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Abstract: In order to better utilize and protect marine organisms, reliable underwater object detection
methods need to be developed. Due to various influencing factors from complex and changeable
underwater environments, the underwater object detection is full of challenges. Therefore, this paper
improves a two-stage algorithm of Faster RCNN (Regions with Convolutional Neural Network
Feature) to detect holothurian, echinus, scallop, starfish and waterweeds. The improved algorithm
has better performance in underwater object detection. Firstly, we improved the backbone network
of the Faster RCNN, replacing the VGG16 (Visual Geometry Group Network 16) structure in the
original feature extraction module with the Res2Net101 network to enhance the expressive ability
of the receptive field of each network layer. Secondly, the OHEM (Online Hard Example Mining)
algorithm is introduced to solve the imbalance problem of positive and negative samples of the
bounding box. Thirdly, GIOU (Generalized Intersection Over Union) and Soft-NMS (Soft Non-
Maximum Suppression) are used to optimize the regression mechanism of the bounding box. Finally,
the improved Faster RCNN model is trained using a multi-scale training strategy to enhance the
robustness of the model. Through ablation experiments based on the improved Faster RCNN model,
each improved part is disassembled and then the experiments are carried out one by one, which
can be known from the experimental results that, based on the improved Faster RCNN model,
mAP@O.5 reaches 71.7%, which is 3.3% higher than the original Faster RCNN model, and the average
accuracy reaches 43%, and the F1-score reaches 55.3%, a 2.5% improvement over the original Faster
RCNN model, which shows that the proposed method in this paper is effective in underwater
object detection.

Keywords: underwater object detection; improved faster RCNN; Res2Net101; OHEM; GIOU; Soft-
NMS

1. Introduction

Marine biological resources on the earth are abundant and diverse [1], and it is especially
important to effectively detect the growth of marine organisms and manage them scien-
tifically in order to better understand, utilize and protect these limited marine resources.
However, little is known about the seafloor, and darkness, high pressure, and extreme tem-
peratures of the seafloor can cause many adverse effects on exploration efforts. For example,
light decays quickly underwater and there is insufficient light, resulting in blurred and
unclear images of marine organisms, and various noise and image distortion problems. In
particular, there are various limitations of traditional manual means to explore underwater
environments: they are time consuming, high cost, and have limited detection range and
defects in acquired images. Therefore, how to conduct stable, reliable, and fast underwater
object detection and monitoring in complex and harsh underwater environments is an
urgent problem to be solved.

In view of complex underwater environments and the prevalence of image noises, this
paper chose the Faster RCNN as the basis. Firstly, the initial image dataset is preprocessed
and extended with data enhancement. Secondly, the feature extraction module of the Faster
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RCNN is replaced by Res2Net101 [2]. The OHEM algorithm [3] is introduced to solve the
imbalance of positive and negative samples of the bounding box. Thirdly, the regression
mechanism of the bounding box is optimized. Finally, the training strategy is optimized
so that the improved Faster RCNN model can detect the underwater objects accurately
and effectively.

The main novel points of this paper are summarized as follows:

1. A two-stage underwater object detection method is proposed and improved, which is
based on the Faster RCNN, and its initial image dataset is subjected to Mosaic [4] data
enhancement and related preprocessing. The improved Faster RCNN model has stable
performance and good accuracy, and is more conducive to underwater object detection.

2. VGGI16is replaced by Res2Net101 in the feature extraction module of the improved
Faster RCNN, because the structure of Res2Net101 can enhance the expression ability
of the receptive field in the network layer of the improved Faster RCNN. The OHEM
algorithm is introduced to effectively solve the imbalance problem of the positive and
negative samples of the candidate prior frame.

3. The IOU structure in the improved Faster RCNN is replaced by GIOU [5], and the
non-overlapping area between the candidate prior frame and the real object is also
taken into account, so that the weakness of the original IOU can be weakened and
the improved Faster RCNN can better optimize the candidate prior frame in the
training process.

4. The original NMS algorithm is replaced by the Soft-NMS algorithm [6], which only
needs simple modification and no additional parameters, is easy to realize and can
be easily applied to different object detection algorithms. The training strategy of the
improved model is optimized by a multi-scale training approach [7], which can improve
the robustness of the improved Faster RCNN detection algorithm to different object
sizes.

2. Related Work
2.1. Development of Underwater Object Detection Technology

With the rapid development of deep learning methods, it is widely used in various
fields, e.g., [8-14]. The successful cases aptly illustrate that deep learning methods can be
fully applied to detect marine organisms and their growth environments. The deep learning-
based object detection methods are generally divided into two main technical routes:
one-stage object detection algorithms and two-stage object detection algorithms. Regarding
the one-stage object detection methods, R. Joseph et al. invented the one-stage object
detection algorithm YOLO in 2015 [15], which excels in the speed of detecting images. W.
Liu proposed the SSD algorithm [16], which is based on the principle of detecting objects at
different scales by setting different detection branches in the network. Subsequently, through
the continuous efforts, YOLOV2 [13], YOLOV3 [17], YOLOV4 [18] and other algorithms of the
YOLO series appeared one after another. Regarding the two-stage object detection algorithm,
in 2014 R. Girshick firstly proposed the RCNN algorithm [19], which has good performance
in detection accuracy but runs very slowly due to too many complex calculations. In the
same year, Kaiming He invented the SPPNet [20] algorithm with spatial pyramidal pooling
structure, which is 20 times faster than RCNN with little change in the accuracy. R. Girshick
introduced the Fast RCNN [21] algorithm with substantial improvement in the speed of
training and testing in 2015. Shaoging Ren invented the Faster RCNN [22] algorithm,
and Khasawneh N. also used the faster R-CNN and deep transfer learning to realize the
detection of K-complexes in EEG waveform images [23], which are more accurate, faster,
and very close to real-time performance.

On the other hand, Kashif Igbal proposed an unsupervised color correction method
for underwater image enhancement [24], which optimized the problems of low contrast
and color distortion in the underwater images. David Zhang [25] proposes a robust and
unsupervised deep learning algorithm to automatically detect fish, thereby reducing the
burden of manual annotation. Fei Yuan [26] uses the LSTM (Long Short-Term Memory)
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neural network for water quality classification, which improves the detection accuracy and
real-time performance of the water quality monitoring system. Jung-Hua [27] proposed a
method for detecting abnormal behavior of underwater fish by combining deep learning
object detection, fish tracking and DTW (Dynamic Time Warping).

2.2. Network Structure of the Faster RCNN

The Faster RCNN usually works in three main parts, which are feature information ex-
traction from input image, bounding box generation, classifier classification and object position
correction by regressor. The overall structure of the faster RCNN is shown in Figure 1. The
input image can be implemented by a convolutional neural network for feature information
extraction, and the obtained convolutional feature information is used as the input of the
RPN (Region Proposal Network), which in turn produces the region proposals. The main
function of the regression layer is to predict the region proposal parameters corresponding
to the anchor points of the bounding box, while the main function of the classification
layer is to determine whether the object in the bounding box is an object or a background.
The proposed regions generated by RPN can be mapped to the convolutional feature map
according to their positions to form an ROI (Region of Interest) [28]. Then, the pooling
operation of the ROl is performed to partition the mapped ROI regions into blocks of the
same size, and then the maximum pooling operation is performed to adjust the size of the
bounding boxes in each region. In the next step, the information of the bounding box in
each region is transmitted to the next layer of the network, i.e., the fully connected layer,
and after the fully connected layer the label classification score and the position of the
corrected bounding box can be output by the softmax function [29].

RPN i
=) I:l Regression |
'

!:t>|] Classification !

|:| MultiClass |

[ Classification 11
"

Rol
‘\ Pooling |
\ /
J

'
'
'
'
H 1
1
'

N 1

\

|:| Bounding Box ::
'

Regressor

Feature Maps  Feature Maps+Rols

Figure 1. Network structure diagram of the Faster RCNN.

2.3. Loss Function of the Faster RCNN

The loss function of the Faster RCNN has two main components: (1) classification loss
and bounding box regression loss of the regional network; (2) classification loss and loss of
bounding box position correction at detection. The loss function of the Faster RCNN can be
defined by Equation (1) [30].

1 * 1 * *
L({pi}, {ti}) = WZ Las(pipi) + )\@Z Pi Lreg (i tf) 1
ClS 1 l

where i is an index of anchor numbers in each small batch of data, and p; is a prediction
probability of the anchors to objects. p;* is a label value of a category, which can be 0 or
1, 0 means a false object, and vice versa is a true object. A is a weight coefficient, N is a
classification loss parameter, Nrgg is regression loss parameter, L is classification loss in
object detection, and Lj(p;, p;*) is the logarithmic loss between the detection object and
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non-object, which is calculated as shown in Equation (2) [30]. R is a function named as
smoothy 1(x), and the expression is shown in Equation (3) [31]:

Las(pi,pi) = —loglpipi+ (1 — pi ) (1 —pi)] )

0.5x%  if|x| <1
|x| —0.5 otherwise

smoothpq(x) = { (©)]
where Lyeg(t;, ;) is the regression loss inside the object detection, which is represented by
Lyeg(t;, t;*) = R(t; — t;¥), t; refers to the predicted coordinates, ¢;* is the coordinates of the
detection object, and x = ¢; — t;*.

3. Proposed Method
3.1. Improvement of the Faster RCNN

In this section, the network structure of the two-stage object detection algorithm Faster
RCNN is improved. The backbone network module is selected as the backbone network
by comparing VGG16Net [32], ResNet50 [33], ResNet101 [34], Res2Net101 [35], and Res2-
Net101 feature extraction modules. The GIOU function is used to replace the original IOU.
GIOU can overcome the shortcomings of the original IOU well, and when the predicted
bounding box and the actual truth box do not overlap at all the GIOU still works and the
model can continue to be optimized. In order to optimize the class imbalance problem of
the data, the OHEM algorithm is introduced. After the feature map goes through the RPN
module, a large number of preselected boxes are generated and the Soft-NMS algorithm is
used in the screening of bounding boxes. The network structure of the improved Faster
RCNN is shown in Figure 2.
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Figure 2. The network structure of the improved Faster RCNN.

3.2. Initial Screening of Bounding Boxes

In order to further improve the performance of the underwater object detection, a k-
means++ algorithm [36] with k-means algorithm [37] is applied to implement the clustering
of the bounding boxes sizes of the images in the experimental dataset. The k-means
algorithm is a simple clustering algorithm, the algorithm is easy to implement, and the
clustering results are good. However, the k-means algorithm calculates the location of the k
original clustering centers, which has an important impact on the final clustering results
as well as the execution time. Therefore, it is necessary to select the appropriate k initial
clustering centers. The k-means++ algorithm is a further improvement of this problem. The
k clustering centroids derived from the filtering by the k-means++ algorithm are considered
as the initial values for the k-means algorithm to run. Finally, nine values are generated by
the k-means algorithm as the initial values of the training model bounding boxes, which are
49 x 33,52 x 75,60 x 43,66 x 60,90 x 49,103 x 89, 142 x 110, 192 x 243 and 459 x 401.
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3.3. Improved Backbone Network

VGG16Net is the main module of the backbone network in the original Faster RCNN,
which is used for feature information extraction from the input image. The ResNet [38]
network improves the feature extraction network VGG19Net by adding a residual module
with a short-circuit jump mechanism, while the network structure is changed by performing
down-sampling using a convolution with a step size of two, while the original fully connected
layer is changed to use global average pooling layer. The most common ResNet network
structures are ResNet50 and ResNet101, and ResNet101 is a further stacking of the fourth
layer of convolutional blocks on top of the structure of ResNet50, increasing the number of
layers from the original six to twenty-three. Res2Net [39] creates a multi-layered residual-
like network connection inside the original residual module, which enables a finer region
to describe multi Res2Net, builds a multi-layered residual class network connection inside
the original residual module, which can describe the multi-scale feature information in a
finer area, and greatly improve the feature expression capability of the network layers.

In the experiments in Section 4 of this paper, the Faster RCNN (VGG16), the Faster
RCNN (ResNet50), the Faster RCNN (ResNet101), and the Faster RCNN (Res2Net101)
network structures are all tested through experiments, and according to the results of the
comparison experiments the Res2Net101 network structure has the best detection effect;
therefore, the Res2Net101 is chosen as the backbone network structure of the improved
Faster RCNN.

3.4. Positive and Negative Sample Imbalance Improvement

In the process of training the model by the Faster RCNN, a large number of the
bounding boxes will be generated when the image feature information passes through the
RPN network structure. In the Faster RCNN, the value of the IOU is used to determine the
positive and negative attributes of the bounding box samples; generally the bounding box
with the IOU value greater than 0.7 is a positive sample, while the bounding box with the
IOU value less than 0.3 is a negative sample. In these large numbers of bounding boxes
there is often a serious imbalance between the number of the positive and negative samples,
and in general the number of negative samples is much higher than the positive samples.
Among the samples of these bounding boxes, there are often some difficult negative
samples, and the difficult negative samples are samples that are difficult to identify and
distinguish with the model. Due to the imbalance of the positive and negative samples
and the existence of the difficult samples, the detection accuracy of the training model
is affected.

The OHEM is a mining algorithm for hard-to-detect samples, which is often used in
image recognition and image detection tasks. In the two-stage object detection model, the
OHEM generally acts between the bounding box generation module and the bounding box
classification and the regression module. The OHEM algorithm usually selects difficult
negative samples with complexity and high loss for training. Under limited conditions,
the input positive and negative samples are cyclically sampled and the initial samples are
redistributed and combined to form new samples. In this process, it will help the model
to pay attention to those difficult negative samples and improve the detection effect of
the model. On the other hand, this operation will ignore those simple samples, thereby
changing the distribution of the entire positive and negative sample input.

3.5. Improvement of Bounding Box Mechanism
3.5.1. GIOU

The IOU is a very commonly used indicator in the object detection process, but the
IOU is the concept of ratio; therefore, it does not pay attention to the area size and shape of
the object and the bounding box. During the model training process of the object detection
algorithm, a large number of bounding boxes will be formed and it is possible that the loss
values of the bounding boxes are the same, but there are different IOU values. Therefore,
the original IOU has two problems: (1) the prediction range of the bounding box and the
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real object do not overlap, the value of the IOU is always 0, and it cannot be optimized;
(2) the original IOU cannot discern the different alignments between the bounding boxes
and the ground-truth objects.

In order to solve the above two problems, a few related research has proposed the
GIOU algorithm. The GIOU also takes into account the non-overlapping areas of the
bounding box and the real object, which can weaken the weakness of the original IOU. This
paper replaces the IOU structure in the Faster RCNN algorithm with the GIOU, and the
algorithm model can better optimize the bounding box during the training process, thereby
improving the performance of the Faster RCNN model.

3.5.2. Soft-NMS

In the process of underwater biological object detection, the two-stage object detection
algorithm will generate multiple bounding boxes for the same underwater bio-logical object
in the image, and will generate confidence scores. There is overlap between the regions of
these bounding boxes. In order to filter out qualified candidate prior boxes and eliminate
redundant candidate priori boxes, the traditional NMS algorithm will select the bounding
box A with the highest score. Then, it will calculate the IOU values of other bounding boxes
that have significant overlap with A. If the IOU value exceeds the set threshold, it will be
deleted. If the IOU value is lower than the set value it will be retained, and the bounding
boxes that do not overlap will also be retained. However, according to the operation of
the traditional NMS, the confidence score will be low and the bounding box with the IOU
value greater than the set value will be deleted, which may not detect underwater objects.

The Soft-NMS algorithm does not simply remove those bounding boxes whose IOU
is greater than the threshold, but only reduces the confidence in them. The Soft-NMS
algorithm only needs to make simple modifications to the original NMS algorithm without
adding additional parameters, and therefore it is easy to implement and can be easily
applied to different object detection algorithms. The calculation formula of the Soft-NMS
algorithm is shown below [40]:

S — { Si iOLi(M,bi) < N; (4)
Sl —dou(M, by))iou(M, b;) > Ny

where M represents the candidate prior frame with high score, b; is the candidate prior
frame to be processed, N; is the set IOU threshold, and the IOU function is a weight function
for attenuation, which is used to attenuate the scores of the adjacent candidate prior frames
overlapping with the candidate prior frame with the high score. The higher the degree
of overlap, the greater the attenuation degree of the scores, and §; is the score of the ith
candidate prior frame in the S set.

In the improved Faster RCNN underwater object detection scheme, the original NMS
algorithm is replaced by Soft-NMS to improve the detection performance of the model.

3.6. Multi-Scale Training

Multi-scale training can improve the performance of the network model. Generally,
several parameters of different scales are set. After a specific number of iterations during
training, the parameters can be randomly selected from the preset parameters. Selecting
a certain scale as the standard of the input image size and then training can improve the
robustness of the model to objects with different sizes. The resolution of the input image
can affect the detection performance of the trained model. In the feature extraction network,
a feature map with a size several times smaller than the original image is often generated,
which makes it more difficult for the feature description of the small object to be captured by
the detection network. Therefore, the robustness of the algorithm model can be improved
to a certain extent by providing larger and richer images for training. In this paper, the
multi-scale training method is used in the experiments of training the model. The length
and width of the sample images in the training set are randomly changed during training.
The image length varies from 350 to 700, and the image width varies from 250 to 600.



Appl. Sci. 2023,13, 2746

7 of 15

4. Experiments

The improved Faster RCNN underwater object detection is tested on a Linux system,
and the development language is Python3.7. In the hardware configuration, the CPU is
Xeon Gold 5218R, the memory is 32 G, the graphics card GPU is Tesla V100, the video
memory is 16 G, the CUDA (Compute Unified Device Architecture, NVIDIA, Santa Clara
City, CA, USA) version is 11.2, and the PyTorch (Facebook, Park, CA, USA) version is 1.10.
The training, testing, and validation datasets used in the experiments are the underwater
environment images collected through the Internet. The initial dataset is filtered, prepro-
cessed, and data enhanced, and the number of images in the image dataset is expanded to
3500, and the resolution of the images is uniformly adjusted to 500 x 400.

4.1. Mosaic Data Enhancement and Related Preprocessing
4.1.1. Dataset Preprocessing

There were 2372 underwater environment image samples (for example, holothurian,
echinus, scallop, starfish and waterweeds) collected initially in the experiments. For deep
learning network model training, the number of samples in the experimental dataset is not
sufficient. In order to overcome the problem of an insufficient number of dataset samples,
this paper expands and optimizes the dataset samples by performing data enhancement
techniques such as flipping, local trimming, color adjustment, Gaussian noise and salt and
pepper noise on the images in the original dataset. The image flipping process is to flip
the original image of the experimental data sample horizontally or vertically; the cropping
operation is to locally cut the image, select the object position, and remove the irrelevant
or disturbing parts. In order to enhance the robustness of the underwater object detection
model and prevent overfitting, this paper actively introduces Gaussian noise and salt and
pepper noise to some images during the data enhancement processing.

Since the color components of underwater imaging are different from those of land-
based imaging, the underwater images are prone to imbalance in the main three colors.
Therefore, color compensation is performed on the underwater images to adjust the image
tones and to achieve better underwater image detail features. Since the color is attenuated
when the light enters underwater, the red component is most obviously attenuated; there-
fore, the red component in the collected underwater environment images is small, while
the information in the blue and green channels is relatively well preserved. Therefore, we
mainly compensate the red color in the image to make the image closer to the real color.
The data enhancement effect is shown in Figure 3. After the pre-processing and expansion
of the dataset samples, the experimental dataset sample images are expanded from the
original 2372 to 3500 and the resolution of the images is unified to 500 x 400.

Original Image
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Figure 3. The effect of dataset preprocessing.
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4.1.2. Mosaic Data Enhancement

The Mosaic data enhancement technique is a random selection of four images, and the
selected images are stitched together by performing a random arrangement of layout, ran-
dom zooming in and out, and random local trimming, as shown in Figure 4. This technique
makes it possible to detect more types of sample datasets. In particular, for the random
shrinking or zooming operation on the images, this data processing strategy is able to add
more small volume objects, allowing a better robustness of the network. On the other hand,
this method of stitching images by Mosaic enables the network to calculate the data of four
images together at the time of detection, and therefore the batch processing image values
of the training model can be set to be smaller, which can reduce the GPU resources.

(b)

Figure 4. Mosaic data enhancement, (a) four randomly entered pictures (from left to right, they are

respectively a starfish, water plants, a scallop, a sea cucumber), (b) data augmentation results.

4.2. Evaluation Indicators

The evaluation metrics of the object detection model firstly need to classify the recog-
nition results into four categories according to the true labels; TP is the true example, TN
is the true counter example, FP is the false positive example, and FN is the false counter
example. The above four categories can be used to find the precision rate and recall rate of
the model. The formula for calculating the precision rate is shown in Equation (5) [41], the
formula for calculating the recall rate is specified in Equation (6) [41], and the formula for
the F1 score is defined in Equation (7) [42].

. TP
Precision(P) = TP+ ED ®)
TP
Recall(R) = TP EN (6)
2PR
Fl = PIR )

In Equation (5), P is a precision rate, and R is a recall rate. In order to balance the
precision rate as well as the recall index, mAP (Mean Average Precision) is chosen as the
comprehensive evaluation index of the model. The average of the AP values of all categories
is the mAP of all categories of objects.

4.3. Comparative Experiments of Backbone Network Selection

In this paper, the Res2Net101 network module is selected as the feature extraction
structure of the improved Faster RCNN in order to optimize its backbone network for
better performance in the underwater object detection. In this section, many comparison
experiments are conducted for the Faster RCNN (VGG16), the Faster RCNN (ResNet50),
the Faster RCNN (ResNet101) and the Faster RCNN (Res2Net101), respectively.

The 3500 underwater environment images are divided into training data samples,
validation data samples and test data samples, with a ratio of 7:2:1. After 300 epochs of
iterative training and learning, the learning rate drops to 0.0001 and the parameters of the
underwater object detection model converge. The improved Faster RCNN improves the
performance in the underwater object detection by combining different feature extraction
modules. The results of the comparative experiments are shown in Table 1.
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Table 1. Performance of different feature extraction modules in the underwater object detection.

Methods Avg-P(%) mAP@0.5(%)
Faster RCNN (VGG16) 41.0 68.4
Faster RCNN (ResNet50) 41.2 68.1
Faster RCNN (ResNet101) 41.1 68.7
Faster RCNN (Res2Net101) 41.5 69.1

It can be known from Table 1 that the ResNet network with residual units has stable
performance in underwater object detection. With the deepening of the network layers,
the Faster RCNN (ResNet101) has better accuracy in underwater object detection than
the original Faster RCNN. The recently appeared Res2Net network, which establishes a
multi-level residual network connection inside the original residual module, can describe
the multi-scale feature information in a finer area. The experimental result of the improved
Faster RCNN (Res2Net101) is the best, with mAP@0.5 reaching 69.1%. Therefore, it can be
known from Table 1 that the improved operation of the Faster RCNN backbone network
is effective, and the improved Faster RCNN algorithm is more conducive to underwater
object detection.

4.4. Comparison Experiments

In order to show the detection effect of the improved Faster RCNN model, other
different object detection algorithms are also trained, tested and validated in this paper.
Observe the performance comparison between the improved algorithm model in this paper
and the other algorithms in the tasks of underwater object detection.

This paper selects the Fast RCNN, SSD, YOLOV3, the unimproved Faster RCNN
and the improved Faster RCNN for comparison. According to the data enhancement pre-
processing described in the previous section, the 3500 underwater environment images are
divided into training data samples, verification data samples and test data samples, with a
ratio of 7:2:1. After 500 epochs of iterative training and learning, the learning rate drops to
0.0001 and the parameters of the underwater object detection model converge. The experi-
mental results of the Fast RCNN, SSD, YOLOVS3, the Faster RCNN and the improved Faster
RCNN are shown in Table 2.

Table 2. Performance of different models in underwater object detection.

Methods Avg-P(%) mAP@0.5(%) F1
Fast RCNN 38.3 62.1 45.6
Faster RCNN 41.0 68.4 52.8
YOLOV3 42.1 70.1 54.7
SSD 42.0 70.4 54.5
Ours 43 71.7 55.3

As can be known from Table 2, in terms of underwater image detection the detection
results of various algorithm models are compared. The improved Faster RCNN underwater
object detection algorithm has relatively good AP, mAP and F1 scores, and these three
indicators are higher than the original Faster RCNN algorithm; mAP@0.5(%) reaches 71.7%,
which is 3.3% higher than the original algorithm, and the F1 score reaches 55.3%, which is
2.5% higher than the original algorithm.

As can be known from Figure 5, the improved Faster RCNN-based underwater object
detection method has better performance than the Fast RCNN, the unimproved Faster
RCNN, YOLOV3 and SSD. The improved method in this paper has higher accuracy when
detecting multiple categories at the same time, and can reduce the occurrence of the missed
detections and the false detections well. As can also be known from Figure 5, the method
in this paper has also made progress in the detection of small underwater objects, and the
small scallops in Figure 5 can also be accurately detected.
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Figure 5. Results of different methods for underwater object detection. (a—e) are respectively the
detection results based on Fast RCNN, Faster RCNN, YOLOV3, SSD, the improved Faster RCNN.
The black creatures are sea cucumbers, the blue five-pointed creatures are starfishes, the green round
creatures are scallops, and the black slander creatures are seaweeds in the images.

4.5. Ablation Experiments and Analysis

This section progressively demonstrates the effectiveness of each module through
ablation experiments. Since our proposed improvement scheme has several modules to be
combined, in order to determine whether the addition of modules is effective, this section
verifies the rationality of the combination of methods through ablation experiments.

The ablation experiments take the Faster RCNN (Res2Net101) as the main structure,
and then add the GIOU algorithm, the OHEM algorithm, the Soft-NMS algorithm, and
multi-scale training to it one by one. Then, we train, test, and validate on the same under-
water image dataset. The underwater environment images are divided into training data
samples, validation data samples and test data samples, with a ratio of 7:2:1. The learning
rate is initially set to 0.001. In order to better understand the performance of the model and
make adjustments in a convenient and timely manner, pay attention to the performance
changes of the model every three iterations. If the performance does not improve, adjust
the learning rate to 90% of the original in the next training. Use the Adam [43-45] optimizer
to optimize the model. After 500 epochs of iterative training and learning, the learning rate
drops to 0.0001 and the parameters of the underwater object detection model converge.
The ablation experiment results of the improved Faster RCNN underwater object detection
model are shown in Table 3.
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Table 3. Ablation experiment results of the improved Faster RCNN.

Methods Avg-P(%) mAP@0.5(%)
Faster RCNN (VGG16) 41.0 68.4
Faster RCNN (Res2Net101) 41.5 69.1
Faster RCNN (Res2Net101 + GIOU) 41.2 69.3
Faster RCNN (Res2Net101 + OHEM) 411 69.5
Faster RCNN (Res2Net101 + SoftNMS) 41.5 69.2
Faster RCNN (Res2Net101 + GIOU + OHEM + SoftNMS) 415 69.7

Faster RCNN (Res2Net101 + GIOU + OHEM + SoftNMS) +

Multi-scale training 43 71.7

As can be known from Table 3, the Faster RCNN (Res2Net101) improves the accuracy
of mAP@0.5 by 0.2% by replacing the original IOU algorithm with the GIOU algorithm. In
order to overcome the problem of the unbalanced positive and negative samples, the OHEM
technology is introduced. Through the experiments, it can be known that this operation
increases mAP@0.5 by 0.4%. In order to optimize the bounding box mechanism of the
model, the standard NMS is replaced with Soft-NMS and the model performance is slightly
improved. Finally, by integrating various improved schemes, the improved Faster RCNN
underwater object detection algorithm model is obtained. In the experiments, mAP@0.5
reaches 71.7%, which is 3.3% higher than the original Faster RCNN model. Therefore, the
method is effective in underwater object detection.

The precision-recall curves are shown in Figure 6, and it can be known that the recall
curve and the accuracy curve can quickly converge. The average accuracy of sea cucumber,
sea urchin, scallop, starfish and aquatic plants are given in the curve of recall rate, and the
average accuracy of all detection classes. It can be seen from in Figure 6 that sea urchins are
in the recall curve. The area is the largest, so the accuracy of underwater target detection is
also the highest, and then for the detection of aquatic plants, starfish, sea cucumbers and
scallops the accuracy decreases in turn. In terms of detection speed, the improved method
proposed in this paper is better than the original Faster RCNN in a single map. The film
detection time is 0.005 s longer. After the 500th epochs Recall, Precision, mAP@0.5 and
MAP@0.5:0.95 curves are stable, which shows that the proposed methods are effective in
underwater object detection.

It can be known from Figure 7 that the proposed and improved method has higher
accuracy in underwater object detection—the unimproved Faster RCNN cannot detect
the starfish in the lower right corner of Figure 7, while the improved method in this paper
can detect the starfish with different shapes in the lower right corner of Figure 7—and the
improved model is more robust. At the same time, the improved model can detect small
scallops in the upper right corner of Figure 7, and the performance of the small object
detection is better than the original Faster RCNN.
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Figure 7. Underwater detection results between the Faster RCNN and our method.

5. Conclusions

The two-stage algorithm Faster RCNN is improved to make it suitable for underwater
object detection tasks. We improve the backbone network of the Faster RCNN, optimize the
imbalanced positive and negative samples, improve the regress mechanism of the bounding
box, and also use multi-scale training on the training strategy. Through comparative
experiments, it is verified that it is feasible to use the Res2Net101 network module as
the feature extraction structure of the improved Faster RCNN. We also conduct ablation
experiments based on the improved Faster RCNN underwater object detection algorithm,
disassemble each improved part, and then conduct experiments one by one. It can be known
from the experiments that based on the improved Faster RCNN model mAP@0.5 reaches
71.7% in the experiments, which is 3.3% higher than the original Faster RCNN model. The
F1 score reaches 55.3%, a 2.5% improvement over the unimproved Faster RCNN model,
which shows that the proposed methods are effective in underwater object detection.
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Abbreviations

RCNN Regions with Convolutional Neural Network Feature
VGGl16 Visual Geometry Group Network 16

Res2Net101  Residual 2 Network 101

OHEM Online Hard Example Mining

GIOU Generalized Intersection Over Union

Soft-NMS Soft Non-Maximum Suppression

RPN Region Proposal Network

ROI Region of Interest

LSTM Long Short-Term Memory

DTW Dynamic Time Warping
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