
Citation: Chu, Y.; Hui, Y.; Jiang, S.; Fu

C. Neural Network-Based Reference

Block Quality Enhancement for

Motion Compensation Prediction.

Appl. Sci. 2023, 13, 2795. https://

doi.org/10.3390/app13052795

Academic Editor: Antonio

Fernández-Caballero

Received: 19 December 2022

Revised: 19 February 2023

Accepted: 20 February 2023

Published: 22 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Neural Network-Based Reference Block Quality Enhancement
for Motion Compensation Prediction
Yanhan Chu, Hui Yuan * , Shiqi Jiang and Congrui Fu

School of Control Science and Engineering, Shandong University, No. 17923 Jingshi Road, Jinan 250061, China
* Correspondence: huiyuan@sdu.edu.cn

Abstract: Inter prediction is a crucial part of hybrid video coding frameworks, and it is used to
eliminate redundancy in adjacent frames and improve coding performance. During inter prediction,
motion estimation is used to find the reference block that is most similar to the current block,
and the following motion compensation is used to shift the reference block fractionally to obtain
the prediction block. The closer the reference block is to the original block, the higher the coding
efficiency is. To improve the quality of reference blocks, a quality enhancement network (RBENN)
that is dedicated to reference blocks is proposed. The main body of the network consists of 10 residual
modules, with two convolution layers for preprocessing and feature extraction. Each residual module
consists of two convolutional layers, one ReLU activation, and a shortcut. The network uses the
luma reference block as input before motion compensation, and the enhanced reference block is then
filtered by the default fractional interpolation. Moreover, the proposed method can be used for both
conventional motion compensation and affine motion compensation. Experimental results showed
that RBENN could achieve a −1.35% BD rate on average under the low-delay P (LDP) configuration
compared with the latest H.266/VVC.

Keywords: H.266/VVC; inter prediction; motion compensation; deep learning; image enhancement

1. Introduction

As video dominates the current media transmission network, the demand for higher
quality video is growing day by day, which brings great challenges to video compression al-
gorithms. Video coding tools have been iterating for decades and, furthermore, eliminating
redundant information in the video is becoming more and more difficult.

As one of the most important parts in a hybrid video coding framework, inter predic-
tion predicts the correlation between adjacent frames so that it is not necessary to transmit
all the information of each coding frame. As shown in Figure 1, when encoding the current
coding unit (CU), the reference CU, which is most similar to the current CU, can be found in
the reconstructed reference frame. Only the motion vector (MV) and residual information
between them need to be transmitted. Due to the inherent spatial discretization of digital
video, block translation may not be aligned with integer pixels. Through motion estimation
(ME), as shown in Figure 2, the current CU first finds the reference CU and obtains the
integer pixel MV (Imv). To improve the prediction accuracy, the reference CU is further
interpolated to achieve a higher resolution; thus, the image block at the best fractional pixel
position could be selected by a fractional MV (Fmv). It is obvious that the interpolation
method plays an important role for fractional motion estimation. The more accurate the
predicted block, the smaller the residue, and the higher the coding performance. In the
1980s, researchers adopted simple bilinear and bicubic filters to generate fractional pixels.
With the development of signal processing theory, researchers proposed more efficient
interpolation filters, such as the Wiener interpolation filter, discrete cosine transform in-
terpolation filter (DCTIF) [1], and the generalized interpolation filter [2]. These filters can
perform an overall fractional shift of the image to make the reference block closer to the

Appl. Sci. 2023, 13, 2795. https://doi.org/10.3390/app13052795 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13052795
https://doi.org/10.3390/app13052795
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-5212-3393
https://doi.org/10.3390/app13052795
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13052795?type=check_update&version=1

Appl. Sci. 2023, 13, 2795 2 of 13

current block. In addition, for non-translational motion in video, H.266/VVC also uses
affine motion compensation, in which a large block is divided into sub-blocks first before
the corresponding MV of each sub-block can be calculated by an affine formula to cope
with the motion of zooming, rotation, etc. A typical video coding structure of existing video
coding standards is shown in Figure 3.

Reference frame

 (T-n frame)

Current frame

(T frame)

Current CUReference CU

MV

Figure 1. Inter prediction.

Current CUImv

Fmv

Reference CU

Predicted CU

Current CU

Reference Frame Current Frame

Figure 2. Relationship between the current CU, reference CU, and predicted CU; the block with green
dots represents the integer pixel position.

Transform Quantization Entropy Coding

Scaling

Inverse

Transform

Loop Filter

Intra Prediction

Motion

Compensation

Motion

Estimation

1111101...

Residual Coefficients Encoder output

Input yuv &

Divide into blocks

Decoder input

Bitstream

Video Signal

Int MV

Inter Prediction

Decode

Figure 3. VVC coding framework.

Finally, the optimal MV, the transformed and quantized residual between the current
block and the reference block, and some other meta information is entropy coded to

Appl. Sci. 2023, 13, 2795 3 of 13

generate a bit stream. The decoder finds the corresponding reference block by the MV and
adds residuals to reconstruct the current block.

In recent years, deep learning (DL) has made great achievements in many fields
with its strong learning ability and robustness. Especially in the field of computer vision,
deep convolutional neural networks have played an interesting role in solving image
processing problems. Recently, Moving Picture Expert Group has been investigating deep
learning-based coding tools to further improve coding efficiency. DL-based methods can
be integrated into a specific video coding module, such as intra prediction, inter predic-
tion, loop filter, and post-processing. Specifically, in inter prediction, DL can be used for
prediction, quality enhancement, fractional interpolation, and reference frame generation.

In view of the successful application of DL in image quality enhancement, we proposed
a quality enhancement method for CU before MC, which was added to the H.266/VVC
framework. Specifically, we designed a reference-block-enhanced neural network (RBENN)
to enhance the quality of the reference block. Fractional interpolation and other subsequent
operations were then used on the quality-enhanced reference block. Compared with the
standard H.266/VVC framework, the proposed method can reduce the Bjøntegaard delta
rate (BD rate) [3] in the low-delay P (LDP) configuration by 1.35%. The contributions of
this paper are as follows.

• A convolutional neural network with residual structure was used to enhance the
quality of reference blocks before MC.

• The proposed method not only enhanced the reference CU before conventional motion
compensation, but it also enhanced the reference CU before affine motion compensa-
tion.

• Experimental results showed that the proposed method achieved a 1.35% BD rate
saving compared with the H.266/VVC standard under LDP test conditions.

The remainder of this paper is organized as follows. Section 2 provides a brief review of
the related work, Section 3 describes the proposed methodology and network architecture,
Section 4 shows experimental results, and the work is concluded in Section 5.

2. Related Work

In inter prediction, the closer the reference CU is to the current CU, the less the resid-
uals are that are required for coding, and, thus, the lower the bit rate. However, due to
the discretization of digital video, the current CU and the reference CU cannot be com-
pletely aligned. For this reason, existing video coding standards usually adopt a set of
fixed sub-pixel filtering coefficients to interpolate the reference CUs [4]. In H.266/High
Efficiency Video Coding (HEVC) and H.266/VVC, discrete cosine transform-based half
or quarter interpolation filters are adopted. Specifically, to improve the coding perfor-
mance, H.266/VVC applies one-sixth sub-pixel precision interpolation filters and affine
motion compensation.

Although the fractional interpolation filter achieves good performance in ME and
MC, it still cannot adapt to complex video content well. Therefore, many researchers have
used DL to refine the sub-pixel blocks. In these methods, [5–13] are for HEVC/H.265 [14],
while [15–19] are for H.266/VVC [20].

Yan et al. [5–7] regarded the fractional interpolation filter as an image regression
problem and trained neural networks for each fractional interpolation filter. In [5], the au-
thor replaced three half-pixel fractional filters with three super-resolution convolutional
neural network (SRCNN) [21] models, which resulted in a 0.9% reduction in BD rate under
the LDP configuration of H.265/HEVC. In [6], the author used the reference CU as the
input, the original CU as the ground truth, and trained 15 networks, whose structures
were similar to a variable-filter-size residue learning convolutional neural network (VR-
CNN) [22], to replace the fractional filters of half- and quarter-pixel fractional shifts. In this
method, there are a total of 120 natural networks for uniprediction, biprediction, and four
different quantization parameters (QPs). This method saves 3.9%, 2.7%, and 1.3% in BD
rates on average for LDP, low-delay B (LDB), and random-access (RA) configurations of

Appl. Sci. 2023, 13, 2795 4 of 13

H.265/HEVC, respectively. Yan et al. [7] also proposed a reversible training method that is
based on the assumption that integer pixels and fractional pixels can be derived from each
other. This method can save 4.7% and 3.6% in BD rates under the configurations of LDB
and RA for H.265/HEVC, respectively. In [8], a group variational transformation neural
network (GVTNN) was proposed to replace the fractional interpolation in H.265/HEVC,
and it can achieve a 1.9% BD rate reduction under the LDP configuration. Liu et al. [9]
optimized a neural network based on [8] and analyzed the influence of a fuzzy kernel on the
task. In [10], Huo et al. deemed that fractional interpolation can obtain more information
from the reconstructed area around the current CU. The authors then put the current CU,
together with the left and top reconstructed areas, into a larger square area as the network
input and the original CU as the ground truth label. This method reduces the BD rate
by 1.8% in the LDP configuration of H.265/HEVC. Similarly, Wang et al. [11] reshaped
the left and the upper reconstructed regions of the current CU into images with the same
size, and then input them into the neural network together. This method can achieve 4.6%,
3.0%, and 2.7% BD rate reductions on average under LDP, LDB, and RA configurations,
respectively, compared to H.265/HEVC. Chi et al. [12] trained separate networks for luma
and chroma channels. The method in [13] is similar to a loop filter; it uses the optical flow
network (PWC-Net) [23] to generate an optical flow graph from the video frames before
the reference frames, then uses the optical flow graph and the reference frame in a neural
network [24] for quality enhancement. T he reference CUs are then extracted from the
quality-enhanced reference frame for MC.

In the study of H.266/VVC, Murn et al. [15,16] designed a three-layer neural network
that only contains convolutional layers. The reference CUs, and the original CUs corre-
sponding to different fractional filters, are made into different datasets for network training.
All convolution kernels in the network are extracted and compressed into a 13× 13 matrix
to replace the DCTIF for MC. This approach can effectively reduce the complexity of the
network; it can finally achieve BD rate savings of 0.77%, 1.27%, and 2.25% on average under
RA, LDB, and LDP configurations, respectively, compared to H.266/VVC. Galpin [17]
used neural networks to enhance inter biprediction and replaced bidirectional optical flow
(BDOF) with networks. Compared with H.266/VVC, it saves 1.4% and 0.58% of the BD
rate under RA and LDB configurations, respectively. Jin [18] combined DL with affine
motion compensation. This method takes the reference region, the predicted region, and the
motion vectors of sub-CUs of affine motion compensation as the inputs of the network,
and then outputs the final predicted region. The authors trained 76 networks for different
QPs and CU sizes. It finally achieved a −1.77% BD rate compared to H.266/VVC under
LDP configuration. In [19], Katayama used LSTM [25] to enhance the reference frame to
generate a virtual frame. This method achieves a BD rate reduction of 0.58% compared to
H.266/VVC under the LDP configuration.

Most of the above-mentioned methods use a neural network to replace the DCTIF.
Unlike these methods, we embedded the RBENN as a module into inter prediction, which
could be used together with these methods. To maximize the coding efficiency, we only
enhanced the CU blocks whose size was larger than 16× 16, and also enhanced the CU
blocks before affine motion compensation.

3. Proposed Method

Section 3.1 describes how the RBENN is embedded into the conventional motion
compensation and affine motion compensation of H.266/VVC. The composition of the
network is then described in Section 3.2. Finally, the dataset and the training method are
described in Sections 3.3 and 3.4.

3.1. An RBENN Integrated in H.266/VVC

In the configuration file of H.266/VVC, CU sizes range from 4× 4 to 64× 64. As the
variation of CUs with small sizes is usually not large and the number of pixels is also small,
an RBENN only enhances the CUs that are larger than 16× 16. We trained three networks,

Appl. Sci. 2023, 13, 2795 5 of 13

denoted as RBENN 1, RBENN 2, and RBENN 3, to process CU blocks with minimum side
lengths of 16, 32, and 64, respectively. Specifically, RBENN1 enhances CUs with sizes of
{16× 16, 32× 16, 16× 32, 16× 64, 64× 16}, RBENN2 enhances CUs with sizes of {32× 32,
64× 32, 32× 64}, and RBENN3 enhances CUs with a size of {64× 64}. Figure 4 depicts
the system diagram of the encoder and decoder when the neural networks are integrated
into the H.266/VVC. On the encoder side, the current CU finds the reference CU based on
ME. An RBENN enhances the reference CU and replaces the original reference CU with its
output. At the decoder, the current CU finds the reference CU in the reconstructed frame
based on the decoded MV. The output of the RBENN is then filtered by a DCTIF to obtain
the predicted CU.

Motion

estimation

Motion

conpensation
RBENN

Original

Transform &

Quantization
Entropy coding

Residue Bitstream

(a) Encoder

Entropy decoding
Inv. Quant. &

Inv. Trans.

Motion

conpensation

Reconstruction
Deblocking &

SAO filters

RBENNReference CU

Bitstream Residue

MV

(b) Decoder

Figure 4. A diagram of RBENN integrated into H.266/VVC.

Figure 5a shows the process of integrating an RBENN into conventional motion com-
pensation, while Figure 5b is the process of integrating an RBENN into affine motion
compensation. In conventional motion compensation, the H.266/VVC standard finds the
reference CU from the current CU according to the MV. First, the reference CU is expanded
by 4 pixels, then a DCTIF is applied to generate the predicted CU. The residual CU is
obtained by subtracting the predicted CU from the original CU. It is then transformed and
quantized. Our method was designed to input a padded image patch into the proposed
RBENN, and the output image patch is then interpolated and filtered by a DCTIF. In affine
motion compensation, H.266/VVC splits the current CU into several 4× 4 sub-CUs and cal-
culates the MV of each sub-CU according to four-parameter or six-parameter affine models.
The reference sub-CUs are then found through the corresponding MVs. By performing
padding and fractional interpolation on the reference sub-CUs, the final predicted sub-CUs
can be obtained. Finally, all the predicted sub-CUs are combined to obtain the predicted CU.
In our method, we first obtain the minimum region containing all the reference sub-CUs
and then pad the region and feed it to the neural network. Based on the corresponding
position of the output image patch, the padded sub-CUs can be filtered by a DCTIF to
obtain the predicted sub-CUs.

Appl. Sci. 2023, 13, 2795 6 of 13

Reference

CU

Reference

CU

Predicted

CU

Predicted

CU

RBENNRBENN

boundary

padding

W

H

Enhanced

CU

Enhanced

CU

Reference

CU

Reference

CU

Reference

CU

W+4

H
+

4 Reference

CU

W+4

H
+

4

fractional

interpolation

Original

CU

quantization
Current

CU

Current

CU

vector

moving

Our method

VTM-9.3

(a) Conventional motion compensation.

Reference

Region

Reference

Region

Reference

Region

Reference

Region

Enhanced

CU

Enhanced

CU
RBENNRBENN

Predicted

CU

Predicted

CU

get max

region

boundary

padding

Reference

CU

Reference

CU

Reference

CU

vector

moving

 find padded

sub-CUs

fractional

interpolation

Original

CU

quantization
Current

CU

Current

CU

Current

CU

Calculate

Sub-CU MVCurrent

CU

Current

CU

W

H

Current

CU

W

H

W+4

H
+

4

Our method

VTM-9.3

Padded

sub-CUs

Predicted

sub-CUspadding

sub-CUs

(b) Affine motion compensation.

Figure 5. The detail of an RBENN integrated before MC.

3.2. The Construction of an RBENN

Figure 6 depicts the overall framework of the RBENN. The network consists of 10 resid-
ual modules and 2 convolutional layers at the beginning and end. The network takes the
padded reference CU before MC as input and passes it through a 3× 3 convolution layer,
which is followed by a rectified linear unit (ReLU) [26]. This process can be expressed as

F1 = max (0, W0 · X), (1)

where W0 represents the convolution kernel of the first layer, X is the input of the RBENN,
and F1 is the output of the first layer.

The main body of the RBENN is composed of multiple residual convolution blocks
(RCB), and the composition of the residual module [27] is also shown in Figure 6. It is
composed of two convolutional layers, an ReLU, and a shortcut. The purpose of using a
short cut is to make the network converged quickly. This process can be expressed as

Fi,1 = max (0, Wi,1 · Fi),

Fi,2 = Wi,2 · Fi,1,

Fi+1 = Fi + Fi,2,

(2)

where 1 ≤ i ≤ 10, i ∈ {1, 2, . . . , 10}, Fi is the input of the i-th module, Wi,1 is the first
convolution kernel of the i-th module, and Wi,2 is the second convolution kernel of the i-th
module, Fi+1 is the output of the i-th module and also the input of the (i + 1)-th module.

Finally, a 3× 3× 1 convolution kernel is used to compress all feature maps into a
residual image, which is added to the input image to obtain the final output:{

F12 = W12 · F11,

Y = F12 + X,
(3)

where Y is the output, F11 is the output of the last RCB, and W12 is the last convolution kernel.
The number of channels of convolution kernels in the whole network is 64, except in

the last layer where it is 1.

Appl. Sci. 2023, 13, 2795 7 of 13

Residual Convolution

Block(RCB)

3
×

3
×

6
4

R
e
lu

3
×

3
×

6
4

R
e
lu

3
×

3
×

1

3
×

3
×

6
4

R
e
lu

3
×

3
×

6
4

R
e
lu

R
C

B
(C

=
6

4
)

R
C

B
(C

=
6

4
)

3
×

3
×

6
4

3
×

3
×

6
4

R
C

B
(C

=
6

4
)

 10 blocks

Figure 6. Framework of an RBENN.

3.3. Dataset for Training

In video coding, quantization will cause an irreversible loss of high-frequency image
details. The aim of an RBENN is to restore the high frequency details of the image according
to the low frequency information of the image.

In H.266/VVC, the relationship between different CUs is shown as
CUpre = DCTIF(CUre f),

CUres = CUori − CUpre,

CUrec = CUpre + T−1(Q−1(Q(T(CUres)))),

(4)

in which, CUrec, CUpre, CUre f , CUori, CUres represent the reconstruction of the current
CU at the decoder, the predicted CU, the reference CU, the original CU, and the residual
CU, respectively. The reference CU is the CU found on a reference frame according
to MV. The predicted CU is obtained from the reference CU through the interpolation
filter. The residual CU is transformed T(·), quantized Q(·), inversely quantized Q−1(·),
and inversely transformed T−1(·) to obtain the reconstructed CU.

In our proposed method, with the reference CU as input, the RBENN() enhances the
quality of the reference CU to replace the initial reference CU:

CUpre = DCTIF(RBENN(CUre f)). (5)

For easy implementation, the input of the training data is the predicted CU, which is
extracted from the decoder directly, and the label of the training data is the original CU,
which is extracted from the original video sequence.

The specific details are shown in Figure 7, where the purple dots represent the integer
pixel position of the picture. The current CU in the position (X, Y) of the current frame
finds the reference CU in the reference frame (X + Imvx , Y + Imvy) position through MV,
where Imv represents the integer displacement of MV and Fmv is the fractional displacement.
The reference CU is then filtered to obtain the predicted CU.

We used 650 video sequences to generate the training data. These 650 video sequences
came from the dataset of BVI-DVC [28]. The resolutions were 3840× 2176, 1920× 1088,
960× 544, and 480× 272. To better adapt to video contents with different resolutions,
all these video sequences were encoded using VTM-9.3 with LDP configuration [29].
The quantization parameter was 22. The first 32 frames of each sequence were encoded,
the predicted CU of the integer MV was obtained from the compressed bitstream, and the
original CU was obtained from the video sequence. The dataset contained 16× 16, 32× 32,
and 64× 64 CUs for training RBENN1, RBENN2, and RBENN3, respectively. There were
about 10,000,000 blocks for training RBENN1, 2,000,000 blocks for training RBENN2,
and 300,000 blocks for training RBENN3.

Appl. Sci. 2023, 13, 2795 8 of 13

8.0833 mm

Current FrameReference Frame

(X,Y)

(X+Imvx,Y+Imvy)

(X+Imvx+Fmvx,Y+Imvy+Fmvy)

YUV Current Frame

(X,Y)

Reference CU

Predicted CU

Current CU

Original CU

Label of Dataset

Input of Dataset

Figure 7. Illustration of the process of generating training data for training the RBENN.

3.4. Training Strategy

Specifically, given a collection of n training samples, (xi, yi), i ∈ {1, 2, . . . , n}, the mean
squared error (MSE) was used to minimize the loss function. The loss function is formulated as

L(Θ) =
1
n

n

∑
i=1
||F(xi|Θ)− yi||2, (6)

where Θ is the parameters of the network. The proposed RBENN was trained using PyTorch
1.8.0 on an NVIDIA GeForce GTX 2080Ti GPU. The loss function was minimized by using a
first-order gradient based optimization method called Adam [30]. A batch-mode learning
method was adopted with a batch size of 64. The momentum of Adam optimization was
set to 0.9 and the momentum 2 was set to 0.999. The base learning rate was initially set to
decay 0.1 times per 60 epochs from 0.0001. The training lasted 240 epochs.

4. Experimental Results
4.1. Experiment Settings

The proposed method was implemented based on H.266/VVC reference software
VTM-9.3. The proposed RBENN was used to improve the quality of all luma CUs
above 16× 16 before MC. The LDP configuration was tested in the experiment under
the H.266/VVC common test conditions. We encoded class D video sequences during
the test, where the first 32 frames of each video sequence were encoded and decoded.
There was no overlap between the training video sequences and the tested video sequences.
The QPs used in our experiments varied among 22, 27, 32, and 37. The BD rate, which
represents the bit rate increment at the same reconstruction quality, was used to measure
the rate-distortion (RD) performance. The negative BD rate (BD rate reduction) means
there is a positive coding gain, while a positive BD rate means there is a negative gain.
To evaluate the reconstruction quality, PSNR and SSIM were used. Therefore, there are two
kinds of BD rates: a PSNR-based BD rate and an SSIM-based BD rate.

4.2. Compared with VTM 9.3

The experimental results are summarized in Table 1, and RD curves of the several
video sequences are shown in Figure 8. We can see that the proposed method achieved,
on average, a 1.35% PSNR-based BD rate reduction and a 2.28% SSIM-based BD rate
reduction. We can also see that the RBENN can save −2.15% of the PSNR-based BD rate
for BQSquare and −3.96% of the SSIM-based BD rate for BlowingBubbles, which contains
severe aliasing and more noise, indicating that the RBENN is more efficient for anti-aliasing

Appl. Sci. 2023, 13, 2795 9 of 13

and noise reduction. Figure 9 compares the subjective quality of the CUs with and without
the proposed method. We can see that the RBENN did not affect the low-frequency
information; however, it affected the high-frequency information, thus improving the
image quality. Finally, we also tested the complexity of our proposed RBENN, as shown in
Table 2. Since the CU is divided iteratively in the video coding process, frequent calls to
the neural network lead to a large increase in complexity. In the future, we will reduce the
complexity by designing lightweight networks.

Table 1. Results of Our RBENN Compared to VTM9.3 under LDP.

Class D QP
VTM-9.3 Our Method BD Rate Y

kbps Y PSNR Y SSIM kbps Y PSNR Y SSIM PSNR SSIM

BasketballPass

22 462.02 41.77 0.9702 460.61 41.79 0.9704

−1.49% −2.25%27 212.12 37.83 0.9402 210.39 37.88 0.9407
32 105.22 34.52 0.8965 104.87 34.59 0.8984
37 54.50 31.66 0.8420 54.34 31.73 0.8434

BQSquare

22 938.15 38.65 0.9435 927.06 38.70 0.9439

−2.15% −2.01%27 346.29 34.58 0.8972 342.84 34.65 0.8986
32 165.94 31.57 0.8381 166.29 31.66 0.8401
37 89.23 28.86 0.7660 89.65 28.94 0.7676

BlowingBubbles

22 1086.89 38.35 0.9622 1085.67 38.37 0.9637

-1.14% −3.96%27 428.88 34.62 0.9263 427.47 34.67 0.9280
32 192.49 31.64 0.8758 192.46 31.68 0.8778
37 90.44 29.03 0.8341 89.94 29.03 0.8371

RaceHorses

22 1307.56 39.17 0.9614 1306.50 39.21 0.9619

−0.61% −0.91%27 582.08 34.73 0.9144 579.64 34.74 0.9146
32 273.95 31.23 0.8471 272.80 31.24 0.8481
37 134.72 28.49 0.7725 134.48 28.51 0.7719

Average −1.35% −2.28%

0 100 200 300 400 500

Rate/kbps

30

32

34

36

38

40

42

P
S

N
R

/d
B

reference
test

(a) BasketballPass.

0 200 400 600 800 1000 1200

Rate/kbps

28

30

32

34

36

38

40

P
S

N
R

/d
B

reference
test

(b) BlowingBubbles.

0 200 400 600 800 1000

Rate/kbps

28

30

32

34

36

38

40

P
S

N
R

/d
B

reference
test

(c) BQSquare.

0 500 1000 1500

Rate/kbps

28

30

32

34

36

38

40

P
S

N
R

/d
B

reference
test

(d) RaceHorses.

Figure 8. RD curves of class D video sequences under LDP.

Appl. Sci. 2023, 13, 2795 10 of 13

Table 2. Complexity of our method.

Class D
LDP

EncTime DecTime

BasketballPass 70,977% 17,959%

BQSquare 64,455% 30,334%

BlowingBubbles 58,523% 26,708%

RaceHorses 47,806% 26,507%

Average 56,653% 24,021%

Label

VVC/H.266

(psnr, ssim)

Our methed

(psnr, ssim)

(37.185, 0.966)

(38.594, 0.972)

(40.186, 0.965)

(41.610, 0.976)

(31.753, 0.967)

(32.816, 0.973)

(33.759, 0.983)

(34.409, 0.988)

(36.453, 0.969)

(37.737, 0.977) (37.812, 0.957)

(36.974, 0.950)

Figure 9. Quality enhancement results on reference CU performed by the RBENN.

4.3. Result Analysis

Since the RBENN enhances the reference CU before MC, the performance of the
RBENN can be more clearly represented by comparing the PSNR of the reference CU and
the original CU before and after the RBENN. Table 3 shows the average gains of the CU
with different sizes in the four video sequences. The PSNR gains were calculated as the
average of all CUs. Considering the different sizes and numbers of each CU, the PSNR
gains were calculated as

PSNR gain =
∑W,H∈{16,32,64} [(W × H)×∑ PSNRW,H]

∑W,H∈{16,32,64} [(W × H)×∑ NUMW,H]
, (7)

where (W × H) is the area of a CU, ∑ PSNRW,H represents the sum of PSNR gains for each
CU after the RBENN, and ∑ NUMW,H denotes the total number of CUs. According to
Table 3, we can see that there was a 0.052 dB PSNR gain for all CUs larger than 16× 16,
on average. For BQSquare, the PSNR gain reached 0.110 dB, which was consistent with the
coding results. We can also see that the RBENN performed better for CUs with sizes of
{16× 16, 32× 16, 16× 32, 16× 64, 64× 16}. We believe that this was because the training set
used for training RBENN1 was large, leading to a higher generalization ability. Figure 10
visually displays the distribution of the PSNR gains. We can see that, in the RaceHorses the
RBENN achieved significant negative gains for a few CUs. This is the reason why limited
coding improvement was obtained for it. In the future, we will add flags in the coding
process to further improve the coding efficiency.

Appl. Sci. 2023, 13, 2795 11 of 13

Table 3. PSNR gain for RBENN for different CUs.

Class D
Average (CNN−DCT) PSNR for Each Block

16 × 16 16 × 32 32 × 16 32 × 32 16 × 64 64 × 16 32 × 64 64 × 32 64 × 64 PSNR Gain

BasketballPass 0.125 0.088 0.066 0.006 0.080 0.009 0.012 0.028 0.005 0.036

BQSquare 0.175 0.177 0.179 0.051 0.203 0.150 0.068 0.038 0.055 0.110

BlowingBubbles 0.067 0.050 0.040 0.011 0.029 0.028 0.014 0.008 0.000 0.030

RaceHorses 0.072 0.047 0.014 0.003 0.027 −0.040 0.007 −0.042 −0.15 0.030

Average 0.110 0.091 0.075 0.018 0.085 0.037 0.025 0.008 −0.023 0.052

-0.50 -0.25 0.00 0.25 0.50 0.75 1.00 1.25
PSNR(CNN-DCT)/dB

0

50

100

150

200

250

300

350

400

B
lo

ck
 N

um
be

rs

(a) BasketballPass.

-0.5 1.00.0 0.5
PSNR(CNN-DCT)/dB

0

200

400

600

800

1000

1200

1400

1600

B
lo

ck
 N

um
be

rs

(b) BlowingBubbles.

-0.5 0.0 1.0 1.50.5
PSNR(CNN-DCT)/dB

0

200

400

600

800

1000

B
lo

ck
 N

um
be

rs

(c) BQSquare.

-2 1-1 0
PSNR(CNN-DCT)/dB

0

500

1000

1500

2000

2500

B
lo

ck
 N

um
be

rs

(d) RaceHorses.

Figure 10. Number of CUs with different gains.

5. Conclusions

We proposed a neural-network-based quality enhancement for the reference CU to
improve the accuracy of inter prediction. The network takes the luma reference CU before
motion compensation as input. The output quality-enhanced blocks of the network are then
interpolated by a DCTIF to generate a fractional motion compensation block. The proposed
method was also implemented for affine motion compensation. Experimental results
demonstrated that the proposed method could achieve a 1.35% reduction in the BD rate on
average for the luma component, compared with H.266/VVC. In the future, we will design
a more effective neural network to improve the coding efficiency and lightweight neural
networks to reduce the complexity, while preserving the coding efficiency.

Appl. Sci. 2023, 13, 2795 12 of 13

Author Contributions: Conceptualization, Y.C., H.Y. and S.J.; methodology, Y.C., H.Y., S.J. and C.F.;
software, Y.C.; validation, Y.C.; formal analysis, Y.C.; investigation, Y.C.; resources, H.Y., S.J. and
C.F.; data curation, Y.C., S.J. and C.F.; writing—original draft preparation, Y.C.; writing—review
and editing, Y.C., H.Y., S.J. and C.F.; visualization, Y.C. and S.J.; supervision, S.J. and C.F.; project
administration, H.Y. and S.J.; funding acquisition, H.Y. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was funded by the National Natural Science Foundation of China under
Grants 62222110 and 62172259, the Taishan Scholar Project of Shandong Province (tsqn202103001),
the open project program of the State Key Laboratory of Virtual Reality Technology and Systems,
Beihang University, under Grant VRLAB2021A01, the Natural Science Foundation of Shandong
Province of China under Grant (ZR2022ZD38), the Central Guidance Fund for Local Science and
Technology Development of Shandong Province under Grant YDZX2021002, and the Major Scientific
and Technological Innovation Project of Shandong Province under Grant 2020CXGC010109.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used and analyzed during the current study are available
from the corresponding author upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RBENN reference-block-enhancement neural network;
LDP low-delay P;
MC motion compensation;
ME motion estimation;
DCTIF discrete cosine transform interpolation filter;
CU coding unit;
BD rate Bjøntegaard delta rate;
PSNR peak signal to noise ratio.

References
1. Rao, K.R.; Ahmed, N.; Natarajan, T. Discrete Cosine Transfom. IEEE Trans. Comput. 1974, 23, 90–93.
2. Delogne, P.; Cuvelier, L.; Maison, B.; Van Caillie, B.; Vandendorpe, L. Improved interpolation, motion estimation, and compensa-

tion for interlaced pictures. IEEE Trans. Image Process. 1994, 5, 482–491. [CrossRef]
3. Bjφntegaard, G. Calculation of Average PSNR Differences between RD-Curves. ITU-T SG.16 Q.6 VCEG-M33. 2001. Available

online: https://www.itu.int/wftp3/av-arch/video-site/0104_Aus/VCEG-M33.doc (accessed on 18 December 2022).
4. Ugur, K.; Alshin, A.; Alshina, E.; Bossen, F.; Han, W.; Park, J.; Lainema, J. Interpolation filter design in HEVC and its coding

efficiency—Complexity analysis. In Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 1704–1708.

5. Yan, N.; Liu, D.; Li, H.; Wu, F. A Convolutional Neural Network Approach for Half-pel Interpolation in Video Coding.
In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA, 28–31 May 2017;
pp. 1–4.

6. Yan, N.; Liu, D.; Li, H.; Li, B.; Li, L.; Wu, F. Convolutional Neural Network-Based Fractional-Pixel Motion Compensation. IEEE
Trans. Circuits Syst. Video Technol. 2019, 29, 840–853. [CrossRef]

7. Yan, N.; Liu, D.; Li, H.; Li, B.; Li, L.; Wu, F. Invertibility-driven Interpolation Filter for Video Coding. IEEE Trans. Image Process.
2019, 28, 4912–4925. [CrossRef]

8. Xia, S.; Yang, W.; Hu, Y.; Ma, S.; Liu, J. A Group Variational Transformation Neural Network for Fractional Interpolation of Video
Coding. In Proceedings of the 2018 Data Compression Conference, Snowbird, UT, USA, 27–30 March 2018; pp. 127–136.

9. Liu, J.; Xia, S.; Yang, W.; Li, M.; Liu, D. One-for-All: Grouped Variation Network-Based Fractional Interpolation in Video Coding.
IEEE Trans. Image Process. 2019, 28, 2140–2151. [CrossRef]

10. Huo, S.; Liu, D.; Wu, F.; Li, H. Convolutional Neural Network-Based Motion Compensation Refinement for Video Coding.
In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Florence, Italy, 27–30 May 2018; pp. 1–4.

11. Wang, Y.; Fan, X.; Xiong, R.; Zhao, D.; Gao, W. Neural Network-Based Enhancement to Inter Prediction for Video Coding. IEEE
Trans. Circuits Syst. Video Technol. 2022, 32, 826–838. [CrossRef]

http://doi.org/10.1109/83.334992
https://www.itu .int/wftp3/av-arch/video-site/0104_Aus/VCEG-M33.doc
http://dx.doi.org/10.1109/TCSVT.2018.2816932
http://dx.doi.org/10.1109/TIP.2019.2913092
http://dx.doi.org/10.1109/TIP.2018.2882923
http://dx.doi.org/10.1109/TCSVT.2021.3063165

Appl. Sci. 2023, 13, 2795 13 of 13

12. Pham, C.D.; Zhou, J. Deep Learning-Based Luma and Chroma Fractional Interpolation in Video Coding. IEEE Access 2019, 7,
112535–112543. [CrossRef]

13. Prette, N.; Valsesia, D.; Bianchi, T. Deep Multiframe Enhancement for Motion Prediction in Video Compression. In Proceedings of
the IEEE International Conference on Electronics, Circuits, and Systems (ICECS), Dubai, United Arab Emirates, 28 November–
1 December 2021; pp. 1–6.

14. Sullivan, G.J.; Ohm, J.R.; Han, W.J.; Wieg, T. Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Trans. Circuits
Syst. Video Technol. 2012, 22, 1649–1668. [CrossRef]

15. Murn, L.; Blasi, S.; Smeaton, A.F.; O’Connor, N.E.; Mrak, M. Interpreting CNN For Low Complexity Learned Sub-Pixel Motion
Compensation In Video Coding. In Proceedings of the IEEE International Conference on Image Processing (ICIP), Abu Dhabi,
United Arab Emirates, 25–28 October 2020; pp. 798–802.

16. Murn, L.; Blasi, S.; Smeaton, A.F.; Mrak, M. Improved CNN-Based Learning of Interpolation Filters for Low-Complexity Inter
Prediction in Video Coding. IEEE Open J. Signal Process. 2021, 2, 453–465. [CrossRef]

17. Galpin, F.; Bordes, P.; Dumas, T.; Nikitin, P.; Le Leannec, F. Neural Network based Inter bi-prediction Blending. In Proceedings of
2021 International Conference on Visual Communications and Image Processing (VCIP), Munich, Germany, 5–8 December 2021;
pp. 1–5.

18. Jin, D.; Lei, J.; Peng, B.; Li, W.; Ling, N.; Huang, Q. Deep Affine Motion Compensation Network for Inter Prediction in VVC. IEEE
Trans. Circuits Syst. Video Technol. 2022, 32, 3923–3933. [CrossRef]

19. Katayama, T.; Song, T.; Shimamoto, T.; Jiang, X. Reference Frame Generation Algorithm using Dynamical Learning PredNet
for VVC. In Proceedings of the 2021 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA,
10–12 January 2021; pp. 1–5.

20. Bross, B.; Chen, J.; Ohm, J.R.; Sullivan, G.J.; Wang, Y.K. Developments in International Video Coding Standardization After AVC,
With an Overview of Versatile Video Coding (VVC). Proc. IEEE 2021, 109, 1463–1493. [CrossRef]

21. Dong, C.; Loy, C.C.; He, K.; Tang, X. Image Super-Resolution Using Deep Convolutional Networks. Trans. Pattern Anal. Mach.
Intell. 2016, 38, 295–307. [CrossRef]

22. Dai, Y.; Liu, D.; Wu, F. A Convolutional Neural Network Approach for Post-Processing in HEVC Intra Coding. In Proceedings of
the 2017 International Conference on Multimedia Modeling (MMM), Reykjavik, Iceland, 4–6 January 2017; pp. 28–39.

23. Sun, D.; Yang, X.; Liu, M.; Kautz, J. PWC-Net: CNNs for Optical Flow Using Pyramid, Warping, and Cost Volume. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018;
pp. 8934–8943.

24. Zhang, K.; Zuo, W.; Chen, Y.; Meng, D.; Zhang, L. Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image
Denoising. IEEE Trans. Image Process. 2017, 26, 3142–3155. [CrossRef]

25. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
26. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 27th International

Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.
27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.
28. Ma, D.; Zhang, F.; Bull, D.R. BVI-DVC: A Training Database for Deep Video Compression. IEEE Trans. Multimed. 2022, 24,

3847–3858.
29. Liu, S.; Segall, A.; Alshina, E.; Liao, R. JVET Common Test Conditions and Evaluation Procedures for Neural Network-Based

Video Coding Technology. Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29, Document no. JVET-
T2006. January 2021. Available online: https://www.itu.int/wftp3/av-arch/jvet-site/2021_01_U_Virtual/JVET_Notes_d1.docx
(accessed on 18 December 2022).

30. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. In Proceedings of the 2015 International Conference on Learning
Representations(ICLR), San Diego, CA, USA, 7–9 May 2015; pp. 1–15.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2019.2935378
http://dx.doi.org/10.1109/TCSVT.2012.2221191
http://dx.doi.org/10.1109/OJSP.2021.3089439
http://dx.doi.org/10.1109/TCSVT.2021.3107135
http://dx.doi.org/10.1109/JPROC.2020.3043399
http://dx.doi.org/10.1109/TPAMI.2015.2439281
http://dx.doi.org/10.1109/TIP.2017.2662206
http://dx.doi.org/10.1162/neco.1997.9.8.1735
https://www.itu.int/wftp3/av-arch/jvet-site/2021_01_U_Virtual/JVET_Notes_d1.docx

	Introduction
	Related Work
	Proposed Method
	An RBENN Integrated in H.266/VVC
	The Construction of an RBENN
	Dataset for Training
	Training Strategy

	Experimental Results
	Experiment Settings
	Compared with VTM 9.3
	Result Analysis

	Conclusions
	References

