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Abstract: Energy efficiency financing is considered among the top priorities in the energy sector
among several stakeholders. In this context, accurately estimating the energy savings achieved by
energy efficiency actions before being approved and implemented is of major importance to ensure the
optimal allocation of the available financial resources. This study aims to provide a machine-learning-
based methodological framework for a priori predicting the energy savings of energy efficiency
renovation actions. The proposed solution consists of three tree-based algorithms that exploit
bagging and boosting as well as an additional ensembling level that further mitigates prediction
uncertainty. The proposed models are empirically evaluated using a database of various, diverse
energy efficiency renovation investments. Results indicate that the ensemble model outperforms
the three individual models in terms of forecasting accuracy. Also, the generated predictions are
relatively accurate for all the examined project categories, a finding that supports the robustness of
the proposed approach.
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1. Introduction

As of 2020, the building sector is responsible for 35% of the total energy consumption
and 38% of the emitted greenhouse gases (GHGs; [1]). In order to achieve our climate goals,
significant steps must be made to reduce the energy consumed in the building sector. This
reflects on both new construction and the transformation of the current building stock.

The European Commission (EC) has recently proposed a revision to the Energy Perfor-
mance of Buildings Directive [2], with the zero-emission buildings initiative taking a step
forward from the nearly-zero-emission buildings one, being a requirement in all EU member
countries for all new buildings to be constructed after 2030. Furthermore, in the most recent
update of the Directive [3], the EC requires EU countries to develop national long-term ren-
ovation strategies that facilitate the cost-effective transformation of their building stock into
nearly-zero energy buildings by 2050. Despite these actions and the fact that energy efficiency
(EE) has recently improved overall, IEA reports suggest that these achievements remain far
from net zero milestones, as the energy intensity of the building sector still needs to drop nearly
five times more quickly over the next ten years than it did in the past five to be in line with the
Net Zero Emissions by 2050 Scenario [4]. This means that the energy consumed per square
meter in 2030 must become 45% less than in 2020.

In this context, it becomes evident that EE measures will be crucial towards reduc-
ing energy use in buildings and GHG emissions, while maintaining economic growth
globally [5,6]. However, given that retrofits and deep renovations are costly, also involv-
ing some sort of uncertainty, it must be ensured that the EE plans and activities to be
funded will be able to reduce energy intensity with the optimal allocation of financial
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resources. Several studies have focused in that direction, trying to determine which EE
measures should be financed, mostly by assessing their overall impact from a financier
point of view [6–9]. However, in addition to the financing perspective, there is also the
environmental dimension to the EE investment problem, which involves a high level of
uncertainty in the estimation of energy savings of an EE renovation action.

Simulation tools and physical models are commonly used to estimate the energy
savings achieved by renovation actions. However, the drawbacks of such models include
their high cost and complexity, also requiring a large amount of data and expert knowledge
to implement. As an alternative, data-driven models employing machine learning (ML) or
deep learning techniques can estimate energy savings based on previous, similar renovation
actions. These models are particularly useful when historical data are available, as they can
identify patterns and correlations that may be overlooked by physical models.

In this paper, we argue that quantifying the expected savings of various types of EE
measures is mandatory for objectively evaluating their potential impact, and we suggest
that new technological advances in the field of ML and open data can be exploited to
effectively support the decisions of the stakeholders involved in the financing process. To
that end, we provide an ML-based methodological framework for a priori predicting the
energy savings of EE renovation actions that exploits a mixture of state-of-the-art bagging
and boosting prediction algorithms and a database of already funded EE measures. The
contributions of our study are summarized as follows:

• Instead of relying on simulation tools or physical models to estimate the potential
impact of EE measures, we propose a data-driven estimation approach that builds
on advanced ML ensembling algorithms, namely random forecast, extreme gradient
boosting, and light gradient boosting machine.

• In contrast to similar frameworks that evaluate EE measures from a financing per-
spective, focusing on the return of the investment among other financial indicators,
our approach focuses on estimating the energy that can be saved given the particu-
lar characteristics of the examined EE action (such as the type and projected cost of
investment, as well as the country and sector of implementation) that contribute to
assessing the environmental dimension of the problem.

• We showcase the proposed framework using an open database that includes insights for
many EE investment projects. By doing so, we empirically evaluate the performance of
our approach and motivate the exploitation and enrichment of such databases that can
significantly enhance the monitoring and benchmarking of EE measures.

The rest of the paper is organized as follows. Section 2 provides a brief literature
review on the quantification of EE measures. Section 3 describes the proposed ML-based
framework. Section 4 presents an empirical evaluation of the proposed methodology, pro-
viding details on the data used, the accuracy measures considered, as well as a discussion
of our results. Concluding remarks are provided in Section 5.

2. Problem Setting and Related Work

The quantification methods of estimated savings of an EE measure can generally be
split in two main categories, namely the a priori (or ex ante) and the a posteriori (or ex post)
estimation methods.

On the one hand, the a posteriori estimation constitutes the Measurement & Verifica-
tion (M&V) protocols, in which baseline models are used to determine the energy savings
by comparing the energy consumed in the building before and after the implementation
of an EE measure. There are several protocols and standards for the M&V process, such
as the International Measurement and Verification Protocol [10], the Uniform Methods
Project [11] introduced by the US Department of Energy, and the ASHRAE Guideline 14 for
measurement of Energy, Demand, and Water Savings [12]. The effort put into modelling in
the design phase is not, by itself, a guarantee of optimal measured performance. Optimistic
assumptions and simplifications are often made in the design phase and, as a result, vali-
dating the simulated results and calibrating the model based on long-term monitoring data
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becomes critical [13]. The implementation of M&V protocols has been traditionally based
on regression models, but recently more and more studies have focused on exploiting novel
models and algorithms to further increase accuracy [14,15].

On the other hand, a priori estimation aims to predict the energy savings before the
actual implementation of the EE measure. The ability to have an accurate estimation of the
energy savings before an EE measure is critical in order to support investment decisions
and drive cost-effective actions overall, as energy consumption attributes of buildings are
more important than financial and social ones for their investment evaluation [16]. This is
further elaborated, as it is documented that the inability to accurately evaluate the impact
of EE measures in buildings through robust methodologies can slow their adoption [17].

Focusing on a priori estimation, data driven methods are becoming more pop-
ular due to the increased availability of data from sub-metering measurements in
buildings [18] and to the evolution of data-driven techniques and ML algorithms that
can process all these data and turn them into valuable insights [19]. Thus, several
studies have been proposed to support the identification of the optimal EE measures in
building typologies and their subsystems, using either simulated [20–22] or real [23,24]
data and exploiting different types of models, such as neural networks [24–26], support
vector machines [20,23], or ensembling models [22]. Although they do not directly
predict the expected savings, the above-mentioned methods could be used in a priori
approaches for estimating the energy savings of an EE measure.

Moreover, several studies have focused on proposing data-driven frameworks to directly
calculate energy savings before the actual implementation of an EE measure. A fallen rule
list classifier to predict the reaction of buildings in several types of EE measures has been
proposed by [27], to increase the impact of energy audits by reducing the cost and complexity
of energy retrofit processes. The study focused on over 1000 buildings in New York City and
analyzed audit records of the buildings to identify opportunities for EE measures across a
range of system categories (heating, cooling, domestic hot water, ventilation, lighting, and
building envelope details). Another study developed by [28] in the Norwegian retail food
market tested the accuracy of two statistical learning models, Broken Lines and Tao Vanilla
Benchmarking method, to estimate energy savings in five retail stores through retrofitting.
The granularity of the estimations was performed on an hourly level (Tao Vanilla method)
and a weekly level (Broken Lines model), with the latter being easier to analyze in terms of
the effects in energy consumption caused by weather conditions. In addition, a generalized
methodology to optimize urban scale energy retrofit decisions for residential buildings using
data-driven approaches has been proposed by [29]. By taking into consideration energy
performance certificate data, optimal urban retrofit actions for a set of buildings have been
suggested, supporting the development of a knowledge-base, as there are limited or non-
existent data at the urban level for energy modelling. Clustering techniques, utilizing the
abundance of data for the identification of cost-effective retrofit measures, have also led to
promising results. A method proposed by [30] consists of the determination of the effect
matrix of the retrofit action and then compares the results of hierarchical (unweighted pair
group method with arithmetic mean and shortest distance) with the type-age classification.
Finally, a whole building retrofit solution has been proposed and formulated as a nonlinear
mixed-integer programming problem by [31]. A genetic algorithm is used to solve this
problem, taking into account both the envelope components and the indoor appliances. This
method is used in order to upgrade the buildings’ systems and sub-systems with the aim of
increasing the EPC score of the building through renovation actions.

As indicated in the previous paragraphs, estimating the energy savings of an EE
measure is a complex task, involving additional costs that can significantly impact the
planned EE action through the years. Thus, it is of major importance to provide frameworks
and methodologies that support an accurate a priori estimation of the energy savings in
order to achieve the environmental targets and reduce both the energy intensity and the
GHG emissions generated by buildings.
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3. Theoretical Modeling

In this section we present the algorithms used for the application of ML in the above-
stated regression problem. In general, several families of ML models can be used for
solving regression problems, such as linear regression, decision trees, and neural networks
(NNs). The proper selection of the algorithm, which depends on the nature of the examined
application and the particularities of the available data, is crucial as it can significantly
affect the accuracy of the final predictions. In this study, the basis of all utilized models is a
decision tree.

Before presenting the utilized algorithms in detail, it is essential to justify the
use of tree-based models over other standard alternatives, such as linear regression
and NNs [32,33]. First, linear regression models mostly apply to problems where data
relationships are linear, thus rendering them unsuitable for the examined application.
Second, NNs, and particularly deep networks, are data-hungry in nature, typically
requiring more data than decision trees, both to be trained and tuned. Thus, in our
case, the relatively small number of available EE renovation action records becomes
a limiting factor towards the adoption of such networks. On the contrary, decision
trees can effectively handle data with non-linear relationships, require less data to be
properly trained, and involve a significantly smaller number of parameters that are
easier to estimate [32,34].

In the following subsections, the algorithms used, namely random forest (RF), ex-
treme gradient boosting (XGBoost), and light gradient boosting machine (LightGBM), are
described. These tree-based algorithms exploit ensembling techniques like bagging and
boosting to improve generalization and provide more accurate predictions.

3.1. Random Forest

RF is a supervised learning algorithm used for regression and classification tasks [33].
The basis of the RF algorithm is ensemble learning, a bagging-based learning technique
that combines (averages) the individual predictions made by multiple, relatively simple
ML models to produce a final prediction that is typically more accurate than the single
predictions [35,36]. The term RF stems from the two key characteristics of the algo-
rithm, namely data and feature randomization, achieved through a technique called
bootstrapping (“random”), and the combination of multiple decision trees (“forest”).
Both characteristics will be presented in detail in the following paragraphs.

The RF algorithm is one of the most indicative examples of bagging (or bootstrap
aggregating), a widely used ensemble learning method that aims to train a series of models
on the training data set and then to blend the predictions of these models to generate the
final predictions [37]. In regression tasks, the aggregation of the individual predictions
can be made with several averaging techniques, such as the mean value or the weighted
average [38], while in classification tasks, the most popular method is the majority voting
scheme, where the final prediction is the class that has been selected by the majority of the
individual models [39].

The structure of the RF algorithm for a regression task is presented in Figure 1. More
specifically, given a data set D including N samples, each composed of F features, the
algorithm trains a number of K decision trees with the following process. The RF algorithm
forms K subsets of samples from the original data set D and uses them to fit K decision trees.
Typically, each subset consists of f ≤ F features (randomly selected from the original set of
features) and N samples (randomly drawn from the original data set with replacement).
Note that, according to the bootstrapping process, some of the original samples may not
be selected at all in any of the constructed subsets, while others may be selected multiple
times. The main reason for using bootstrapping is the reduction of variance among the
predictions of the trees and the mitigation of the negative effect that outliers and particular
features may have in the training process.
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Figure 1. The structure of the random forest algorithm, which is based on bootstrap aggregating (or
bagging) the predictions of multiple decision tree models.

RF models have many advantages that have led to their extensive use for a wide variety
of tasks. First, it has been shown that RF regression models are very accurate when it comes to
features with non-linear relationships and noisy data sets [40,41]. Moreover, being a tree-based
method, RF models typically require little or even no data pre-processing (e.g., normalization or
standardization). However, according to [42], a major drawback of these models is the lack of
interpretability. Despite the fact that RF offers better predictive accuracy in comparison to single
decision trees, they sacrifice the inherent interpretability of the latter that allows for verification
that the developed model has captured realistic insights from the training data [43]. In addition
to interpretability issues, the RF algorithm also involves more parameters than single decision
trees, thus requiring more effort to be properly tuned. In this study, the Scikit-learn (Sklearn)
implementation of the RF algorithm has been used [44]. The most important parameters that
have been fine-tuned are the following:

• Number of estimators: Number of decision trees used to provide the individual predictions.
• Maximum depth: Maximum possible depth for each decision tree. A deeper tree has

the capacity to fit more complicated functions, but overly deep trees may result in
overfitting.

• Maximum features: Maximum size of the random subsets of features that the decision
tree takes into consideration for determining a split to a node of the tree.

• Bootstrap: A Boolean parameter that controls whether the model will apply bootstrap-
ping or not.

3.2. Extreme Gradient Boosting

Gradient boosting (GB) is another type of ensemble learning algorithm used for both
regression and classification tasks [45]. The aim of GB, similar to other boosting techniques,
is to construct a “strong learner” model by iteratively combining several “weak learner”
models, each constructed so that the prediction error of the previous model is decreased
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(in each stage of the algorithm, a decision tree - regressor or classifier according to the task
- is fit on the negative gradient of the loss function.) [46]. Since the new models built are
specialized in tackling the particular issues of the previous ones, the overall performance
of the final model is effectively improved. Once all individual trees have been added to the
ensemble, the final model is used to predict new samples.

The overall architecture of the GB algorithm is presented in Figure 2. The GB ensemble
model is composed of K decision trees. The first decision tree is trained using the input
feature matrix X and the original label y. After the predictions of the tree have been
generated, the residual errors E1 are calculated. The second decision tree is then trained
using the E1 errors as labels instead of the original y ones. The next trees are trained
following the same process in an iterative fashion. Finally, when the last individual tree is
trained, the training process terminates, and the complete set of trees is used for making
future predictions.

Figure 2. The general structure of the gradient boosting algorithm, which is based on boosting the
predictions of multiple decision tree models.

In this context, XGBoost belongs to the family of GB methods but differs from them
in the sense that it uses advanced regularization, namely L1 and L2 values, to enhance
the generalization capabilities of the developed models. XGBoost is based on an efficient
implementation of the GB algorithm, delivering higher computational performance in
comparison to traditional GB models and offering reduced training times through paral-
lelization across clusters [47]. Note that XGBoost, like RF, also constructs ensembles from
decision tree models; the main difference is that in XGBoost, the trees are added sequentially
to the ensemble model and fitted in an attempt to minimize the prediction errors of the
previous models (this is also the main difference between bagging and boosting). Finally,
the name “gradient boosting” is due to the gradient descent optimization algorithm used
to minimize the error.

XGBoost has several advantages that have established it as one of the most sovereign
models for GB. As mentioned in the previous paragraph, it has a customized way of pruning
the decision trees that form the ensemble, resulting in faster training and better ability to
process high volume data sets [48]. Among its optimizations, XGBoost uses an approximate
greedy algorithm of weighted quantiles during the process of splitting the nodes of the
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trees instead of comparing all different possible splits. XGBoost also divides data to smaller
segments to enable parallel processing of samples [49], while it exploits the cache memory
to save gradients and enable faster calculations [50]. The above-mentioned features have
led to its wide adoption during the last decade for classification and regression tasks in
many applications.

Similar to the case of RF, XGBoost is also based on a set of hyper-parameters that are
crucial for achieving high-accuracy predictions. These hyper-parameters are related not
only to the GB process, including elements such as the number of trees that should be used
during training, but also to the structure of each individual tree and adjusting parameters,
such as the depth of the tree and the minimum loss reduction required to make a further
partition on a leaf node of the tree. For the purpose of this study, the original library of
the XGBoost implementation has been exploited [47]. The most important parameters that
have been fine-tuned are the following:

• Number of estimators: Number of estimators (weak learners) that will be trained incre-
mentally. A larger number of trees often results in better accuracy but may lead to
overfitting, also increasing training time.

• Maximum depth: Longest possible path from a root to a leaf. In general, it has been
shown that the larger the tree depth, the higher the probability of over-fitting, same as
in the RF algorithm.

• Learning rate: This parameter is multiplied by the weight of each tree, controlling the
degree the weights are updated. Lower learning rates result in smaller updates and,
therefore, slower and more detailed training. On the other hand, high values may lead
to divergent behavior in the loss function.

• Complexity control: This parameter, also referred to as a Lagrangian multiplier, is a
regularization parameter that takes values between 0 and infinity. The higher its value,
the higher the regularization degree.

3.3. Light Gradient Boosting Machine

LightGBM [51] is another GB framework, similar to XGBoost in the sense that it is
based on the GB algorithm and uses decision trees as weak learners. LightGBM was
originally implemented by Microsoft, focusing on performance, scalability, and optimal
memory usage, and it has been widely exploited for ranking, classification, and regression
ML tasks [52].

Although LightGBM is similar to XGBoost in terms of supporting parallel processing
capabilities, similar loss functions, and regularization parameters, it differs significantly
in the way that decision trees are constructed. Most GB algorithms perform a depth-wise
growth of the decision trees that are developed. On the contrary, LightGBM has adopted
a leaf-wise method for growing the trees, selecting the leaf that has the best possible loss
decrease regardless of its level of depth [53]. This method usually results in lower loss
managing to better fit to the training data. Another structural difference between the two
frameworks is that LightGBM uses a different method for determining the optimal split
point of the decision trees [54]. Most GB algorithms, including XGBoost, search the optimal
split point on the sorted feature values. However, LightGBM uses a histogram-based
learning algorithm, which is more efficient and demands less memory.

The efficiency of LightGBM is mainly due to the use of two state-of-the-art techniques,
namely gradient-based one-side sampling and exclusive feature bundling, which are
combined together to form an powerful model training framework with increased accuracy
compared to most GB algorithms. On the one hand, gradient-based one-side sampling is a
sampling technique that is used to select samples based on their gradients. This technique
aims to exploit the fact that instances with smaller gradient are better trained compared to
instances with larger gradients that are considered under-trained. Thus, sampling instances
with larger gradients are highly beneficial to quicker information gain. On the other hand,
according to [51], exclusive feature bundling is a novel technique that aims to reduce the
number of features by regrouping mutually exclusive features into bundles, treating them
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as a single feature. This technique has been proven particularly effective when the feature
space is sparse and several features are almost exclusive, i.e., they are usually zero at the
same time. A clear example of such feature spaces are tasks that involve many categorical
variables that are transformed through one-hot encoding.

The most important features that have been considered for fine-tuning the LightGBM
model, implemented using the official LightGBM library for Python [51], are the following:

• Number of estimators: Number of boosted decision trees fit during the training process.
• Maximum depth: Similar to RF and XGBoost, this hyper-parameter is used to limit

the depth of the grown decision tree. Because of LightGBM’s lead-wise structure,
fine-tuning this parameter is critical to avoid overfitting.

• Number of leaves: This hyper-parameter affects the complexity of the tree model. When
the number of leaves is set to 2Maximum depth, then the tree has the same number of
leaves as a depth-wise tree, which is highly discouraged. On the other hand, if the
number of leaves is not restricted, the model is prone to overfitting.

• Learning Rate: Similar to XGBoost, this hyper-parameter affects the learning rate of the
boosting process.

4. Case Study

This section is dedicated to demonstrating the experimental application of the pro-
posed methodological framework, specifically its ability to assess the energy savings
achieved by a set of real-life renovation projects. To this end, the dataset utilized in the
experiment is described in detail, followed by an introduction to the experimental setup
and accuracy measures employed. The results of the application are then presented, along
with insightful observations gleaned from the data.

4.1. Data Set

The case study of the proposed methodology has been performed using EE invest-
ment data from various sources, such as the De-risking Energy Efficiency Platform (DEEP)
database. DEEP is an open, online database including insights for many EE investment
projects aspiring to enhance performance monitoring and benchmarking. Through such
indicators and statistics, these databases offer stakeholders the opportunity to better un-
derstand the real benefits and risks of EE investments though market evidence and track
records of thousands of EE projects from both buildings and the industry. The available
data include the type and category of the EE project, the country and sector on which the
project has been applied (building or industry), the projected (a priori) net annual savings,
the cost of the investment, as well as several financial indicators such as the payback period,
the internal rate of return, and the net present value of the investment. Moreover, the
fact that the data used are open and follow the FAIR (findable, accessible, interoperable,
and reusable) principles provides many benefits to the scientific community, including
increased transparency, reproducibility, and collaboration, ultimately leading to better
solutions to complex problems [55].

The selection of the most suitable features for predicting the energy savings of EE
renovation projects was based on previous studies [16,56,57] but also performed with
respect to the available data. Therefore, the selected input features are the following:

• Project sector, namely whether the investment refers to a building or the industry.
• Investment cost, measured in Euros.
• Projected net annual savings, measured in Euros, as estimated at the time the investment

was made.
• Country where the EE project was applied.
• Investment category, indicating the main target of the EE renovation project in terms of

energy usage or building fabric (e.g., heating, cooling, lighting, pumps, or building fabric).
• Investment type, indicating the nature of the EE renovation project in more detail

compared to the investment category (e.g., technical versus operational optimization
when it comes to pump or lighting optimization).
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The data set consists of a fully anonymized sample of 4183 EE investments from
9 countries (Belgium, Bulgaria, Denmark, France, Germany, Latvia, Sweden, the United
Kingdom, and the United States). This set of investments has been carefully selected,
excluding EE projects with missing data in one or multiple features. From the total number
of 4183 EE projects with available data, 412 projects have been ruled out as outliers, and
the remaining 3771 form the final data set. The existence of outliers was pointed out by
the use of distribution box plots, and the method followed to identify potential outliers
in this specific dataset is based on the extraction of the top and bottom percentiles using
the ratio of cost to energy savings. More specifically, any data point that falls outside of
the range defined by the 5th and 95th percentiles of the datasets have been considered as
outliers, in order to rule out unrealistic records subject to human error in the process of
collecting the information. The most demanding pre-processing step, though, has been
the formulation of investment categories and investment types in a mutually exclusive
and collectively exhaustive way. As seen in Table 1, there are a total of 8 EE investment
categories, consisting of 27 discrete investment types.

Table 1. The formulated investment categories and investment types per category for the EE invest-
ments used in the case study. For each type of investment, the number of available projects is also
displayed.

Category Type Projects

Heating

Oil/gas fired hot water/steam boilers — operational optimization (controls or automation) 26
Oil/gas fired hot water/steam boilers — technical optimization (component renewal or supplement) 56
Oil/gas fired hot water/steam boilers — complete renewal 12
Heating distribution system — optimization (insulation of pipes/fittings/containment/other surfaces) 47

Cooling Free cooling 35

Lighting
Re-lamp to LED 66
Technical optimization (component renewal or supplement) 688
Operational optimization (controls or automation) 400

Compressed Air

Compressor renewal 23
Technical optimization (component renewal or supplement) 457
Operational optimization (controls or automation) 653
Distribution system optimization 20

Waste Heat Heat from processes 97
Heat from cross-cutting technologies 91

Pumps
Operational optimization (control or automation) 29
Technical optimization (component renewal or supplement) 16
Complete renewal 29

Building Fabric

Wall insulation 17
Roof insulation 54
Glazing upgrade 56

HVAC Plant

Boiler/furnace replacement or upgrade 287
Chiller plant replacement or upgrade 2
Pipe insulation 6
Ventilation upgrade 950
Installation or replacement of BEMS 1
Drinking/tap water heating 59
District heating supply 6

Given the inherent structural and technical differences of each type of investment, a
high degree of variability is expected among the considered categories (or even types of of
investment), both in terms of investment cost and energy savings achieved by the respective
EE actions. A representative visualization of these differences among the investment
categories is presented in Figure 3. The box plots of Figure 3 provide a summary of each
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feature, including the minimum score, first quartile, median, third quartile, and maximum
score. It should be noted that the individual points that are located outside the whiskers
of the box plot are possible outliers (an observation that is numerically distant from the
rest of the data). In Figure 3a, we observe that the most costly investment categories are
the building fabric measures and the HVAC plant, while on the other hand the heating,
lighting, and compressed air actions can be considered among the least expensive ones. In
terms of energy savings, it is observed that building fabric measures are among the lowest
performing categories despite the high investment cost they involve. On the contrary,
waste heat actions bring on significant energy savings, as seen in Figure 3b. Finally, in
Figure 3c, we present the index of investment efficiency defined as the ratio of investment
cost per energy savings (EUR/kWh). Effectively, this index indicates which categories
are more effective in the sense that they result in great energy savings when compared to
the corresponding cost of investment. According to this index, and as expected from our
previous observations, building fabric measures is the least efficient category, while several
investments in HVAC plants, lighting, and pumps have also low efficiency. On the other
hand, compressed air, heating, and waste heat investments can be ranked among the most
effective categories of measures.
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Figure 3. Comparative analysis of the 8 investment categories in terms of cost, energy savings,
and investment efficiency (defined as investment cost per energy savings). (a) Investment cost per
category. (b) Energy savings per category. (c) Investment efficiency per category.

4.2. Experimental Setup

In this subsection, we present the setup of the experimental application regarding
the evaluation of the proposed ML-based framework for estimating energy savings of EE
renovation actions. The structure of the experimental application is summarized in Figure
4. As can be seen, the input of the methodology consists of the six features presented in
Section 4.1. Some of these features are used without being further processed. However,
the categorical variables, namely the sector, country, investment category, and investment
type, have been categorically encoded with the label encoder function. For example, for
the sector feature, the category “Building” has been encoded with the value of 0, while
the category “Industry” has the value of 1. Following this, the final data set is split into
training and test sets with random sampling, keeping 80% of the data set for the training,
and the remaining 20% for the evaluation of the proposed framework.

The core of the ML framework proposed in this study involve the tree-based algorithms
presented in Section 3. These algorithms are based on decision trees and exploit some
of the most successful ensembling techniques like bagging and boosting. Thus, we have
employed the RF, the XGBoost, and the LightGBM models to predict the energy savings
of EE renovation actions. Moreover, we have applied an extra ensembling level in order
to blend the predictions of the three tree-based models with the objective to mitigate
model and parameter uncertainty [58]. In this respect, after the three models generate
their predictions, their values are averaged using equal weights to obtain the final forecast,
i.e., energy savings for the examined EE renovation actions. Effectively, this extra level
of ensembling reduces the spread or dispersion of the predictions and further improves
forecasting performance (for an encyclopedic review on the benefits of ensembling in
forecasting, please refer to section 2.6 of [55]).

The final step of the experimental setup involves the determination of the hyper-
parameters for the selected regression models. For each of the models, the optimal hyper-
parameter values were determined using part (20%) of the data available for training as a
validation set. In order to make sure that the ML models will be robust for all investment
categories, the validation set consisted of samples that represented different categories,
measures, and countries of the original data set. The mean absolute and squared errors
were used to identify the optimal hyper-parameter values for each model. The optimization
of the hyper-parameter values was conducted using grid search. The results of the hyper-
parameter fine-tuning process for each model are summarized in Table 2 along with the
respective search space and selected values.
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Figure 4. Structure of the experimental application.

Table 2. The search space and the selected values of the hyper-parameters for the tree-based regression
models considered for predicting energy savings.

Model Hyper-Parameter Min Value Max Value Step Selected

RF Number of estimators 100 500 100 100
Maximum depth 1 7 2 3
Maximum features 0.2 1 0.2 1
Bootstrap Values tested: True, False True

XGBoost Number of estimators 100 500 100 300
Maximum depth 2 10 2 6
Learning rate 0.1 0.9 0.2 0.3
Complexity control 0 10 2 0

LightGBM Number of estimators 20 100 20 80
Maximum depth 2 10 2 6
Number of leaves 10 50 10 30
Learning rate 0.02 0.1 0.02 0.08

4.3. Accuracy Measures

The selection of the most appropriate accuracy measures is a necessary step for the
evaluation of any regression model. In this study, we evaluate the accuracy of the four
models (the three models presented in Section 3 and the ensemble model) based on the
mean absolute error (MAE), the mean absolute percentage error (MAPE), the root mean
squared error (RMSE), and the coefficient of determination (R2) between the forecasts and
the real values [59].

MAE is the average of all absolute errors between the real and the predicted value,
thus being relatively robust to outliers and easy to interpret, as it is expressed at the
same scale as the actual observations. On the other hand, RMSE gives a relatively higher
weight to larger errors and therefore helps in the detection of large mispredictions by the
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models. Both measures are very useful for the interpretation of the results, but when it
comes to comparing different investment categories (which have different scales of energy
savings), the use of scale-independent measures is necessary. MAPE is such a measure that
incorporates scale-independence and high interpretability. Moreover, since the data set
does not include any zero values that affect the ability to calculate MAPE, this measure
is highly beneficial for comparing the accuracy of the models on different investment
categories. Finally, R2 is a statistical measure that shows the proportion of variance the
predictions explain over the target variable, being an indicator of how well the data fit
the regression models. The formulas for computing the above-mentioned measures are
presented as follows:

MAE =
1
n

n

∑
1
|y− ŷ|, (1)

RMSE =

√
1
n

n

∑
1
(y− ŷ)2, (2)

MAPE =
100%

n

n

∑
1

∣∣∣y− ŷ
y

∣∣∣, (3)

R2 = 1−

n

∑
1
(y− ŷ)2

n

∑
1
(y− ȳ)2

, (4)

where y and ŷ are the real and the predicted value of the energy savings for the examined
EE investment in the test set, respectively, ȳ is the average value of the real observations,
and n is the total number of the samples included in the evaluation.

4.4. Results and Discussion

The proposed ML methodology has been evaluated on a test set consisting of 754
EE investments, i.e., 20% of the whole data set. The test set includes samples from all the
investment categories considered in order to evaluate the robustness of the models in different
types of EE projects. The results of the experimental application are presented in Table 3.
Our results indicate that all three tree-based models can effectively take into account the
inherent difficulties of such a complex prediction task as the problem of estimating the energy
savings of various renovation actions of different categories applied in different countries.
Among the three tree-based models, XGBoost performs best in terms of MAE (25,613 kWh)
and MAPE (32.6%), while LightGBM and RF achieve a slightly higher R2 score of 78.7%. On
the other hand, although RF has the highest MAE and MAPE error scores among the three
models, it is better in terms of RMSE (50,459 kWh), indicating that the RF model has less
significant errors compared to the other models.

Table 3. Results on the test set. The top performing approach per measure is highlighted in boldface.

Measure RF XGBoost LightGBM EW Ensemble

MAE (kWh) 26,394 25,613 25,778 25,339
RMSE (kWh) 50,459 50,947 51,002 49,806

MAPE (%) 33.5 32.6 32.9 32.2
R2 (%) 78.7 78.3 78.7 79.2

Our results indicate that models based on boosting (XGBoost and LightGBM) are
generally better in terms of measures that do not penalize large errors, while RF, which
based on bagging, performs better in measures like RMSE that highly value large mispre-
dictions. In this context, the proposed equal weight (EW) ensemble model outperforms
all three models in all error indexes. More specifically, the EW ensemble model achieves
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an RMSE index of 49,806 kWh, an MAE index of 25,339 kWh, an MAPE index of 32.2%,
and an R2 score of 79.2%. These results confirm that the proposed ensembling model has
higher predictive accuracy compared to the individual models, managing to improve the
generalization error of the individual tree-based models it builds on.

Figure 5. Scatter plot visualization of the real and the predicted values based on the EW ensemble
model for the EE renovation projects of the test set.

Finally, a very significant aspect of the empirical evaluation is to measure the predictive
ability of the ensemble model in different investment categories. A scatter plot of the real
values against the predicted values for the EW ensemble model is shown in Figure 5,
where different colors are used to indicate the category of each EE project. As one may
assume, some renovation categories (e.g., lighting) are expected to be easier to predict in
general, while others (e.g., heating) are more demanding due to the inherent variability
of the energy consumption, a fact that is visually confirmed by Figure 5 (the farther the
dots are placed from the diagonal of the scatter plot, the larger the prediction error is). In
this respect, Table 4 presents the MAPE and R2 measures of the EW ensemble model per
investment category. These measures have been selected for comparing different categories
because they are scale-independent, contrary to RMSE and MAE that are not suitable for
evaluating accuracy across groups of data with different scales. We find that the ensemble
model performs relatively better for the cooling, lighting, and compressed air categories,
producing less accurate results for the waste heat and pumps categories. This can be
attributed to the nature of the former types of measures, incorporating a low degree of
variability regarding the achieved energy savings.
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Table 4. Forecasting accuracy of the ensemble model on the test set. The results are presented both
per investment category and in total (average).

Category MAPE (%) R2 (%)

Heating 44.1 83.6
Cooling 27.7 98.0
Lighting 27.3 85.1

Compressed Air 29.8 81.9
Waste Heat 48.7 63.8

Pumps 43.9 65.9
Building Fabric Measures 35.3 87.6

HVAC Plant 35.4 59.9

Average 32.2 79.2

5. Conclusions

In this study, we proposed an ML-based framework for predicting the energy savings
of various types of EE renovations. The basis of our framework consists of three widely-
used tree-based ensembling algorithms, namely RF, XGBoost, and LightGBM. The single
predictions generated by the tree-based models are then blended using another level of
ensembling that applies equal weights to further mitigate prediction uncertainty and
improve forecasting performance.

The predictive accuracy of the base models and their ensemble has been empirically
evaluated through an experimental application using a database of EE renovation invest-
ments. Our results indicate that, according to four accuracy measures considered, the
ensemble model can generate more accurate forecasts than the three individual ML models.
Moreover, we find that some types of EE measures may be easier to predict than others, an
insight that can be exploited by stakeholders when estimating the risk of their investments.
Nevertheless, no EE categories with extremely bad predictions were identified.

This study forms a basis towards accurately estimating the potential savings of EE
renovations. However, there is definitely much space for improvement. Firstly, future
research can combine physical modeling and data-driven modeling techniques to overcome
the limitations of each approach, taking advantage of the strengths of both to develop
more accurate and comprehensive methods for estimating energy savings. Another very
promising direction of future research is the organization of a structured process to collect
and verify data regarding EE measures. This could result in a uniform, open database,
including a significantly larger number of EE renovations, as well as more types and
categories of actions applied in a more diverse set of countries with different climate
characteristics. Such a collection process would also enable the acquisition of a more
detailed set of features for each project, including but not limited to information that
refers to the floor area, year of construction, occupancy, operating hours, and type of
building, which could contribute to improved forecasting performance. Finally, given
that no prediction can be perfect, future work could try to link forecast error with the
potential uncertainty of EE investments to support decisions in EE financing. Moving one
step further, the development of a predictions-as-a-service, web-based tool incorporating
the above-mentioned enhancements would definitely add value in the decision making
process of various stakeholders in the field of EE financing.
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