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Abstract: To generate stable walking of a quadruped, the complexity of the configuration of the robot
involves a significant amount of optimization that decreases to its time efficiency. To address this
issue, a machine learning method was used to build a simplified control policy using joint models
for the supervised training of quadruped robots. This study considered 12 joints for a four-legged
robot, and each joint value was determined based on the conventional method of walking simulation
and prepossessed, equaling 2508 sets of data. For data training, the multilayer perceptron model was
used, and the optimized number of epochs used to train the model was 5000. The trained models
were implemented in robot walking simulations, and they improved performance with an average
distance error of 0.0719 m and a computational time as low as 91.98 s.

Keywords: supervised learning; quadruped robot; walking locomotion; multilayer perceptron

1. Introduction

Since the 1980s [1], the locomotion of quadruped robots has been widely investigated
to ascertain a stable and more effective walking motion. Studies have typically involved
either the moment of inertia for the entire robot system [2–4] or the zero-moment point
(ZMP) [5,6] to optimize the trajectory for the robot’s center of mass in order to allow the
robot to walk in a stable fashion. To this end, the locomotion control inputs the optimized
center-of-mass (COM) trajectory result into the inverse kinematics calculations to obtain
the joint solution.

As a promising stable walking approach for a quadruped robot, the robotic dynamic
could be modeled as the optimization objective, in which the walking stability, such as
the zero-moment point or the inverted pendulum, would be derived as the constraint.
However, the resulting calculations are tedious, at best. For example, Jin et al. argued
that using an adaptive controller for quadruped locomotion (ACQL) could provide a re-
cursive update. so that the external force of the control law could be incorporated with
an inverse-dynamic-based quadratic programming (QP) method to realize an optimized
trotting gait [7]. However, although the ACQL provided an optimum and stable walk for
the quadruped, it could only do so at the expense of time efficiency. In another study, Chen
et al. proposed the implementation of quadratic programming (QP) for the optimization of
the model predictive control (MPC) of the inertia of a robot that could effectively generate
optimum locomotion [8]. In this case, the robot walking dynamic involved a non-linear
model, thus requiring the non-linear programming (NP) optimization method. Among
the NP methods for optimizing robot trajectory, the method using mixed-integer quadratic
programming (MIQP) has been the most promising for an optimized solution. MIQP has
been related to the problem of optimizing a quadratic function over the points in a polyhe-
dral set containing some integers and continuous variables [9]. This optimization was also
implemented by Ahn et al. [10] for optimizing the center-of-mass trajectory for quadruped
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robot locomotion control. This implementation demonstrated that the MIQP method could
provide an optimal solution and offered a time-effective optimization process, as compared
to other non-linear programming optimization methods. However, this optimization task
required that every walking step be redefined, which affected the time efficiency related
to the overall walking performance of the quadruped. To address this issue, this study
extended the conventional locomotion manipulation method and implemented a machine-
learning algorithm to simplify the control policy while generating the joint solution. By
reducing the optimization time, the time efficiency of the walking simulation was notice-
ably improved. The simplified control policy could effectively generate results for the
quadruped in a short time, which enhanced the computational time during locomotion.
The advantage of this implementation was that it omitted the optimization time in the
conventional method and stabilized the quadruped’s walking locomotion.

Machine learning involves two main learning methods: reinforcement (unsupervised)
learning and supervised learning. There has been substantial research on locomotion
control for legged robots using reinforcement learning, which has provided a practical
and general approach in building controllers. These trained controllers have been used
to perform a range of sophisticated tasks. However, using the designated behaviors to
create the reward functions necessary for reinforcement training involves a tedious task-
specific tuning process. In addition, a trained model based on reinforcement learning can
adopt unnatural behaviors that are dangerous and infeasible in real-world applications,
particularly if the reward functions have not been designed carefully. Therefore, most
studies that promote reinforcement learning for locomotion control will require choosing
from a large controller family to develop a specific controller suitable to the task at hand.
For example, Tan et al. [11] created a dynamic motor model for a “Minitaur” quadruped
robot that was used to learn the walking policy for locomotion control. In another study,
Jain et al. [12] proposed a hierarchical control approach for reinforcement learning to create
a high-level and low-level control scheme for both the quadruped base and the overall
locomotion control.

Supervised learning-based models could be trained with a reliable dataset for loco-
motion. This eliminates the unpredictability of exploring and exploiting an action for
locomotion during the training process, such as reinforcement learning. The supervised
learning approach would be more efficient than reinforcement learning methods from the
standpoint of computational efficiency during the learning process. With a reliable dataset,
a joint model training using supervised learning could yield lower inaccuracies in the joint
solution prediction, which could then lead to an optimized trained joint model suitable for
autonomous walking scenarios.

The benefits of a trained model could provide a one-off solution to support robotic
control while maintaining time efficiency. By understanding the process of training models
with supervised learning, the accuracy of a trained model could be pre-evaluated for
reliability. Reliable control accuracy and time-efficiency in quadruped locomotion control
have provided the motivation for this study. Although Hiroki et.al identified the benefits
of supervised learning implementation in robotics, a training method for a high degree-
of-freedom robot remains unsolved [13]. Therefore, we focused on training the individual
joints model of the quadruped and then combining them to perform a walk.

Therefore, this study proposed an offline approach for building a simplified loco-
motion control policy using a supervised learning method for a 12-degree-of-freedom
quadruped robot. The joint solution generated from the conventional method proposed by
Ahn et al. [10] was used, which has been proven capable of performing stable quadruped
walk motions and whose sample data were, therefore, suitable for generating a joint model
using a supervised learning algorithm. Therefore, the dataset used in this study originated
from the stable walking control algorithm proposed by Ahn et al.

After obtaining the joint model through the application of a supervised learning
algorithm, the robot’s leg joints were trained to predict the joint solution for a walking
sequence. Furthermore, the data features from the previous study’s dataset included the
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robot states (robot position before and after each single-cycle walking motion) and the
respective sequence of joint solutions. Each walking sequence involved the analysis of
multi-input and multi-output data features for joint model training. Among the training
methods available for supervised learning, the multilayer perceptron algorithm was ideal
for implementing multi-input–multi-output (MIMO) training. Therefore, the multilayer
perceptron method was implemented in this study. The trained models were compared
with a test set (see Section 6.1) and were subsequently evaluated using a 3D quadruped
robot in the GAZEBO simulation environment (see Section 6.2).

The remainder of this paper is organized as follows. The robot configuration is
described in Section 2. The concept of ZMP is described in Section 3. The data generation
method is explained in Section 4. An overview of the control policy is presented in Section 5.
The evaluation results of the proposed control policy are presented in Section 6.

2. Robot Configuration
2.1. Robot Kinematic

The quadruped robot shown in Figure 1 is of a sprawling type with 12 degrees of
freedom (DoF). The Denavit–Hartenberg (DH) parameters of the robot leg that referred to
the first joint attachment with the robot body, Oi, are listed in Table 1.

Figure 1. Quadruped robot configuration.

Table 1. DH parameters of each leg.

j θij αij aij di

1 θi1 −90◦ L1 0
2 θi2 0 L2 0
3 θi3 0 L3 0

Notation i represents the leg number, and j represents the number of joints. The
lengths of the links for each leg’s component were L1 = 0.114 m, L2 = 0.1389 m, and
L3 = 0.2484 m.

The robot kinematics are described by [14]

0 Ai3 =0 A1
i1 A2

i2 Ai3

=

 cθi1cθi23 −cθi1sθi23 −sθi1 L1cθi1+L2cθi1cθi2+L3cθi1cθi23

sθi1cθi23 −sθi1sθi23 cθi1 L1sθi1+L2sθi1cθi2+L3sθi1cθi23

−sθi23 −cθi23 0 −L2sθi2−L3sθi23

0 0 0 1

 (1)
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With the center of mass as the reference point, the position of the endpoint of a leg
could be calculated as

BTi3 =B A0
i0 A1

i1 A2
i2 Ai3

= Trans(Xi, Yi, Zi)Rz(θZi)
0 A1

i1 A2
i2 Ai3

(2)

where the definitions for Xi,Yi,Zi, and θZi are listed in Table 2. With the global coordinate
as a reference, the position of the endpoint of a leg could be calculated as follows.

GTi3 = Trans(xcom, ycom, zcom)Rz(θyaw)Ry(θpitch)Rx(θroll)
BTi3 (3)

Table 2. Configuration of the first joint attachment of each leg to the robot’s body frame.

i Xi Yi Zi θZi

1 −0.1536 m 0.1285 m 0 39.9◦

2 0.1536 m 0.1285 m 0 129.9◦

3 0.1536 m −0.1285 m 0 −39.9◦

4 −0.1536 m −0.1285 m 0 −129.9◦

With the global coordinate as a reference, the configuration of each leg’s first attach-
ment point,Oi, to the robot body could be calculated as

GTio = Trans(xcom, ycom, zcom)Rz(θyaw)Ry(θpitch)Rx(θroll)
B Ai0 (4)

where xcom, ycom, and zcom are the translation distances of the robot’s center of mass with
respect to the global coordinate system along the x, y, and z axes, respectively. Variables
θyaw, θpitch, and θroll denote the orientation information of the robot’s center of mass with
respect to the yaw, pitch, and roll axes of the global system, respectively.

2.2. Inverse Kinematics

The inverse kinematics could be derived through the analytic method, as follows.
Referring to Figure 2, a leg’s endpoint coordinates

(
pix, piy, piz

)
, and the coordinates for

the first attachment point of the leg to the robot body (Oix, Oiy, Oiz) when referring to the
global coordinate system are

GTi3(1 : 3, 4)T =
(

pix, piy, piz
)

GTi0(1 : 3, 4)T =
(
Oix, Oiy, Oiz

) (5)

Using trigonometry rules, the joint angles of a leg were solved as follows.

θ1pre = atan2(Oiy − piy, Oix − pix)

θ1 = θ1pre − θyaw − θZi
(6)

θ3 = 180◦ − arccos(
L2

2 + L2
3 − L2

2L2L3
)

L2 = (LD − L1)
2 + Z2

o f f set

Zo f f set = Zcom

LD =
√
(Oiy − piy)

2 + (Oix − pix)
2

(7)

θ2 = arcsin(
L3

L
sin (180◦ − θ3))− atan2(

Zo f f set

LD − L1
) (8)
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Figure 2. Analytical solution for inverse kinematics.

Because the attachment of the link between the first and second joints of the leg
structure was considered for a flat surface, Zo f f set was always defined to be the same height
as Zcom.

3. Zero-Moment Point (ZMP)

The ZMP is the point derived from the Newton-–Euler equation of motion applied to
a multi-body system. This was the only element used as the verification stability index of
the legged robot. If the foot was in contact with the ground along its entire lower surface,
then the ZMP was inside the sole. Thus, locomotion was stable if the ZMP remained within
the footprint polygons, which could be expressed as follows.

xzmp =
∑n

i=0 mi(z̈i + Gz)xi −∑n
i=0 mi(ẍi + Gx)zi

∑n
i=0 mi(z̈i + Gz)

yzmp =
∑n

i=0 mi(z̈i + Gz)yi −∑n
i=0 mi

(
ÿi + Gy

)
zi

∑n
i=0 mi(z̈i + Gz)

(9)

In this study, it was assumed that the gravitational acceleration in both the x and y
directions was near zero; therefore, the ZMP calculation were modified as follows.

xzmp = x− zẍ
(z̈i + Gz)

yzmp = y− zÿ
(z̈i + Gz)

(10)
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4. Generation of the Dataset

The collection of a reliable dataset that guaranteed walking stability relies on the
method for generating the optimized COM of the robot (the conventional method of
locomotion manipulation) described in [10]. The implementation details of the dataset
used in this study were as follows.

4.1. Data Generation through COM Trajectory Optimization

The pseudo-code shown in Algorithm 1 was used to generate the dataset used in this
study. To achieve a stable walking motion after inputting the feature vector (robot COM
coordinates specifying the start and goal positions), a footstep could be predefined after
checking the target direction. The robot COM trajectory was optimized by referring to a
previous research method [10] that implemented the MIQP method and ZMP theory. Then,
the vector of the control parameter (joint solutions to be sent to the robot in GAZEBO)
was obtained from the inverse kinematics solution. Each optimization provided a single
dynamically feasible path over one or more steps, from which the feature and control
parameter vectors were extracted at each step. The dataset could be built from a few to
as many as a few thousand optimizations. The COM optimization rule was established
according to the constraint specified in Table 3 to minimize the sum of the second derivative
of the robot’s states.

Algorithm 1: Pseudo-Code for Data Collection.
1: Input goal, G = (gx, gy)
2: Robot pose, S = getPos
3: for (i : 4):

Footprint polygons, f p = Footstepprede f ine(S, G)
COM trajectory, Y = Op( f p)
Joint solutions, θ = IK(Y)
save(θ)

4: save(S, G)
5: Target distance = |G− S|
6: if Target distance < 0.15m:

END
else: return 2

Table 3. COM Optimization Constraint.

The continuous of two trajectories:
Equality xi(Tend) = xi+1(Tinitial)
Constraint ẋi(Tend) = ẋi+1(Tinitial)

ẍi(Tend) = ẍi+1(Tinitial)

Inequality To guarantee that the ZMP is always inside the support polygon:
Constraint pxzmp + qyzmp + r ≤ 0

In quadratic form, the cost function was codified from the integration of the square of
the acceleration of the trajectory.

cost f unction =



400
7 t7 40 t6 24 t5 10 t4 0 0

40 t6 144
5 t5 18 t4 8 t3 0 0

24 t5 18 t4 12 t3 6 t2 0 0

10 t4 8 t3 6 t2 4 t 0 0

0 0 0 0 0 0

0 0 0 0 0 0


(11)
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Figure 3 shows the joint trajectory in time-series form, collected from a change of COM
(from 0.0 m to −0.25 m) in quadruped locomotion.

Figure 3. Data of robot joint trajectories.

5. Control Policy

Figure 4 presents an overview of the control policy design. The control policy proposed
in this study related a vector consisting of features to a set of joint control parameters. In
this supervised learning, the policy was built using the supervised learning technique,
together with the joint solutions collected, and its input and output labels were the robot
state positions and the joint solutions of the legged robot, respectively. The control policy
was used to generate the joint position through the position controller and send it to the
robot’s actuator when walking. In this study, there were a total of 12 joints model being
trained, as the robot used had of 12 actuators, or 3 for each leg. To proceed with supervised
learning, the following step should be taken into account:

• Selection of vector features and control parameters
• Preprocessing the dataset prior to model training
• Architecture of training model
• Model evaluation
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Figure 4. Control policy design and implementation.

5.1. Selection of Vector Features and Control Parameters

The feature vector specified the robot’s center-of-mass position before and after one
periodic walking motion. The joint control parameters were the joint solutions for one
walking period. The control policy in this study was a function that mapped the feature
vector to a vector of control parameters. To accomplish this, the collected feature vector
and the respective vector of the control parameter had to be dimensionally consistent to
prevent training failure. In this study, the feature vector included the information of the
robot’s current position and the goal position. However, the respective vector of the control
parameter was the output of the individual joint of the robot. The dimension of these
vectors are described in Section 5.2.

5.2. Preprocessing the Dataset Prior to Training

The simulation of the walking robot was performed 400 times to extract as much
information as possible from the dataset. It was then necessary to rearrange the shape
of the collected dataset vector prior to its use in machine learning. Every iteration of the
simulation in Section 4.1 involved only one stepping motion for a single leg. In contrast,
every four iterations defined one walking cycle. However, the movement of the robot from
one point to the target position could involve different walking cycles, depending on the
distance traveled. Therefore, the joint model had to be trained based on walking cycles
to ensure a consistent shape for the dataset. Therefore, every four consecutive iterations
of the dataset collected from the simulation were considered one output dataset, and the
input data were extracted from every four iterations of the input dataset recorded during
the simulations. In this case, every iteration of the simulation of the walking motion
consisted of 60 time steps, which resulted in 60 values for each joint for each iteration.
Therefore, the vector of each set of the dataset (encompassing four iterations) for a single
joint was 240× 12, where 12 was the DoF. Furthermore, the input dataset was 1× 4, which
specified the x and y coordinates of the robot’s current and goal positions. When cleaning
the collected data, fewer than 240 time steps were eliminated. Because 12 joints must
be trained for the 4-legged robot evaluated in this study, the joint model training was
performed separately. Each joint model was individually trained, resulting in 12 trained
models using input and output datasets prepared in one-dimensional form, such that a
total of 2508 datasets were obtained for each joint model.
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5.3. Architecture of Training Model

The construction of the neural network structure is shown in Figure 5, and the details
of the joint model used for training purposes are described in the following subsections.

Figure 5. Neural network model structure.

5.3.1. Training Method

To train a model to predict a continuous sequence of joint angle values, a multi-layer
perceptron (MLP), which is a typical example of a feed-forward artificial neural network (ANN),
was used. Provided that ANN had the benefit of learning a continuous function, the model
could demonstrate a smoother relationship between changes in input and output [15–17]. In
addition, this study involved 4 input states and 240 outputs in a model that could handle
the multiple input–output training tasks to learn the continuous sequence of the joint
solution [18–20].

5.3.2. Activation Function

Because the input data in this study had to represent a branch of an output, the rectifier
linear unit (ReLU) activation function was used to process the input weight values of the
hidden layers in this study. ReLU could overcome numerical problems related to the
sigmoid activation function [21,22].

5.3.3. Layers

The layers in a deep-learning model defines the structure or network topology of
the model. Each layer usually takes information from a previous layer, processes the
information, and then passes it to the next layer. In this study, the type of layer used was a
dense layer. A dense layer, also known as a fully connected layer, is a layer in which all
inside nodes connect to each node in the preceding layer through weighted lines. As there
were four inputs and 240 outputs for each dataset, the input layer consisted of four nodes,
and the output layer consisted of 240 nodes. Our architecture used two hidden layers: the
first hidden layer consisted of 16 nodes, and the second hidden layer consisted of 48 nodes,
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which were chosen after some trial and error. The kernel initializer was set to he_uni f orm
and was an initializer that drew samples from a uniform distribution within (−limit, limit),
where the limit was (6/ninput)

1/2 [23].

5.3.4. Learning Method

After receiving a value processed through the activation function of a layer, the
learning process in the MLP changed the connection weight based on the error between the
expected result and the actual result in the output for each input data vector. The weight
changing process was performed through backpropagation. This study was generalized
using the least mean square algorithm to minimize the error between the expected value
and the actual value by representing the degree of error for the jth output node in the
n th data point as ej(n) = dj(n)− yj(n), where d is the target value and y is the current
value produced by the perceptron. Each weight could then be adjusted to minimize
the error in the entire output layer. In general, gradient descent was used to change
the weights connected to each node using ∆wji(n) = −η∂ξ(n)∂νj(n)yi(n) where yj is
the output obtained by the previous learning step and n is the learning rate, which was
selected to ensure that the network quickly converged to the desired response without
oscillations [24,25]. In this study, the adaptive moment estimation (Adam) was used to
implement the backpropagation algorithm [26]. After setting the parameters for the neural
network model, it was compiled with the loss function mean squared error (MSE) [27], and
Adam was used as the optimizer. In this study, the epochs used for model learning were
100, 500, 1000, 5000, 7500, and 10,000. By investigating the simulation performance of a
trained model, which varied with the number of epochs, the optimized number of epochs
was identified and is discussed in the Results and Discussion sections.

5.4. Model Evaluation

To ensure the prediction accuracy of a trained model, each model was evaluated by
comparing the prediction solution of the trained model to the expected outcome using
the test dataset. In this study, the number of training and test samples were 1946 and
562, respectively. The k-fold [28] data splitting of the training and test sets was applied to
validate the algorithm (parameters n_split = 4, n_repeat = 240, and random_state = 1).
The prediction accuracy of the model was measured according to the mean squared error,
where a lower value indicated a higher model prediction accuracy.

The language used to train the model was Python, using the tensorflow [29] and
keras [30] libraries. Table 4 lists the model training parameters used in this study.

Table 4. Model Training Parameters.

Training Parameter Values

Neural network used MLP
Node number in input layer 4

Activation function input layer ReLu
Node number in output layer 240

Number of hidden layers 2
Number nodes in hidden layer 1st layer: 16; 2nd layer: 48

Activation function for hidden layers ReLu
Kernel initializer limit he_uniform

Batch size 1
Loss function for model training Mean square error (MSE)

Optimizer Adam

6. Results and Discussion

To evaluate any enhancement in time efficiency using the proposed method for robot
locomotion, the proposed method was compared to the conventional method proposed
by Ahn et al. [10]. To compare the performance of both methods, they were tested 5 times
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using the same parameters, including the same starting and goal positions of (0, 0) and (0,
−0.25) as well as for the distance allowance. Table 5 shows all results for the distance error
(D, units in centimeters (cm) and time T, units in seconds (s)) after completing the walking
simulations, with the respective average value (Ave.) shown for each measure. The result
showed that the average time spent to complete the walk was half the time, as compared to
the conventional method, with a result of 91.9862 s. These results proved that the proposed
method significantly improved the locomotion time efficiency of the quadruped robot and
enhanced its accuracy to arrive at the desired target coordinate.

Table 5. Comparison of walking performance between the conventional method (CM) and the
proposed method (PM).

CM PM
D T D T

1 9.2522 169.756 9.6576 88.8268
2 1.0878 273.166 2.9283 93.3085
3 10.4994 173.572 4.3526 94.2199
4 10.6994 160.542 9.8244 91.2268
5 8.3304 171.874 9.2229 92.349

Ave. 7.9738 189.7820 7.1972 91.9862

There were two evaluation methods that could be used to investigate the joint model
performance: comparing the predicted parameters from the trained models with the test
dataset, and testing the trained model in a walking simulation. The results are presented in
Sections 6.1 and 6.2, respectively.

6.1. Trained Model Evaluation

In this study, the joint models were trained using different numbers of epochs (100,
500, 1000, 2500, 5000, 7500 and 10,000) to identify the best prediction model. The results are
shown in Figure 6.

Figure 6. Model evaluation results.

The results indicated that joint models trained using more than 5000 epochs began
showing a saturated result for the root mean squared error at 0.005 radians2 with a stan-
dard deviation value of 0.005 radians. This result indicated that the accuracy of the joint
prediction was comparatively higher than that of the models trained using fewer than
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5000 epochs, indicating that the latter exhibited an under-fitting performance. That is,
the number of training epochs was insufficient to enable the trained model to provide
accurate predictions. In contrast, joint models trained using more than 5000 epochs yielded
similar evaluation results as when 5000 epochs were used; therefore, the optimized number
of training epochs was 5000 for the model architecture used in this study. To verify the
performance of the trained models, a walking simulation was conducted to evaluate the
distance error and the total running time, as discussed in the following section.

6.2. Walking Simulation

The joint models trained using different epoch numbers were used to predict the
joint solution in the walking simulation five times for each model. Using the conventional
walking simulation based on the COM optimization as the benchmark for this study, the
running time of the simulation was limited to 250 s for performing a walk from the origin
(0 m, 0 m) to the goal (0 m, −0.25 m). The average results for the distance error and running
time were calculated and are plotted in Figures 7 and 8, respectively.

Figure 7. Average distance error versus the number of epochs.

Referring to Figure 7, although there was some fluctuation in the distance error as the
number of epochs increased, the distance error for the joint model trained using 5000 epochs
achieved the lowest distance error of 7.197 cm. This value was even lower than that of the
conventional walking simulation (7.9738 cm) using COM optimization. The trained model,
therefore, enhanced the walking performance by reducing the distance error.

Figure 8 shows the curve of the simulation running time versus the number of epochs.
The shortest running time of 91.986 s for a successful walk was achieved using the model
trained for 5000 epochs. This was consumed by the conventional walking method simula-
tion (189.7820 s) approximately half of the time.

The model evaluation and simulation results showed that an epoch number of 5000
was the optimum number for training the joint models used in this study. These results also
proved that the supervised trained joint model enhanced walking simulation performance
by reducing both the distance error and the computational time.
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Figure 8. Average running time versus the number of epochs.

Figure 9 shows each trajectory of the robot’s joints with respect to a change in the
robot’s COM in the Gazebo simulation (Figure 10). Trajectories of each joint in Figure 9
proved to have a similar pattern as the data that were collected in Section 4.1 and the data
generated in Figure 3. The trained joint model in Section 6.1 evaluated the accuracy of the
robot locomotion as reliable for stable walking.

Furthermore, to verify the robot’s walking stability, the rotational angle of the robot
(in both the pitch and roll directions) was recorded during the walking simulations. Table 6
indicates that the minimum and maximum values for the angle in the pitch and roll direc-
tions ranged from −0.0308 to 0.0554 rad and from −0.0433 to 0.0242 rad, respectively. The
angle variation gap for the pitch direction was 0.0987 rad, and that for the roll direction was
0.0675 rad, which was much lower than the angle values that could cause an unrecoverable
tilting action. Therefore, the walking simulation indicated that a stable walk could be
achieved by implementing the trained joint models using the method proposed in this
study.

Table 6. Rotational angle of robot’s center of mass in pitch and roll directions (units in radians).

Pitch Roll
max min max min

1 0.0468 −0.0335 0.0246 −0.0433
2 0.0466 −0.0320 0.0260 −0.0336
3 0.0554 −0.0326 0.0242 −0.0344
4 0.0485 −0.0356 0.0260 −0.0406
5 0.0408 −0.0308 0.0250 −0.0320
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Figure 9. Robot joints trajectories.

Figure 10. Robot in simulation (Gazebo) and CAD model.

7. Conclusions

In this study, the employment of supervised learning could assist in improving the
conventional method of robotic control. Implementing the dataset generated from the
COM optimization solution based on MIQP and ZMP theory to train the joint models of
a four-legged robot was a promising method for achieving suitable walking stability. In
general, quadruped robot locomotion involves 12 degrees of freedom (DoF) for locomotion
control, which has proved to be difficult when defining the reward rules that are needed
in reinforcement learning. In deep reinforcement learning, to achieve higher rewards,
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12 variables must be manipulated through trial and error, which may require a long or
unpredictable running time and may cause unpredictable robot behavior. In contrast, by
providing the collected data from the simulations, using both the joint output and robot
state information, as the input could be sufficient to train the joint models for successful
quadruped walking tasks. In addition, training quadruped locomotion requires high com-
putational performance to manipulate and alter the memory of the learning process [11,12].
Moreover, the proposed method of this study provided a light computational process to
train a high DoF locomotion robot, resulting in a time-efficient model.

Therefore, employing a multilayer perceptron architecture for supervised training
of the multi-joint models of the quadruped was more time-effective and lower in cost
than deep reinforcement learning. For validation of the trained joint models, each model
was shown to have a low mean squared error value, indicating that the model prediction
could perform a joint solution prediction close to the joint solution generated by the
COM-optimized algorithm. Meanwhile, the reliability analysis of this trained model
for an autonomous walking simulation showed that the walking robot could reduce the
distance error tolerance, as compared to the simulation using the conventional method,
as well as the total computational time required. Therefore, implementing the dataset
from the COM optimization study and using a multilayer perceptron for each joint model
under supervised learning was an effective method for simplifying the control policy for
autonomous walking of a quadruped robot. Though the outcome of this study, in terms
of the time efficiency and accuracy enhancement, met the desired objectives, it could be
further extended by combining the perception module for acquiring the environment state
information.

To stress the significant contribution of this study’s proposals, it should be noted
that we built a correct schematic for joint model training. This should help to speed
up computations in robotics applications. In particular, the contribution of this work in
artificially intelligent robots may extend its applicability to robotic research.
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Abbreviations
The following abbreviations are used in this manuscript:

ZMP Zero-moment point
COM Center of mass
ACQL Adaptive controller for quadruped locomotion
QP Quadratic programming
MPC Model predictive control
NP Non linear programming
MIQP Mixed-integer quadratic programming
MIMO multi-input multi-output
DoF Degrees of freedom
DH Denavit-Hartenberg
MLP Multi-layer preceptron
ANN Artificial neural network
ReLU Rectifier linear unit
Adam adaptive moment estimation
MSE Mean square error
D distance error
Ave. Average value
CM Conventional method
PM Proposed method
T Time
CPU Central processing unit
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