed-forward networks as well as MLP.
Figure 3 illustrates the number of articles selected per year from 2010 to 2022.
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4. Research Results

Dyslexia prediction using DL models involves several steps, starting from acquiring
the datasets to evaluating the prediction models. This can be seen in the articles selected
for review.
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4.1. Data Acquisition

The first step in predicting dyslexia disorders using DL methods is the acquisition of
datasets related to dyslexia. As mentioned above, brain imaging and eye-tracking data
in addition to traditional data (e.g., test scores and time consumption when performing
specific tasks) can be used to diagnose dyslexia. In [19], the dyslexia datasets were divided
into three classes. The first category was related to behavioral symptoms in dyslexics, the
second category was related to brain imaging, and the last was related to eye movements
during cognitive tasks. The behavioral symptoms of dyslexics manifest through reading,
writing, working memory, phonological awareness, and facial reactions throughout the
learning process. Reading and writing are inextricably linked, and children who struggle
to read also struggle to write. Hence, dyslexics have problems when writing letters. For
example, instead of starting from the top, they start from the bottom when writing letters,
inverting the letters, skewing some, and erasing frequently [24]. Spoon et al. [25] were
the first to use handwriting datasets to predict dyslexia. They compiled a handwritten
dataset on 88 subjects (11 from dyslexics and 77 from normal subjects), demonstrating the
possibility of using these types of data for predicting dyslexia.

In another study, 100 handwriting samples were collected (22 dyslexia and 78 non-dyslexia)
from children in grades K-6 [26]. Isa et al. [27] collected 30 handwriting samples from
the ADM. The dataset included eight selected numbers and small letters (6, 7, 2, 5, c, b,
p, and f). The main reason for selecting these numbers and letters is that they are the
most commonly associated with writing errors among dyslexics. In India, Yogarajah and
Bhushan collected 54 handwriting samples from the notebooks of children (18 females,
36 males) from first to fifth grade [28]. Fourteen Hindi words were selected from the
children’s notebooks, representing varying degrees of difficulty. Five words consisted
of two letters, six words had vowel signs, and three were conjoined consonants words.
Isa et al. [4,29] used a dataset collected from three sources: uppercase letters were taken
from NIST Special Database 19, lowercase letters were taken from the Kaggle dataset,
and testing data were collected on Seberang Jaya Primary School’s dyslexic students.
These two studies used data augmentation techniques to generate the dyslexic datasets,
using noise injection and rotation techniques to generate reversal handwriting datasets.
Kohli and Prasad [30] collected a dataset from the test scores of dyslexic students on
reading, spelling, speech deficits, deficits in writing, and mathematical abilities as well as
motor skills.

The second category of dyslexia datasets is related to brain imaging, where the modali-
ties of brain imaging identify special behaviors and activations of the brains of participants
in the studies [19]. EEG is a brain imaging modality that can be utilized to observe the
brain’s function through electrodes placed on the scalp. In the studies, the researchers
examined “neurological” aspects to identify unique patterns in dyslexia [31]. For example,
Karim et al. [32] collected EEG signal data from six participants between four and seven
years of age (three dyslexic and three non-dyslexic). The normal children were selected ran-
domly from various schools, while the dyslexic children were from the Titiwangsa and Am-
pang Hilir branches of the Dyslexia Association of Malaysia. In the KSA, Al-Barhamtoshy
and Motaweh [33] compiled a dataset on 80 children between 7 and 13 years of age with
the help of the “Brain training and consultation center”. Normal children were randomly
selected from the cities of Jeddah and Makah. In another study [34], a dataset was compiled
on 32 children who were native Hebrew speakers in grades 6–7 (17 dyslexics and 15 skilled
readers). In Spain, Ortiz et al. [35] collected a dataset on 48 native Spanish-speaking partici-
pants (32 skilled readers and 16 dyslexics). All of them were right-handed, did not suffer
from hearing impairments, and had normal vision. Usman and Muniyandi [12] used MRI
data, which is a diagnostic medical tool utilized to analyze alterations in the brain anatomy.
They collected neuroimaging data on 45 individuals (19 dyslexics and 26 non-dyslexics)
aged 15–23 years from Kaggle datasets. fMRI is a type of MRI that produces images of
brain soft tissue with the highest resolution, which has been utilized to identify and analyze
various regions in brain [36]. In another study [37], an MRI dataset of BOLD functional
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images was collected through different reading tasks: a lexical decision task, semantic
categorization task, and lexical orthographic matching. The datasets were collected from
55 Spanish children between 9 and 12 years of age, who were recruited from schools and
the University Hospital of Cruces in Spain. Chimeno et al. [38] gathered 3D images from
both DTI and fMRI scans of 52 schoolchildren between nine and 12 years of age at various
times. In 2021, an fMRI dataset was collected on 32 Portuguese children, divided into
16 typical readers and 16 dyslexics aged 8–12 years [39]. All children were right-handed
and matched for IQ, age, and sex.

The final dataset category relates to patterns of eye movement when performing
cognitive tasks, as recent studies have used eye movements to differentiate between dyslexic
and non-dyslexic individuals. Statistical measures have been used to identify features
of children’s eye movement through cognitive exercise. The authors in [40,41] used the
same dataset containing raw eye movement data on 185 subjects, 88 at low risk of dyslexia
and 97 with a high risk of dyslexia. These data were collected in 2016 [42] from a wide
population of 2165 school children in second grade. Recently, Vajs et al. [43] collected and
analyzed a dataset on 30 subjects aged 7–13 years, 15 of whom had dyslexia and 15 of
whom were normal participants (11 male and 19 female), as they read a Serbian written
text with 13 different color configurations.

One study used an EOG in the prediction of dyslexia [44]. EOG is a method that
relies on the screening of the electrical potential for eye movements, which is helpful for
analyzing various types of eye movements, such as saccades, smooth pursuits, vergence,
blinks and gaze fixation. This study collected data on 33 children aged between 8 and
11 years of age (20 with dyslexia and 13 healthy; 17 female and 16 male). None of the
dyslexic children had hearing or vision defects. Figure 4 illustrates the usage percentage of
different datasets in the articles that employed DL methods to predict dyslexia.
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4.2. Data Preprocessing

Datasets related to dyslexia need to be processed and prepared before used in DL
techniques. The goal of this task is to enable the classifier to elicit the most related interpretable
features from the preprocessed dataset. There are several objectives of preprocessing processes,
including modulation, tissue segmentation, data normalization, smoothing, alignment with a
particular image template, and data normalization [19]. The study by Kohli and Prasad [30]
was different from the other studies in this review, as it utilized manual data preprocessing
methods. One study [32] applied decimation and STFT to the fMRI signals, which were
filtered using a bandpass procedure to remove noises and irrelevant artifacts.
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In addition, an FSL instrument, the FMRIB software library, was employed for pro-
cessing DTI and fMRI [38]. Usman and Muniyadi changed all of the T1w neuro-images
(images of the brain) into a format that could be used by FreeSurfer software [12]. Then, the
intensity of the images was adjusted so that they all had the same brightness and contrast.
The normalization of intensity was based on histograms. A FSL FNIRT software instrument
was utilized for non-rigid registration in the brain template of MNI152, and a Gaussian
filter was used to minimize noise. In [37], the preprocessing step included a DICOM to
NIFTI conversion, taking the “Digital Imaging and Communications in Medicine” file
and converting it into a “Neuroimaging Informatics Technology Initiative” file. This con-
version was necessary in order to use the data in SPM (Statistical Parametric Mapping)
software to analyze the brain image data. Normalization and smoothing were applied
in addition to the adjustment of head motion. In another study [39], the preprocessing
of the task-based fMRI involved the correction of slice time and motion, smoothing, and
normalization to a template of a voxel. Barhamtoshy and Motaweh [33] used standard
algorithms to filter irrelevant records and noise from the dataset. In addition, they removed
noise from EEG scans using a Fourier transform algorithm. Other authors used various
wavelet transformation approaches to convert EEG scans into low-pass and high-pass
filters [34]. Independent component analysis was used in the preprocessing of EEG signals
to remove artifacts due to recording eye blinking signals along with EEG signals [35]. The
studies that used the eye-tracking dataset to predict dyslexia focused on eliminating blinks
and processing missing data [40,41,43]. The study that used EOG signals utilized the
Butterworth bandpass filter to eliminate noise, followed by EOG segmentation. The aim
of segmentation was to balance the dataset (dyslexic and healthy groups). With regard to
a handwriting dataset, Spoon et al. [25,26] applied the DeepWriter concept [45] to create
50 random patches of handwriting features from each image in the handwriting dataset. Yo-
garajah and Bhushan [28] utilized the same concept to process Hindi letter datasets. Some
studies included different steps for processing unstructured data (handwriting images), as
shown in [27], including RGB to grayscale conversion, maximally stable extremal region,
canny edges detector, stroke width filter, and morphology as a final step. Isa et al. [4,29]
employed the same dataset. For preprocessing, they interchanged the foreground and
background to minimize computational overhead when an image had a lower black point
(value 0) than white point (value 1), which required more memory and power consumption
in training the image. In addition, they cropped handwriting images to the actual writing
part, thus resizing the images.

4.3. Feature Extraction and Selection

Before moving on to the classification stage, we need to be able to pull useful features
from the acquisition dataset. Feature extraction refers to the process of converting raw
data into numerical (or categorical) features that could be handled in classifier model
without lost valuable data in original dataset [46]. The purpose of this operation to remove
excrescent data and produce the most pertinent and highly informative features from the
original ones. It is possible to extract features manually or automatically: Manual extraction
demands defining and explaining the important features relevant for a given situation, as
well as designing a method for extracting those features. In many circumstances, having a
solid grasp of the context or domain can aid in making well-informed decisions regarding
which features may be valuable.

Automated feature extraction utilizes skilled algorithms or deep networks to elicit fea-
tures automatically from the dataset, with no human intervention required. An automatic
feature extraction could be very helpful in assisting to move speedily from the original
dataset to improve ML algorithms.

With the rise of DL, the first layers of deep networks have mostly taken the place of
feature extraction. The features extracted for predicting dyslexia differed in the dyslexia-
related datasets, as shown in Table 2.
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Table 2. Feature extraction methods for dyslexia disorder detection utilizing Deep Learning Methods.

Reference Dataset Feature Extraction Method and Selected Features

[30] Test score

The study extracted features manually based on cognitive
and evaluation test results. These included an IQ test,
rapid naming test, evaluation of short-term memory,
sequencing skills, and non-word reading to evaluate

phonological coding skills.

[32]

EGG

Using a kernel density estimation process, brain activity
features were extracted from EGG signals (353 features).

The ksdensity () function in MATLAB was used to derive
features depending on the normal kernel function.

[35]

To extract features from the EGG signals, the study used
SSA, which divides the raw signal into additive

components representing various oscillatory manners.
Five components were generated that might be utilized to

explain the data. For each component, Pearson’s
correlation among various channels of the PSD of each

singular SSA component was calculated. Pearson’s
correlation represents the degree of similarity between

two channels, thus helping to differentiate between
dyslexia and normal functioning.

[33]

Brain electrical signal features were extracted from EGG
signals utilizing Fourier transform algorithms and

statistical functions. The algorithms used the rule-based
model to filter non-related features and eliminate noise

from the electrical signal records.

[34]

The study used discrete wavelet transform techniques to
extract the most beneficial ERP signals from EGG, which

have a waveform linked both in frequency and time
domain. The signal was divided into low pass and high
pass. A group of temporal features were extracted from

the low-pass portion such as latency, absolute amplitude,
positive area, and entropy, while a group of statistical and

spectral features were extracted from the high-pass
portion such as mean, skewness ratios, standard deviation,
and zero crossing rate. Moreover, some features relevant

to the frequencies’ structure were extracted such as
spectral flatness measure, spectral centroid as well as

power spectral density.

[41]

Eye Tracking

The various eye movement events for preprocessed data
have been analyzed, such as saccades and fixations.
Different features relevant to these events have been

extracted using major statistical measures, dispersion, and
approaches velocity-based. Two algorithms for feature

selection have been used in this study, which are
Recursive feature Elimination with Cross-Validation

(RFE-CV) and PCA.

[40]

In this study, the CNN model extracted, implicitly,
substantial features scattered either in time or frequency

from preprocessed eye-tracking data and nonlinearly
bound them using machine learning to minimize

detection error.

[43] The velocity features which extracted from eye-tracking
events discriminate between dyslexic and control.
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Table 2. Cont.

Reference Dataset Feature Extraction Method and Selected Features

[44] EOG

The study used a 1D CNN model that generated feature
maps through operations in layers. These feature maps

contained significant features from the vertical and
horizontal EOG signals, allowing the differentiation of

dyslexic and normal readers.

[12]

MRI and fMRI

Features of the phonological and cognitive brain systems
related to gray matter, white matter, and cerebrospinal

fluid were extracted from fMRI utilizing
CAT12 implemented in MATLAB.

[38]

The study used FDT, BET, and TBSS to extract FA from
DTS signals, and used two tools (BET and FEAT) to elicit
features from fMRI. These two features (activation pattern

and FA) are associated with speech, language, and
lexical decisions.

[37]

After preprocessing fMRI dataset, SMP12 has been
implemented in MATLAP 2018b to extract cognitive
features pertaining to grey and white matter and the

volumetric biomarkers of cerebrospinal tissues.

[39]

This study was considered unique due to its visualization
of features, which differentiated dyslexic readers from

normal ones, such as activation patterns of anterior
right-hemisphere prefrontal areas as well as activation

patterns in the left occipital and inferior parietal areas that
distinguished groups based on brain networks related to
lexical and phonological processes in reading. The feature

extraction has been carried out in the layers of the
LeNet-5 model.

[25,26]

Handwriting

These studies used behavioral and cognitive biomarkers
(picture patches of handwriting features) to differentiate

between dyslexic and normal readers. A CNN model
extracted high features from processed handwriting

images when implemented in Python.

[28]

Hindi words have some prodigious features, such as
diacritics (matras), conjoined consonants, and killer

strokes (halants). The study used patches of handwriting
features to differentiate between dyslexics and normal
readers, which have been extracted in the CNN model

[27]

The study used an OCR technology to identify letters in
handwriting images. The rectified characters are

displayed in the command box after picture extraction
and character recognition, manually the total of correct

detection was been calculated.

[4,29]

These studies used a CNN model to extract features and
predict dyslexia from handwriting images. The

preprocessed handwriting images were fed to the CNN
model, and a feature map was created through the

convolution layer, which contained highly
informative features.

4.4. Classification and Performance of Deep Learning Models

As illustrated in traditional studies, ML methods have been used in the prediction of
dyslexia, and recent advances in ML methods (DL) have resulted in outstanding accuracy.
The use of DL models in dyslexia prediction varies based on the dataset used. For example,
CNN models are appropriate for handling unstructured data, as shown in all studies
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presented in this paper except [30], which dealt with numerical data. Although some
studies used ANNs to deal with EGG datasets and achieved high accuracy (96%) [33], others
achieved lower accuracy (78%) [34]. In addition, some studies that adopted handwriting
datasets used CNN models and reported accuracies between 86% and 95% [4,28,29], while
others achieved low accuracy (maximum 77%) [22,23,25]. Typically, the datasets were
partitioned to train and test the prediction models. Most of the data (approximately more
than or equal to 70% of all the data) were utilized for training, and the smaller part was
allocated for testing model. Some studies allocated part of the dataset (might be 10% or
20%) as a validation dataset, which is a sample of data that is restricted from the process of
the training model. These data are used to provide an estimate of the model’s skill while
the hyperparameters are being tuned. This division varied between studies. In refs. [12,29],
70% of the dataset was allocated for training, and the remainder was allocated for validation
and testing. Some studies used a higher percentage. For example, refs. [39,41,43] allocated
80% for training, while study [40] allocated 90%. Recent studies have utilized ANN, MLP,
and CNN models for dyslexia prediction and most have reported high accuracy in most
studies. Figure 5 organizes the reviewed studies according to the DL algorithms adopted.
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The ANN model suggested by the authors in [30] achieved an accuracy of 75% after
ten-fold cross-validation when used with a dataset on pupils’ performance acquired from
a structured questionnaire. In addition, the same model achieved the highest accuracy
among other models in two studies (89.7% and 94.87%) [29,33,34]. Spoon et al. were the first
to use a handwriting dataset for the prediction of dyslexia disorder. They proposed a CNN
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model to automatically recognize dyslexic children based on their handwriting [25]. They
achieved an accuracy of 55.7 ± 1.4% by employing five-fold CV. Then, they developed their
model further [26], reaching an accuracy of 77.6%. Yogarajah et al. [28] utilized handwriting
images from children’s notebooks as a dataset to build a CNN model, achieving good
accuracy of 86.14 ± 1.02%. Two consecutive studies [4,29] used the same datasets from
NIST 2019 to build a prediction model. The first used different CNN models, such as
CNN-1, CNN-2, CNN-3, and LeNet-5, to compare the prediction performance. All models
showed an accuracy of more than 87%, with CNN-1 providing the highest accuracy. The
second study utilized a LeNet-5 model and achieved an outstanding accuracy of 95%, which
is the highest accuracy for predicting dyslexia using a handwriting dataset. Regarding the
performance of DL models for predicting dyslexia using MRI and fMRI, Zahia et al. [37]
presented a 3D CNN model that achieved an accuracy of 72.7%, a sensitivity of 75%, an
F1-score of 67%, a precision of 60%, and a specificity of 71.4%. Muniyandi and Usman [12]
proposed a two-path cascading CNN model and achieved an accuracy of 84.6%, a specificity
of 78.2%, and a sensitivity of 76.5%. In addition, Silva et al. [39] developed a CNN model
and obtained the highest accuracy of 94%. Karim et al. utilized an MLP classifier to monitor
accuracy with eyes opened and closed, reporting accuracies of 86% and 84.95% for eyes
opened and closed, respectively.

Eye-tracking datasets have been used to build a CNN model for dyslexia prediction,
which showed good results [40,41,43]. Nerušil et al. [40] achieved the highest accuracy
of 96.6%, while Vags et al. [43] achieved an accuracy of 87%. Moreover, Appadurai and
Bhargavi [41] achieved an accuracy of 82% for scan path images and 87% for fixation images.
Table 3 summarizes the performance of the predictive model of each study in this review.

Table 3. Summarizes the performance of the predictive model of each study in this review.

Reference Datasets DL Model No. of Subjects Performance

[30] Test score ANN Not mentioned Accuracy: 75%

[32] EGG MLP
N = 6 kids
Normal = 3

Dyslexics = 3

Accuracy: 86% for eye opened
and 85% for eye closed.

[38] fMRI and DTI ANN N = 56 kids
aged (9–12 years)

Accuracy: 94.8%, Sensitivity:
94.7%, Specificity: 95%

[33] EGG scan ANN N = 80 kids
(7 to 13 ages) Accuracy: 89.9%

[34] EGG ANN
N = 32

Normal = 15
Dyslexics = 17

Accuracy: 78%

[25] Handwriting image CNN
N = 88

Normal = 62
Dyslexics = 11

Accuracy: 55.7%

[26] Handwriting image CNN N = 100 Accuracy: 77.6%

[27] Handwriting image ANN/MLP N = 30 Accuracy: 73.33%

[12] MRI CNN N = 45 Accuracy: 73.2%

[37] fMRI 3D CNN N = 66 children
(9 and 12 years)

Accuracy: 72.7%, F1 score: 67%,
Sensitivity: 75.0%, Specificity:

71.4%, Precision: 60%%

[28] Handwriting image CNN N = 54 children
(267 samples) Accuracy: 86.14 ± 1.02%

[35] EEG CNN
N = 48

32 skilled readers
16 dyslexic readers

The study did not mention the
accuracy but stated the effectiveness

of CNN for eliciting informative
features to diagnose dyslexia.
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Table 3. Cont.

Reference Datasets DL Model No. of Subjects Performance

[4] Handwriting image CNN Normal = 78,275 letters
Dyslexic = 52,196 letters

Accuracy of CNN1: 86%
Accuracy of CNN2: 87%

Accuracy of CNN3: 86.5%
Accuracy of LeNet-5: 86%

[29] Handwriting image CNN Accuracy: 95.34%

[40] Eye tracking CNN
N = 185

88 low risks
97 high risks

Accuracy: 96.6%

[39] fMRI CNN
N = 32 children

16 typical readers
16 dyslexic readers

Accuracy: 94.8%

[41] Eye tracking CNN
N = 185

97 dyslexics
88 non-dyslexics

Accuracy of CNN: 87%

[43] Eye tracking CNN (VGG 16)
N = 30

15 dyslexics
15 normal

Accuracy: 87%

[44] EOG CNN
N = 33

20 dyslexics
13 normal

Accuracy for horizontal channel
EOG signals: 98.70%

Accuracy for vertical channel EOG
signals: 80.94%

5. Discussion and Challenges

Dyslexia disorder is a learning difficulty that hinders an individual’s learning skills.
Commonly, this disorder is pointed to as a neurological trouble that complicates remember-
ing and addressing information in dyslexics. Artificial intelligence methods (ML and DL)
have been vastly utilized for the prediction of dyslexia over recent years. The detection
processes involved successive steps starting from data acquisition and preprocessing, then
the extraction and selection of features, and thereafter the training process, to the model
estimation process. The prediction of dyslexia disorder based on ML, particularly DL
methods, was successful in the studies included in this review, achieving high accuracies
of 94.8% [34], 94.8% [35], 95.34% [25], and 96.6% [36], respectively. CNN models were the
most commonly used models for dyslexia prediction and showed the highest accuracy.
However, there were some challenges.

The acquisition of dyslexia datasets is not easy. The studies that utilized handwriting
datasets encountered difficulties in acquiring data from dyslexia children [25,26] in addition
to their limited size. Furthermore, as shown in Table 3 (column three), the number of
subjects did not exceed 185, but DL models require large-scale data to improve predictive
model performance. In addition, the high cost of brain-imaging technology limits its usage,
and, therefore, some studies tended to use cheaper EEG and eye-tracking systems.

Often, CNN models lead to overfitting problems in the training phase, where the
accuracy of the model is high with the training set but low with the testing set due to
involving a large number of parameters [47]. Moreover, the dyslexia datasets suffer from
their small scale, leading to overfitting. To avoid this, several techniques have been
suggested, such as:

- The dropout technique that commonly employs the method of generalization. Through-
out each training period, the neurons are randomly eliminated. In doing so, the power
of feature selection is divided uniformly over the entire group of neurons, and the
model is forced to learn multiple independent features [48].

- Data augmentation: Training the model on a substantial amount of data is the simplest
method for avoiding overfitting [49]. Several strategies are employed to augment
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the size of the training dataset, such as cropping, translation, and rotation. Rotation
and noise injection techniques have been used in the study [29]; they contributed to
enlarging the training size dataset and solved the imbalanced class problem.

The dataset preprocessing step is a critical step, and the formative features extracted
from datasets using DL models, especially CNNs, depend on good processing, which
affects the classification accuracy. The better and more accurate the processing, the better
the performance of the model.

Hyper-parameter selection has a substantial effect on CNN performance. Any vari-
ation in the values of the hyper-parameters will affect the CNN’s overall performance.
Consequently, proper parameter selection is a crucial factor that should be considered
throughout the creation of optimization schemes [48].

Effective CNN training necessitates powerful hardware resources, such as GPUs,
which are robust concerning memory usage and processing speed. Implementing DL
models on a system with these hardware resources will increase the classification speed
for dyslexia.

The classification of dyslexia using DL methods requires more attention and research.
In particular, DL models have a strong ability to extract features from unstructured data
and, thus, to perform accurate classification. Moreover, some tools may be developed to
assist in diagnosing dyslexia, such as handwriting images, which were first utilized in
2019 for prediction.

6. Conclusions

Dyslexia is a learning difficulty that impacts the reading, writing, spelling, and dicta-
tion processes. It usually results from a deficit in the language phonological component,
which is often unforeseen by teachers or parents of kids who suffer from this disorder.
About 10% of the world’s population suffers from this disorder, and it is important to
discover it early to reduce its impact and improve the skills of dyslexics. Researchers
have suggested multiple techniques for identifying dyslexia in children. Recently, DL
methods have contributed significantly to diagnosing dyslexia. This review summarized
the dyslexia detection techniques that have employed DL approaches. Furthermore, this
review investigated the significant factors related to dyslexia prediction, seeking to help
researchers build a predictive model with good accuracy. In the future, more attention
could be given to the collection of dyslexia-related datasets.
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ICT Information and Communication Technologies
CASL Comprehensive Assessment of Spoken Language
CTOPP-2 Comprehensive Test of Phonological Processing-2
WRMT Woodcock Reading Mastery Test
GSRT Gray Silent Reading Test
MRI Magnetic Resonance Imaging
DTI Diffusion Tensor Imaging
GPUs Graphics Processing Units
AI Artificial Intelligence
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ANN Artificial Neural Networks
MLP Multi-layer Perception
PRISMA Preferred Reporting Items for Systematic review and Meta-Analyses
ERP Event-Related Potentials
RFE-CV Recursive feature Elimination with Cross-Validation
BET Brain Extraction Tool
TBSS Track-Based Spatial Statistics
OCR Optical Character Recognition
ADM Association of Dyslexia Malaysia
SSA Singular Spectrum Analysis SSA
PCA Principal Component Analysis
ML Machine Learning
SVM Support Vector Machine
DL Deep Learning
3D Three-Dimensional.
TEWL Test of Early Written Language
fMRI Functional MRI
EEG Electroencephalography
IEEE Institute of Electrical and Electronic
CNN Convolutional Neural Network
DNN Deep Neural Network
RNNs Recurrent Neural Networks
PCA Principal Component Analysis
FA Fractional Anisotropy
FEAT FMRI Expert Analysis Tool
FDT FMRIB Diffusion Toolbox
EOG Electrooculogram
STFT Short-Time Fourier Transform
PSD Power Spectral Density
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