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Abstract: Path planning is one of the key technologies for unmanned driving. However, global
paths are unable to avoid unknown obstacles, while local paths tend to fall into local optimality. To
solve the problem of unsmooth and inefficient paths on multi-angle roads in a park which cannot
avoid unknown obstacles, we designed a new fusion algorithm based on the improved A* and
Open_Planner algorithms (A-OP). In order to make the global route smoother and more efficient,
we first extracted the key points of the A* algorithm and improved the node search structure using
heap sorting, and then improved the smoothness of the path using the minimum snap method;
secondly, we extracted the key points of the A* algorithm as intermediate nodes in the planning
of the Open_Planner algorithm, and used the A-OP algorithm to implement the path planning of
the unmanned sweeper. The simulation results show that the improved A* algorithm significantly
improved the planning efficiency, the nodes are less computed and the path is smoother. The fused A-
OP algorithm not only accomplished global planning effectively, but also avoided unknown obstacles
in the path.

Keywords: A* algorithm; heap sorting; Open_Planner algorithm; fusion algorithm; unmanned sweeper

1. Introduction

With the development of urban transportation, the emergence of driverless sweepers
has greatly changed the way cities are cleaned. Replacing the traditional manual road-
cleaning model with driverless [1,2] sweeping not only improves cleaning efficiency, but
also reduces labor costs. An important prerequisite for driverless sweepers to drive au-
tonomously is to plan an optimal and safely executable path. The principle of path planning
is to plan a path from the starting point to the end point based on regional environmental
information and vehicle information, and it also needs to have an obstacle-avoidance
function during the driving process.

Path-planning algorithms can be divided into two categories, one is global path
planning and the other is local path planning. Global path planning is a static planning
algorithm, which plans an optimal route from the start point to the end point on the
map based on the existing map environment information. Global-planning algorithms
include classical algorithms such as the A* algorithm [3,4], Dijkstra algorithm [5,6], RRT
algorithm [7,8], and also intelligent algorithms such as the ant colony algorithm [9,10] and
genetic algorithm [11,12]. Local path planning is implemented using a dynamic-planning
algorithm [13,14], which is based on a sensor sensing the surrounding environment to plan
a path for the vehicle to drive safely, and is often applied to scenarios such as overtaking
and obstacle avoidance [15]. Local-path-planning algorithms include the dynamic window
method, artificial potential field method [16,17], Open_Planner algorithm [18], Bessel curve
algorithm [19,20] and so on. There are also newly proposed neural network algorithms [21,22],
and others.
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The dominant planning algorithm used by many unmanned-vehicle planning frame-
works is the A* algorithm, such as the move_base framework [23], and the Autoware frame-
work [24]. For example, Dijkstra’s breadth search algorithm can complete the pathfinding
operation, but it has the disadvantage of consuming a large amount of computer memory,
being computationally intensive with many nodes, and having a high space and time
complexity. It is, therefore, less often used for the actual path planning of unmanned
vehicles. However, traditional A* algorithms suffer from the problem of low algorithm
efficiency due to many redundant points, on the one hand, and low path smoothing in the
case of many turning points, on the other hand, resulting in less smooth vehicle turns and
extra time or power consumption when turning. At the same time, the A* algorithm cannot
avoid unknown static or dynamic obstacles, so how to make the path smooth, improve
planning efficiency and avoid obstacles is a problem that needs to be solved. In reality, the
use of global path-planning algorithms alone does not guarantee the safety of an unmanned
vehicle, as the presence of unknown obstacles can make the vehicle unsafe.

Many researchers have conducted in-depth research and discussions on planning
algorithms. Zhao [25] proposed a Maklink-based approach to address the shortcomings of
the A* algorithm in terms of its computationally intensity and limitations of domain search
strategies. Wang [26] designed a method which introduced extended distance, bidirectional
searching and smoothness into path planning to improve paths by reducing the number of
turns. Xiong [27] proposed a conventional algorithm which does not consider the vehicle
model and lacks speed planning. The safe-space configuration of the vehicle model was
considered and a vehicle acceleration system was constructed to improve the applicability
of the A* algorithm in vehicle planning. Li [28] combined a time-factor normalization
model with a valuation function to reduce the cost of trip planning. Droge Greg [29]
proposed a two-model predictive control framework which incorporates information from
path planning into a dynamic windowing method for obstacle avoidance, ensuring that
target locations are detected in an unknown environment. Zhang [30] used a hopping point
search algorithm to extend the hopping points on sub-nodes and improve the efficiency of
the A* algorithm. Zhang [31] proposed a bidirectional A* algorithm based on third-order
Bessel curve trajectory optimization, which solved the problem of multiple folds and large
corners in the search path. Y. Bian [32] defined a new evaluation sub-function to obtain
a new DWA evaluation function, which solved the problem of falling into evaluation
function failure when the mobile robot encountered an obstacle. The planning algorithms
chosen in this paper are the improved A* algorithm and the Open_Planner algorithm.
Both the traditional A* algorithm and the Open_Planner algorithm can be applied to the
path-planning problem. However, the disadvantages of the traditional algorithm, the A*
algorithm, are reduced efficiency due to the presence of a large number of non-essential
nodes, unsmooth routes around corners and difficulty in dealing with unknown obstacles
when searching in complex environments. Open_Planner requires a global environment
to establish the best locally planned paths. To address these issues, we fuse the global-
path-planning algorithm with the local-path-planning algorithm. To improve the planning
efficiency of the A* algorithm, we extract key points based on obstacles and map boundaries
in the A* algorithm. The slowest part of the A* algorithm is finding the node with the
smallest F value in the open list, and repeatedly searching large lists slows down the process.
Therefore, we use a binomial heap to optimize the way the A* algorithm stores the list,
placing the smallest points at the top of the heap to improve the algorithm’s search efficiency.
Unsmooth paths around corners can also have an effect on vehicle operation; thus, we make
the paths smoother using the minimum snap method. Afterwards, the key points of the A*
algorithm are used as intermediate target points for the Open_Planner algorithm and the
two algorithms are fused. With the planning of the A-OP fusion algorithm, the vehicle has
an optimal path and, at the same time, achieves the safety effect of obstacle avoidance.

In summary, we aim to realize a driverless sweeper vehicle which can both drive
with the global optimal planning route and reach the destination safely by avoiding the
obstacles in real time. In this paper, based on the traditional path-planning algorithm,
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the key points of the algorithm are selected and the node search structure is improved to
enhance the smoothness of the path, after which the global-planning algorithm and the
local-path-planning algorithm are fused by key points and the algorithm is fused. The
contribution of the work in this paper is shown in the following aspects:

e A new route-planning method by fusing improved A* and Open_Planner;
e  Feature point search strategy for planning paths;
e  Path smoothing strategy based on minimum snap.

2. Traditional A* Algorithm with Improvements
Principles of the Traditional A* Algorithm

The A* algorithm is one of the traditional global-path-planning algorithms applied
in various addressing scenarios. A* algorithm is an improvement of Dijkstra’s algorithm,
which optimizes for a single objective point using a heuristic function, giving priority to the
path closer to the objective. Its evaluation function consists of two components, the actual
generation value and the estimated generation value, and the definition can be expressed
as in Equation (1).

F(n) = G(n) + H(n) 1)

where 1 denotes the current node, G(1) denotes the actual generation value from the starting
point to node n, and H(n) is a heuristic function which denotes the estimated generation
value from node #n to the target point. If we want to find the optimal solution for the
two-point path, the key is the selection of the estimation function H(n). If H(n) is less than
or equal to the actual value of the distance from the current node to the target node, then the
search nodes are many, the search range is large, and the efficiency is low, but the optimal
solution can be obtained. If H(n) is equal to the actual value, then the search will be carried
out strictly according to the shortest path; if H(n) is greater than the actual value, the search
nodes are fewer, the search range is smaller, and the efficiency is high, but the optimal
solution cannot be guaranteed. Therefore, an exact heuristic function is constructed to
calculate the length of the shortest path between any two nodes. In two-dimensional maps,
calculating the actual distance value between nodes and target points as a surrogate value
can achieve a better result. The traditional A* algorithm heuristic functions are usually
Euclidean distance, Chebyshev distance and Manhattan. Their distance equations are
shown as follows, Equation (2), Equation (3), Equation (4), respectively.

Euclidean distance : d= \/(xz — x1)2 + (y2 — y1)2 ()
Chebyshev distance : d = max(|x; — x2|, [y1 — y2|) (©)]
Manbhattan : d=|x; —x2| + [y1 — y2| 4)

Figure 1 shows a graphical representation of the three distance formulas. The tradi-
tional A* algorithm generally uses Euclidean distance or Manhattan distance, but Cheby-
shev distance only needs to calculate addition and subtraction, which greatly improves the
efficiency of operation, and there will be no error no matter how many times the superpo-
sition is calculated. Therefore, the Chebyshev distance formula was chosen in this paper.

Cr O—

Manhattan Chebyshev |

Euclidean

O
O

Figure 1. Diagram of distance measurement methods.
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3. Method

In order to solve the problems of many redundant points, uneven paths and low search
efficiency in the path planning of A* algorithm, this paper screened and extracted the nodes
in the path of A* algorithm, deleted the redundant points in the path, and improved the
smoothness of the path. At the same time, heap sort was used to improve the storage
structure of algorithm nodes to improve the search efficiency. Unlike a road, a large campus
such as a park has a large number of buildings and traffic off-ramps, which results in a large
number of turning points. The traditional A* algorithm has the defect of unsmoothed path,
which leads to the unmanned vehicle not being silky smooth when driving and turning
according to the path planning. At the same time, A* algorithm has the problem of many
redundant points in planning, which leads to more time spent in path planning. Therefore,
in order to solve these problems, this paper filtered and extracted the nodes in the path of
A* algorithm, removed the redundant points in the path, and improved the smoothness of
the path using minimum snap. At the same time, heap sorting was used to improve the
storage structure of the algorithm nodes and to improve the search efficiency.

3.1. Optimized Node Data Structure Based on Binomial Heap

A* algorithm needs to scan all the nodes with the smallest F value in the OpenlList
table in order. Although it can complete all the node scanning, the speed is obviously
slow. Literature [33] proposes that when the number of nodes in the OpenlList table reaches
a certain value, the earliest and larger nodes should be deleted. Although this method can
keep the number stable, if there are many obstacles in a large area, it will consume a lot
of time to search each node in order. Heap sort is a kind of selection sort using the nature
of heap. It selects the smallest node using the relationship between parent node and child
node in binary tree, so that the node with the smallest F(n) value is placed at the top of the
list for access, which improves the search efficiency. The idea of heap sort is as follows:
the array of nodes in the two tables is resized into a small root heap whose top node is the
smallest node in the heap. The top node of the small root heap is switched with the last
node of the unordered region, the last node added to the ordered region, the new node
order adjusted, and this operation is repeated until the unordered region is empty. Figure 2
shows the process of minimum heap sort.

@) @) 0@6
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Figure 2. Minimum heap sort process.

3.2. Extract Key Points Based on Raster Map Boundaries and Obstacles

A* algorithm will produce many redundant points in the addressing process, which
will affect the planning efficiency. Therefore, the expansion nodes in path planning were
screened and the key points in the path were extracted to improve the algorithm. The
redundant nodes in the node expansion process of the A* algorithm were removed, and
only key nodes were retained as expansion points for path planning.

In this paper, a large number of redundant points were excluded and the number of
unnecessary nodes was reduced by searching the key points in the path based on raster
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map boundaries and obstacles. Two key points were connected to realize the jump between
two points, so as to improve the efficiency of path search. The key point search process is
as follows:

Step 1: In the OpenlList table, select a node with the minimum generation value or
select a starting node to start the search.

Step 2: Search search direction in the line or oblique search only. The search ends
if a node is found, an obstacle is encountered, or a raster map boundary is hit. Add the
searched nodes to the OpenList table.

Step 3: If the search is not completed in the oblique direction, step forward in the
oblique direction and repeat the above process.

Step 4: If the comprehensive search has been completed, the current node is considered
to have been completely searched, and the current node is removed from the OpenList
table and added to the ClostList table.

Step 5: Repeat the search for the node with the lowest weight in the ClostList table
until the OpenlList table is empty or the final point is found. The points stored in the
CloseList table are the key points to search for.

As shown in Figure 3, the red grid X is the starting point, the green grid Y is the end
point, the blue X5 and X9 are the key points, and the path connected by nodes X — X5
— X9 — Y is the final path planned by the algorithm. Compared with the traditional A*
algorithm, the improved A* algorithm only leaves the starting point, the ending point, and
the two key points X5 and Xg; deletes a large number of redundant points; and adds the
key points to the OpenlList table for cost evaluation and path planning. The improved A*
algorithm can make long-distance connections through key points, and it takes less time to
reach the target point, which greatly improves the planning efficiency.

X6
/// \S
X7 X9
X1 | X2 | X3

Figure 3. Key point extraction diagram. (The red square is the starting point, the blue square and the
yellow square are the characteristic points in the path, and the green square is the ending point).

3.3. Path Smoothing Based on Minimum Snap

The path searched by A* algorithm does not consider the kinematic model, so there
will be unsmooth points at the corner. The robot does not have a motion mutation at
one point. If it is a universal wheel robot, it also needs to rotate at a certain angle to
continue forward, which obviously wastes a lot of time and efficiency. Therefore, based on
the track points in the track, a smooth curve connecting each track point is planned. This
paper samples the trajectory smoothing processing based on minimum snap. It is difficult
to express a complex trajectory with only one polynomial, so we divide the trajectory into
multiple segments according to time, and each segment is expressed using a polynomial
curve, each with the following equation:

(16,82, ., t"]-p1 to<t<Hh
[1,t,ti,...,t”]-p2 H<t<t
p(t) =3 (Lt . 1" ps th<t<t (5)

(Lt 82, ] pe g <t <t
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K is the number of segments of the trajectory. p; = [pio, Pi1, Pizs- - -» pm]T is the param-
eter vector of the i-th segment trajectory. We want smoothness (position and velocity, etc.)
at adjacent trajectories. Usually, there are many trajectories that satisfy the constraints, but
we only need one specific trajectory; therefore we need to construct an optimal function to
find the optimal trajectory among the feasible trajectories. Thus, we modelled the problem

as a constrained optimization problem, as in Equation (6), below.

minf(p)
s.t. Ayp = bgq (6)

AjegP < b

ieq ieq

In Equation (6), p denotes the trajectory parameter; s.f. means constraint, meaning
subject to. All we had to do is to list the Aeq, beg, Aieq, bieq parameters from the optimization
problem and put them into the optimizer (a library in Matlab) to solve for the trajectory
parameter p.

The target trajectory parameter p was solved using the optimization method. First,
according to the path point, the trajectory was divided into k segments, the distance of each
segment calculated, according to the distance equalization time T, to obtain the time series
to, t1, t2, ..., tx. The time allocation assigned the total time T to each segment according
to the distance of each segment. Then, the optimization function was constructed. The
optimization function for minimum snap is shown in Equation (7), Equations (8) and (9) is
the solution for Q;.

T 2 kot 2 k
min/ (P<4>(t)) dt = minZ/ (P(4)(t)) dt =miny_ pTQip )
0 i—17ti-1 i=1
— ki n! n—4 ! n! n—4
Q= /tf—1 {0,0,0,24,..., (n74)!t ] {0,0,0,24,...,(114)!1? }dt (8)
0 04 n—3
Qi = [0 L o t)<r+c—7> _lr+e7) ] ©)
(n=3)x4 G—a)1 (c—4)! (r—4)+(c—4)+1( i i1 )

where r and c are the row indexes and column indexes of the matrix, with indexes starting
from 0 and the first row r = 0; p() () represents the 4th-order derivative with respect to
time £.

QL 0 0
Q=10 . 0 (10)
0 0 Qn

For the robot to satisfy the continuity constraint before the intermediate point, the
robot’s velocity and acceleration at the end of the j-1 segment trajectory was set equal to
the velocity and acceleration at the initial moment of the j segment trajectory. Figure 4 is
a schematic diagram of constraint conditions. The yellow circle is the node, and the curve
is the track between two nodes. The expression is shown as follows:

(1) = £¥ (1) (11)

Simplifying the above equation yields the following equation. Equation (12) represents
the continuity constraint between the two segments.
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PO - start point Py-» = start point

Pl - middle point Py-; = middle point
P2 - end point Py = end point
AT —4 AT, ATy ‘ ATy |

P\l

Figure 4. Schematic diagram of the continuity constraint.

(k) _ (b
i iﬁ; %) = f]#(T]l)%
L ml pij— Ekaj Pj+1,i =0

i>k
Pji
i mick I mlk i _ (12)
REE L T | | =0
Pj+1,
- P - -
A —A; 4 } =0
[ ] ]+1} Pis1
The final constraint obtained is shown in Equation (13)
p1]
Aeg| | =deg (13)
Pm.

Combining the evaluation function and the constraints leads to Equation (13). Finally,
the final trajectory is obtained by bringing the values of the coordinates of the start, end and
feature points, as well as the values of time, velocity and acceleration into Equation (14).

110, 0 o017TnR
prQip=min| : | | o . o ||}
Pul |0 0 QullPu 14)
P
st Aey| ¢ | =deg
Pup

4. Open_Planner Algorithm

The optimal path not only needs global planning, but also needs local dynamic
programming to avoid obstacles and ensure safety. In this paper, Open_Planner algorithm
was used for local path planning.

The Storage Structure of Nodes Is Optimized

The Open_Planner algorithm uses roll-outs generator to obtain multiple local sampling
trajectories according to the path planned by the whole route, and calculates the normalized
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cost function of each sampling trajectory through obstacle detection and cost function toll-
outs evaluator. The trajectory line with the lowest cost and the best is used as the local path.

The Open_Planner partial plan is divided into two parts: roll-outs generator and
roll-outs evaluator. The roll-outs generator is used to explore local paths and optimize tra-
jectories, and the roll-outs evaluator is used to select the optimal path for the cost function.

The input information of the roll-outs generator is the current location of the vehicle,
the global planning path, and rollouts. Rollouts are divided into three parts: car tip, roll-in,
and roll-out, as shown in Figure 5.

Car tip Rollin  Roll out

Figure 5. Components of rollouts.

Car tip represents the starting point from the center of the vehicle to the horizontal
sampling, ‘Roll-in” represents the starting point from the horizontal sampling to the parallel
sampling, and ‘Roll-out’ represents the maximum planning distance from the starting point
of the parallel sampling. By intercepting the global path, point sampling is carried out for
the captured global path, and the final trajectory is generated by smoothing the obtained
sampling points.

The roll-outs generator first extracts car tip, roll-in and roll-out from the global path
according to the current position of the vehicle, then conducts transverse sampling for the
extracted global path, and, finally, makes the path smooth using conjugate gradient.

Roll-outs evaluator evaluates different paths using three cost functions, namely, pri-
ority cost, collision cost, and transition cost. Priority cost indicates that the middle path
is preferred when there is no obstacle. There are two types of collision cost, lateral cost
denotes the horizontal distance of local trajectory from the obstacle, longitudinal cost
denotes the vertical distance of local trajectory from the nearest obstacle. The transition
cost limits the ability of vehicles to switch frequently between candidate paths, ensuring
smooth progress.

Then, cost normalization is carried out. Each trajectory is evaluated with additional
cost function, and three different normalized cost measures are calculated to avoid one cost
in the evaluation function occupying too much. Finally, the cost function is used to calculate
the cost, and a local path with the lowest cost is selected. The cost function is shown in
Equation (15):

H(x)=1-a+d-B+o-v+k-5 (15)

where | represents the distance between the vehicle and the lane centerline, d represents the
distance between the vehicle and the obstacle, v represents the rate of change in speed, and
k represents the path curvature.

5. Fusion Algorithm and Simulation Experiment
The Storage Structure of Nodes Is Optimized

The traditional A* algorithm cannot avoid the random dynamic and static obstacles,
and there are security risks. The Open_Planner algorithm tends to fall into local optima
when planning local paths between the current node and the next node. To address the
above problems, the following improvements were made. The key nodes on the path
planned by the improved A* algorithm were used as the input nodes of the Open_Planner
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algorithm in local planning, and, finally, the path planning was completed by the fusion
algorithm. The fusion algorithm flow is shown in Figure 6.

Initialize the current

Building maps node of mobile robot
initialization
M —
Select parent node Input key section information,
™  cost function evaluation
J/ trajectory
Extracting key nodes based on

grid map boundaries and
obstacles
L Select the optimal

trajectory

Update nodes and sort
the heap

Reach the next key
point

Update search |, NO

Terminus ad quem
node

No

Reach the target point

Extract keys as open_ Planner | |
input

Output optimal
path

Figure 6. Flow chart of fusion algorithm.

In Figure 6, firstly, in the global static map, A* algorithm is used to plan a global path,
obtain the key points in the A* algorithm, delete the redundant extended nodes, put the
key points into the list, and use heap sort to rearrange the node order. The key points are
used as target points in the local planning of the Open_Planner algorithm. Key sections
and position information are input, and multiple trajectories are obtained by sampling the
intercepted global paths. Three cost functions, priority cost, collision cost and transition
cost, are used to evaluate the sampling path. Finally, an optimal trajectory is selected as the
path to reach the next target point, and the above steps are repeated until the final target
point is reached to realize the fusion of the two improved algorithms.

6. Experimental Results
6.1. Simulation Experiment of Improved Algorithm Based on Key Points

The simulation experiments of the traditional A* algorithm and improved A* algorithm
were carried out using Matlab. The raster map sizes were set to 20 x 20 and 30 x 30. The
path-planning experiments were carried out using two algorithms in two maps, respectively.
The path planning of the traditional A* algorithm is shown in Figure 7a,b, and the path
planning of the improved A* algorithm is shown in Figure 7c,d. The red number in the
figure represents the number of nodes in the path, the blue solid line is the planned route,
the black grid is the obstacle, and the white grid is the driving area.

Figure 7a,b shows the simulation results of the conventional A* algorithm. From
the experimental results, it can be seen that although the complete path planning can
be completed from the starting point by following the flow of the A* algorithm, there
are many intermediate nodes, which affects the planning efficiency. Figure 7c,d shows
the experimental results of improving the A* algorithm using key points. Long-distance
linear path planning is achieved by connecting two key points by removing unnecessary
expansion points in the middle, and then the nodes are searched with the heap sorting
optimization algorithm. Simulation results show that the improved A* algorithm improves
the efficiency of the planning extension nodes by 71.5%. From Figure 8, it can be seen
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that the number of turning points is reduced by 46.2%. It can be seen that the improved
algorithm not only improves the planning efficiency, but also plans fewer path nodes and
is more efficient compared with the traditional algorithm.

22 Basss
.

T

e

Figure 7. Traditional A* algorithm and improved A* algorithm. (a) Case 1, (b) Case 2, (c) Case 1
(d) Case 2. (The red number in the figure represents the number of nodes in the path, the blue solid
line is the planned route, the black grid is the obstacle, and the white grid is the driving area).

Number of corners

10

/ —
*_,,_,,_;/

—#— Improved A* algorithm
—=—— Traditional A* algorithm

e

1 2 3
Case

IS
o
o

Figure 8. Comparison of the number of nodes.

6.2. Path-Smoothing Experiments

There are many turning points on the routes in the park. If the path at the turning point
is not smooth enough, it will not only affect the vehicle turning efficiency, but also may
lead to path-planning failure. Therefore, this paper adopted minimum snap to optimize the
trajectory at the turning point and obtain the continuity curve between two points using
time, velocity and acceleration constraints. This makes the route smoother.

Figure 9 shows the original path and the path after smoothing. From the figure, it can
be seen that after the path processing, the smoothness of the path at the corners is obviously
optimized, and the path planning can be carried out better in an environment containing
a large number of corners.
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Figure 9. Path-smoothing experiments. (a) traditional algorithms, (b) smooth processing path.

6.3. A-OP Algorithm Simulation Experiment

The fusion algorithm designed in this paper enables the mobile robot not only to
complete global path planning, but also to achieve local planning to avoid obstacles. The
fusion algorithm was simulated in 20 x 20 and 40 x 40 maps. Static and dynamic obstacles
were added to the map, and the simulation results of the fusion algorithm are shown in
Figure 10. Figure 10a,b shows the experiments in different environments. The black dashed
line is the planned path of the improved A* algorithm, and the blue solid line is the planned
path of the fusion algorithm.

The simulation results of the fusion algorithm in Figure 10a,b show that the fusion
algorithm starts from the starting point and there are no obstacles on the path until the first
critical point. Figure 11 shows the state of the simulated vehicle. It can be seen that the path
planned by the fusion algorithm is close to the path planned by the improved A* algorithm
and conforms to global path planning. When there are obstacles between two critical points,
the locally planned route will avoid the obstacles until it reaches the target point. The
experimental results in Table 1 show that in the 20 x 20 map, the fusion algorithm uses the
feature points in the A* algorithm as intermediate target points when planning the path,
compared to the improved A* algorithm which completed regularized path planning from
the start point to the target point. The experimental data in Table 1 shows that the fusion
algorithm improves the planning efficiency by about 61.09% compared to the traditional
A* algorithm, the fusion algorithm avoids the influence of dynamic and static obstacles
on robot motion, and the planned path can avoid the obstacles in time to achieve safety.
Likewise, the fusion algorithm achieves ideal obstacle avoidance in complex environments
with many obstacles.

Table 1. Comparison of experimental results of the two algorithms.

Algorithm Map Path Length Time/s
Traditional A* Simple map 31.38 10.97
Fusion algorithms Simple map 30.88 7.88
Traditional A* Complex map 95.43 20.33

Fusion algorithms Complex map 94.65 15.63
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Figure 11. Simulated vehicle status diagram.
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6.4. Real-Time Motion Planning

In order to verify whether the fusion algorithm can be applied in practice, the fusion
algorithm was embedded in an unmanned sweeper vehicle for validation. The unmanned
sweeper was built on the Autoware development platform with integrated sensors such as
LiDAR and IMU. LiDAR is used to scan environmental information and generate highly
accurate maps of the environment. The unmanned sweeper used for the experimental
validation is shown in Figure 12, and the motion parameters were set as shown in Table 2.

Figure 12. Unmanned sweeper for the experiment.

Table 2. Movement parameters of unmanned sweeper.

Parameters of Unmanned Sweeper Numeric Value
Maximum line speed (km/h) 2
Maximum angular velocity (°/s) 0.35

The roslaunch work_driver work_driver. launch command was run to open the
chassis driver node, and then the roslaunch work work_keyboard run. Through the [, ], K,
L four direction keys, the movement of the vehicle was controlled. Then, the ntd_mapping
algorithm was used to construct the environment map. After the construction, the global
map was saved as pcd map, and the final high-precision vector map was created according
to the pcd map.

6.5. Experimental Verification of Improved A* Algorithm and Fusion Algorithm

Two random obstacles (white board and car) were added to the experimental en-
vironment, the starting point and the ending point were set on the same map, and the
improved A* algorithm and fusion algorithm were, respectively, used to plan the path. The
experimental map is shown in Figure 13.

(b)

Figure 13. Environment map. (a) Simple environment map (b) Complex environment map.
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The solid blue line in Figure 14 indicates the global route planned by the improved
A* algorithm. Figure 15 shows the effectiveness of the fusion algorithm for path planning
and actual vehicle avoidance for an unmanned sweeper. The improved A* algorithm plans
a path with better smoothness and planning time than the traditional A* algorithm, but
the unmanned sweeper vehicle cannot avoid obstacles on the road. The fusion algorithm
performs local planning on the basis of the global path. When an obstacle is detected
ahead, the driverless sweeper performs an early obstacle avoidance maneuver and obstacle-
avoidance path planning. Then, when the next obstacle is detected, it also performs an early
obstacle-avoidance maneuver and changes its path until it reaches the target point. The
experimental results are shown in Table 3. Compared to the improved A* and Dijkstra
algorithms, the fusion algorithm outperforms both in terms of time and planned path length
because it is able to plan ahead for static and dynamic obstacles in the path (Figure 16),
reducing path wastage due to replanning. The fusion algorithm improves the planning
efficiency by 65.46% in practice. It can be seen that the fusion algorithm can meet the
requirements of optimal path planning and the car can reach its final destination efficiently
and safely. Dijkstra’s algorithm produces replanning behavior when planning paths with
known static and dynamic obstacles, which often leads to additional path loss. However,
our proposed method enables early path planning in regions with obstacles through the
evaluation function of the obstacle factor, and the reduction in the number of replans
reduces unnecessary losses and, subsequently, relatively shortens the planned path. It
is worth raising the point that, this study was carried out with undirected graphs and
containing unknown obstacles, which may not be fair to the Dijkstra and A* algorithms;
thus, future work is needed to add more experimental comparison groups to validate the
soundness of the algorithms.

(b)

Figure 14. Global planning route. (a) Simple environment map; (b) complex environment map.
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Figure 15. Obstacle avoidance experiments.

Table 3. Comparison of experimental results of the three algorithms.

Experimental Dijkstra Improved A* Proposed Method (A-OP)
Number
Path . Path . Path .
Length/m Timels Length/m Time/s Length/m Timels
1 11.45 6.37 10.13 422 9.71 1.37
2 56.87 22.09 54.28 19.91 53.53 15.18
3 33.15 14.99 3143 13.22 30.93 9.91
4 32.17 12.01 29.66 10.87 29.04 6.67

N

&
=
3

Improved A*
Dijkstra
A-OP

Improved A"
Dijkstra
A-OP

IS @
S 3

Length[m]
8

5 6

.3 4
Experimental number

(@) (b)

Figure 16. Algorithm performance. (a) Planning time, (b) Path length.

3 4
Experimental number

7. Conclusions

The traditional A* algorithm has some shortcomings in global path planning, such
as low efficiency, many redundant points, and uneven path, etc., and it cannot realize the
function of avoiding obstacles. From the point of view of path-planning efficiency and
obstacle-avoidance function, this paper designed an optimization algorithm based on the
fusion of improved A* and Open_Planner. Based on the global optimal path, dynamic
obstacle avoidance was carried out to ensure that the target point can be reached efficiently
and safely. In this paper, the selection of the nodes of the A* algorithm, the removal of
unnecessary extension points and the improvement of node storage structure improve
the computational efficiency of A* algorithm. The key points of the global planning are
taken as the intermediate nodes of the local-planning algorithm, and, finally, the algorithm
fusion was realized. The simulation results show that the efficiency of the A-OP algorithm
is significantly improved, and the removal of redundant points in the path means the path
tends to be smoother.

The A-OP algorithm not only makes up for the defects of the A* algorithm, and
completes the global path planning, but also avoids the obstacles in the path in time, and
reaches the destination safely and efficiently. In subsequent research, the algorithm will
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continue to be optimized to continuously improve the actual efficiency and application
value of path planning.
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