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Abstract: In the last few years, the application of adhesive joints has grown significantly. Adhesive
joints are often affected by a specific type of defect known as weak adhesion, which can only be
effectively detected through destructive tests. In this paper, we propose nondestructive testing tech-
niques to detect weak adhesion. These are based on Lamb wave (LW) data and artificial intelligence
algorithms. A dataset consisting of simulated LW time series extracted from single-lap joints (SLJs)
subjected to multiple levels of weak adhesion was generated. The raw time series were pre-processed
to avoid numerical saturation and to remove outliers. The processed data were then used as the
input to different artificial intelligence algorithms, namely feedforward neural networks (FNNs),
long short-term memory (LSTM) networks, gated recurrent unit (GRU) networks, and convolutional
neural networks (CNNs), for their training and testing. The results showed that all algorithms were
capable of detecting up to 20 different levels of weak adhesion in SLJs, with an overall accuracy
between 97% and 99%. Regarding the training time, the FNN emerged as the most-appropriate.
On the other hand, the GRU showed overall faster learning, being able to converge in less than
50 epochs. Therefore, the FNN and GRU presented the best accuracy and had relatively acceptable
convergence times, making them the most-suitable choices. The proposed approach constitutes a new
framework allowing the creation of standardized data and optimal algorithm selection for further
work on nondestructive damage detection and localization in adhesive joints.

Keywords: artificial intelligence; adhesive joints; machine learning; Lamb wave

1. Introduction

In recent years, there has been an increase in the use of adhesive joints in many in-
dustries. They are attractive due to their ability to bond different classes of materials,
such as metals and composites, while uniformly distributing stress and being lighter than
conventional joining methods, namely rivets [1–3]. Different types of adhesive joints can
be manufactured, the single-lap joint (SLJ) being one of the most-used, with applications
ranging from the automotive to the aeronautical industries [4]. Although the adoption of
adhesive joints is widespread, their use in critical primary structures is still limited due
to their inability to meet the needed strict certification and inspection criteria [5]. Existing
standards require that, for any joining mechanism, there must exist reliable and robust
nondestructive testing (NDT) methods for damage detection. Current NDT methods have
strong limitations with adhesive joints, and certain types of damage cannot be effectively
detected [5–7], as is the case of weak adhesion. Weak adhesion is characterized by a re-
duction of at least 20% of the maximum adhesive strength of the joint, without presenting
any discernible voids, cracks, or other visible alterations in the structure. Weak adhesion
is normally caused by contamination between the adhesive and the substrate and is com-
monly due to the presence of oil or dust or improper surface preparation for the desired
adhesive [8].
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Some NDT methods have been proposed for detecting weak adhesion. The one that
has recently shown the most-promising results involves Lamb waves (LWs). LWs are a form
of elastic disturbance that propagates trough thin plates with shallow to no curvature and
possess the capacity to travel long distances without large signal attenuation [9,10]. These
properties come with the disadvantage that the raw signals are extremely complex, and
depending on the frequencies and materials used, they are multimodal, which further com-
plicates any required type of analysis [11]. This complexity can be mitigated by choosing
appropriate methods to evaluate and process the LW data. One such option is the use of
machine learning methods applied to the time series, as they allow a hands-off approach for
detecting and classifying any damage present in the bonded structures. For using machine
learning, large datasets are often needed for training and testing the algorithms. Creating
large datasets experimentally is costly or even impracticable. Therefore, developing numer-
ical models of the SLJ and, subsequently, validating them with experimental data reduce
the overall burden. An added benefit is that any large volumes of data can be obtained to
develop machine learning algorithms.

This paper proposes an NDT technique based on LW data and artificial intelligence
algorithms for detecting weak adhesion in SLJs. Initially, a dataset was generated by
simulating LWs propagating in an SLJ subjected to multiple levels of weak adhesion. This
was accomplished by a finite-element model (FEM) developed in the software Abaqus
(Dassault Systemes, Vélizy-Villacoublay, France), which generated over 1000 variations of
weak adhesion at the SLJ. The numerical data were validated with experimental tests, for
the sake of reliability, thus forming the base of the present work. The raw data were pre-
processed to remove outliers and generate normalized time series. These processed data
were then used in different artificial intelligence algorithms, namely feedforward neural
networks (FNNs), long short-term memory (LSTM) networks, gated recurrent unit (GRU)
networks, and convolutional neural networks (CNNs). These data-driven algorithms were
chosen as they are widely used for time series forecasting, while still being commonly used
in other non-time related datasets. The algorithms were adjusted and compared in terms of
accuracy and training burden. The four methods for LW data processing allowed not only
accurately detecting up to 20 different levels of weak adhesion in SLJs, but also choosing
an efficient training method for the problem at hand. The proposed framework allows
the correlation between the methods’ parameters, accuracy, and training time and can be
further used with different data and algorithms.

This paper is divided into sections as follows: Section 2 presents a literature review on
the subjects addressed in the paper, namely LWs, adhesive joints, and defects. Section 3
introduces each artificial intelligence method adopted in the paper. Section 4 describes the
SLJ model and the generation of the dataset. Section 5 presents the algorithms’ adjustments
and discusses the obtained results. Finally, Section 6 summarizes the main conclusions.

2. Preliminary Concepts

This section presents a model for LWs and introduces adhesive joints and their possi-
ble defects.

2.1. Lamb Waves

An LW is a type of elastic guided wave that moves through a solid medium, exhibiting
pressure (P) and shear (S) propagation modes. When applied to a medium that has bound-
ary conditions, reflection emerges and creates complex patterns. LWs present a particularly
interesting property, which is their capacity to travel long distances and even pass through
multiple materials with small attenuation [12,13]. When LWs interact with a defect in the
material, they alter their wave pattern, and thus, they are sensitive enough to detect, and
even discern between, the damage type, size, and location [14]. When propagating in
a thin plate, an LW presents two fundamental modes, namely the symmetric (Sn) and the
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anti-symmetric (An) modes. These modes occur in relation to the mid-plane of the plate.
The vector of displacement of these waves can be analytically described by

µ∇2u + (λ + µ)∇∇ • u = ρ
∂2u
∂t2 , (1)

where µ and λ stand for the Lamé constants, which are two material-dependent quantities
that come from the elastic stress–strain relationships, ρ is the material’s mass density, and
the vector u represents the displacement, such that

u = ∇Φ +∇×Ψ, (2)

with Φ and Ψ denoting potentials.
These equations can be divided into the transverse and longitudinal displacements

and be written, in turn, by defining the longitudinal (L) wave speed c2
L = (λ + 2µ)/ρ and

the transverse (T) wave speed c2
T = µ/ρ, yielding:

∂2Φ
∂x2 +

∂2Φ
∂y2 +

ω2

c2
L

Φ = 0,

∂2Ψ
∂x2 +

∂2Ψ
∂y2 +

ω2

c2
T

Ψ = 0,
(3)

where ω stands for the angular frequency.
One way to visualize LWs is through their dispersion curves, where it is possible to

depict the phase alteration depending on the frequency [15–18]. In the case of damage detec-
tion applications, the dispersion must be kept to a minimum, together with the attenuation,
while still maximizing the sensitivity. This can be achieved by using a windowed tone burst
as an excitation signal, as is the case of a Hann window. Several possible actuators can be
employed, namely piezoelectric, due to their versatility, lightweight, and low cost. These
elements have the advantage of being used also as sensors and possess a wide bandwidth,
which can allow for multiple frequencies to be studied [14,19].

2.2. Adhesive Joints and Defects

An adhesive is a substance that has the capacity to join two materials together, indepen-
dently of their (dis)similarity, giving them the ability to resist any form of separation [20].
When an adhesive connects two separate parts, an adhesive joint is formed. This concept
can be further expanded by classifying the parts as substrates, before the bonding process,
and adherents, after the creation of the joint [20]. Furthermore, the adhesive layer in contact
with the adherents is called an interface, also known as the boundary layer [6].

When comparing adhesive joints with traditional fastening methods, their benefits
include a more uniform distribution of stress along the bonded area, which yields good
resistance to dynamic solicitation and excellent load transmission, as well as higher stiffness.
Due to not using bulky fasteners, there is also a large reduction of the weight of the
structure and, consequently, a minimization of the cost. However, these benefits also
come with many disadvantages, which hinder the widespread application of bonded
primary structures. Indeed, a major drawback is the absence of effective NDT techniques
to detect damage [6,20]. The NDT methods need to be robust because, even if an adhesive
is adequate for an application, many variables can alter the overall quality of the bonded
joint and lead to premature mechanical failure. Common problems affecting adhesive
joints are the lack of proper surface finishing, an incomplete or altered curing cycle, high
humidity, or a degraded chemical composition caused by improper handling or storing of
an adhesive [21]. These perturbations, when verified together, can cause a defective part,
but there are cases when only one of these issues occurs. This can lead to damage types
like those illustrated in Figure 1. These defects can occur in several places in the bond,
such as cohesively within the adhesive, inter-facially between the adherend and adhesive,
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or segmented throughout the bonded joint. Often, these are voids, debonds, porosity, or
cracks within the adhesive layer. A few of these defects are detectable by certain NDT
methods, but there is one defect in particular that still cannot be effectively detected by
NDT, specifically weak adhesion. This defect consists of an inter-facial defect that reduces
the maximum strength of an adhesive joint by at least 20% and is extremely hard to detect
by conventional methods, as there is no gap or alteration in the structure; just a small
reduction in the overall surface adhesion exists.

Adhesive bond

Substrate

Substrate

B
A

Figure 1. Representation of common defects in an SLJ, with “A” illustrating voids in the adhesive
and “B” indicating weak adhesion.

3. Artificial Intelligence Algorithms

This section introduces the machine learning algorithms that were used in this paper.

3.1. Feedforward Neural Networks

The multi-layer FNN has been extensively used in multiple applications, starting with
the work [22], where backpropagation algorithms were first used to adjust the weights in
the hidden layers. In an FNN, the elements that process the data, also known as neurons,
are structured in multiple successive layers that go from the input to the output (Figure 2).
These layers are all interconnected in such a way that all elements in a layer have their output
connected to every element in the next layer. Associated with each connection, there is a value,
called the weight, which is adjusted during the learning phase [23,24]. Each neuron of a layer
applies the associated weight and utilizes a nonlinear function to transform the data that pass
through it. A commonly used function is the sigmoid function [25]:

g(h) =
1

1 + e−h . (4)

where h denotes a dimensionless variable.

Figure 2. Fundamental architecture of an FNN with the interaction of each component represented.
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The general and simplified intent behind an FNN is to reduce the error between the
processed data and target values previously known. This is performed by passing the data
through the neurons from the input to the output and, then, comparing the values with the
training data previously saved and known. The error that is obtained is used to determine
a performance function, which is continuously differentiable and correlates all the weights
present from the output to the input layer. Two examples of such performance functions
that can be used are the gradient-descent-based algorithms and the mean-squared error
(MSE). These functions have weights as variables and are minimized by altering them [25].
The FNN model has been proven to be successful in modeling complex problems in a large
range of areas, from image compression to forecasting and signal prediction [22]. However,
this model presents the disadvantage that all elements in each layer are interconnected to
the next and previous layers. This requires a careful analysis of the problem when mapping
the data, as well as caution relative to the number of layers and elements used. The
higher the number of layers, the larger the datasets required and the more computationally
intensive the process will be. Thus, it is preferable to implement an FNN with a small
number of layers and elements [22].

3.2. Recurrent Neural Network

The RNN is a type of artificial neural network that differentiates itself by “memorizing”
information that can be later used in new data. This is performed by storing the output
activation from the layers and applying them together when feeding a new input to the
algorithm [26]. Although RNNs are powerful and have been applied to many problems,
they suffer from a reduction or “explosion” in the gradient during backpropagation. This,
in turn, does not allow for the layers closer to the input to have their weights altered or
altered to such a degree that they make others irrelevant and, thus, not contribute positively
to the solution [27,28]. To mitigate this problem, a few algorithms, such as LSTM and the
GRU, which contain different gating units, have been created.

3.2.1. Long Short-Term Memory

To mitigate the vanishing gradient problem, LSTM utilizes an input gate and a forget
gate, as shown in Figure 3 (circled in green and yellow colors, respectively), to create
a constant error carousel (CEC) [29,30]. The CEC works by enforcing a constant error flow
within a special cell controlled by the gate units, which learn when to grant access (circled
in red color) [31]. The various gates used in the CEC can be described as

ft = σ(W f [ht−1, xt] + b f ), (5)

it = σ(Wi[ht−1, xt] + bi), (6)

ot = σ(Wo[ht−1, xt] + bo), (7)

while the equations for the candidate state, cell state, and final output are

c′t = tanh(Wc[ht−1, xt] + bc), (8)

ct = ftct−1 + itc′t, (9)

ht = ot · tanh(ct). (10)

In these equations, ft is the forget gate, it is the input gate, ot is the output gate, ct is
the cell state, c′t is the candidate state, and ht is the final output. Furthermore, Wx represents
applied weights; ht−1 are the outputs of the previous LSTM block; xt are the inputs at the
current timestamps; bx are the biases for the gates. These gates can be easily visualized
in Figure 3, where the components are in yellow, the layers are in dark blue, the line that
divides represents a variable copied, and lines combining represent concatenation. Finally,
the output gate is circled in purple color and serves as the output of the cell.
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Figure 3. The architecture of an LSTM cell with the input cell circled in green, the forget cell in yellow,
the cell state in red, and finally, the output gate in purple.

3.2.2. Gated Recurrent Unit

The GRU has been used in many applications, but has seen more significant results
in music and speech modeling, as well as natural language processing. This method
was developed with the intent of allowing each recurrent unit to alter the sequence of
dependencies in an adaptive manner over time. To accomplish this, the unit was built with
the following four steps, where xt is the current input, ht−1 is the output of the previous
step, W and U are parameter matrices for the weights, and σ is the sigmoid function [29,32]:

1. The first step is an update gate, as shown in Figure 4 (circled in green color), which is
used to determine how much information will be updated in the unit. This gate is
denoted as zj

t and calculated by:

zj
t = σ(Wzxt + Uzht−1)

j.

2. The next step is a reset gate, seen in Figure 4, circled in purple, denoted as rj
t and

calculated by:
rj

t = σ(Wrxt + Urht−1)
j.

This gate is used to determine how much information needs to be forgotten. When
the value of this gate is close to zero, it determines that the j-th information should
be forgotten in the current memory. Any value close to one means that the data will
be preserved.

3. The third step is to determine the current memory. This gate is denoted as hj
t in the

following expression and, in Figure 4, seen as ht.

h′t = tanh(Whxt + rt ·Uhht−1))
j.

This gate also uses the Hadamard product to decide how much of the hidden state of
the content should be forgotten.

4. Finally, the last step is to determine the information to be stored in the hidden layer at
the current iteration that will be passed onto the next cell. This step is denoted as ht in
the following equation and, in Figure 4, is denoted as ht−1:

ht = (1− zj
t)h

j
t + zj

t h̃
j
t.

These steps can all be easily visualized in Figure 4.
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Figure 4. Architecture of a GRU cell with the reset gate circled in purple and the update gate in green.

3.3. Convolutional Neural Network

Overall, the CNN can be seen as having a multi-layer feedforward structure and,
normally, utilizes other types of layers as a complement to the convolutional ones. The
main characteristics that define a CNN are the representation of the input layer and the
way these input elements are processed in the CNN layer, which allows for significant
advantages while creating a few problems. The first layer used is normally seen as a grid
that can be compared to 2D images or pixels (or even a signal in the time domain arranged
in an n× 1 column vector), as seen in Figure 5.

Figure 5. Architecture of a CNN comprising convolutional and pooling layers with a final flattening
layer. The dimensions of each layer are represented under each one.

Another characteristic that defines a CNN is a convolutional operation called the
kernel, which is applied between the weights and the input CNN layer. This is performed
to provide at the output of the layer a feature map [33,34]. When evaluating the inputs and
the kernels used in a convolutional layer as square n× n arrays, the size of the output layer
can be calculated using

nout =

[
nin + 2p− k

s

]
+ 1, (11)

where the width or height of the output and input arrays is represented by nout and nin,
respectively. Finally, two other parameters complement these layers: the convolutional
padding size is a parameter that is used when it becomes adequate to include additional
information on the border arrays, while the sliding increment of the kernels over the input
array is the stride parameter. These can be seen as elaborated in the following equations:

s(t) =
∫

x(a)w(t− a)da, (12)

s(t) = (x ∗ w)(t), (13)
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s(t) = (x ∗ w)(t) =
∞

∑
a=−∞

x(a)w(t− a), (14)

where nout represents the number of output features obtained from the convolution, nin is
the number of input features, p is the convolutional padding size, k stands for the kernel
size, and s is the stride size to be used. One way to better visualize these kernels is to see
them as filters that go through the input values, using a constant weight to identify specific
features in the input data. These values are refined during the learning phase. Using a CNN
instead of an FNN allows for a smaller increase in the number of variables and parameters
when setting more layers, as the weights are used with all inputs. This allows for more
layers and a deeper learning FNN implementation. Furthermore, it allows for a way to
associate values that are near one another, which can be of interest in images, time series, or
any other sequential signal. Finally, the convolutional maps are normally associated with
pooling stages and processed through a nonlinear rectified linear unit (RELU) function to
stabilize values in specific locations [23].

4. Numerical Simulated Data

To fully utilize the combination of LWs and machine learning methods, it is necessary
to create a large dataset that can be used to train and test the algorithms. As there is a need
for a large volume of data, creating these experimentally would be labor-intensive, costly,
and difficult to obtain consistently. Therefore, the alternative of using simulation data from
accurate and experimentally validated numerical models has considerable advantages.
Herein, a model of an SLJ composed of two aluminum substrates bonded with the epoxy-
modified Nagase T-836/R-810 was adopted. This adhesive was chosen as it has great
potential for industrial applications, specifically in the aeronautical and automotive sectors.
However, any other epoxy-based adhesive with similar mechanical properties can be used
with the same methodology. One actuator was chosen to excite the LWs, and one sensor
captured the SLJ response. The specimen dimensions and the positions of the actuator and
sensor can be seen in Figure 6.

Figure 6. Top and side view of the adhesive joint simulation setup with the position of the sensor
and actuator and the overall dimensions of each part.
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The model was developed and simulated using the FEM in the software Abaqus.
The two SLJ aluminum plates were modeled with a density ρ = 2500 kg/m3, a Poisson’s
ratio of ν = 0.33, and a Young’s modulus of E = 72.4 GPa. Weak adhesion defects were
simulated by creating a thin layer of adhesive where Young’s modulus was reduced in
comparison to the rest of the adhesive material. A total of 1000 cases were simulated with
linearly distributed values between 600 and 270,000 kPa. For exciting the SLJ, a distributed
discretized tangential force was applied to the substrate plane, as illustrated in Figure
7. A 5-cycle Hanning-windowed sinusoidal burst centered at the frequency of 100 kHz
was adopted [35–38]. The amplitude of the force was adjusted in accordance with the
experimental observations, by successive trials. The explicit dynamic analysis was adopted,
due to its computational efficiency and because the excitation is impulsive and the time-
dependent reaction needs to be captured. The total simulation time was limited to 0.5 ms,
which corresponds to enough time for the LW to interact with the weak adhesion defects
and arrive at the sensor [39,40]. Following a mesh convergence study, a mesh size of
1.5 mm with elements of the type C3D8R was utilized. This was performed to reduce
the computational burden and, thus, the time necessary for each simulation, while still
maintaining a small enough mesh to not cause any numerical divergence. This combination
allowed a simulation time inferior to 20 min for each case.

Figure 7. Representation of how the forces were simulated by discretizing and applying them to the
edges of a square that has the same dimensions as the actuator.

Due to the explicit dynamic analysis carried out in Abaqus, the time series generated
presented varying lengths, as each simulation was performed without a fixed time step.
Thus, it was necessary to interpolate the data to have a fixed number of points. The value of
5000 points was chosen, this being enough to represent the LW signals well while keeping
the amount of data limited.

It should be noted that the use of only one actuator/sensor pair on the SLJ is the
minimum necessary to detect damage. However, it does not allow for damage localization.
Indeed, this work focused only on determining the level of weak adhesion in an SLJ of
reduced dimensions. For localizing damage in larger parts, extra sensors are needed, along
with some triangulation methods for data processing.

5. Algorithm Application and Results
5.1. Evaluation of Components and Indicators

To use artificial neural networks, it is first necessary to describe the desired outcome of
the model and, from there, determine how the task should be handled. Adhesive materials
intrinsically have many variables that determine their overall bonding strength [41,42].
For a given adhesive and joint, damage can limit the joint strength to a specific interval,
between no adhesion up to full-strength adhesion. Therefore, the problem at hand is
considered as involving classification into a given number of weak adhesion classes, rather
than a regression problem. A total of 20 classes were chosen, as this was a large enough
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value to visualize any possible damage progression, while still small enough to allow for
distinct classes.

With the basic concept chosen, various parameters can immediately be defined. Thus,
the evaluation metric or loss function adopted was the categorical cross-entropy, and all
final layers before the output contained the softmax activation function with a kernel equal
to 20, that is the number of classes. Finally, the accuracy metric was chosen, as it is widely
implemented in classification problems and is a simple metric to assess the different models
that were used. To train the model, the data were divided into training and testing in the
proportion 70% and 30%, respectively, as these percentages are classic values that work in
most cases and give a good baseline to initiate the study. Finally, the chosen epoch size was
400, as the objective of this work was to properly understand each algorithm and not allow
for an early stop, which could exclude important behaviors. This may cause overfitting
of the training data, but this was not considered a concern during the analysis, as it was
an expected outcome. Although there would be a constant of 100 epochs, each algorithm
was also evaluated accordingly with the epoch at which the accuracy started to converge
and how long this process took.

To give the best evaluation of each model for each type of dataset, it is necessary to
assess several parameters and algorithm architectures. These parameters vary from algo-
rithm to algorithm, and their optimization requires an extensive grid search to determine,
inside the chosen grid, the best parameters. To minimize the total time expended in such an
optimization, a broad trend search was conducted, where the total accuracy was compared
to the time spent to reach the solution. This allowed the algorithm not only be efficient,
but also faster when compared to other configurations, which can take days to train on
a dataset. Initially, the parameters listed in Table 1 were chosen to start the optimization
study on the FNN, as it is one of the fastest methods.

Table 1. Initial parameters of the FNN.

Experimental Variables to Be Tested

Batch Size Kernel Size Number of Hidden Layers

32 50 1
64 100 3
128 400 7

After testing these values, it was possible to see how each variable behaved. During
the tests, the time spent to test a batch with a kernel size of 400 compared to a kernel size of
50 was over 12-times greater with minimal accuracy changes. Thus, all tests using kernel
sizes of 400 were discarded as being too time-consuming for minimal results. In Figure 8, it
is possible to see that, for an algorithm depth of one hidden layer, the batch size had a small
influence on the time per training, while there was no variation in the accuracy. Therefore,
a batch size of 128 was chosen, as it was the fastest in both cases with comparable results.

The number of hidden layers was tested together with multiple values of the kernel
and batch sizes, and the ones with the shortest training times and highest accuracy were
chosen. To compare the influence of the number of hidden layers, three tests were conducted
with a constant batch size of 128, as defined previously, and a varying kernel size between
50 and 100. In Figure 9, it is possible to verify that, while there was a linear growth in time
for the kernel size of 100, there was a plateau at the kernel size of 50. Therefore, it was
better to not only utilize a kernel size equal to 50, but also to use more layers. This may
change if the model is tested for a larger number of hidden layers or for other algorithms,
but these data served as a starting point for further evaluations.
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Figure 8. Comparison between the total training time and batch size for the FNN when fixing the
kernel size to 50 (blue) and 100 (orange).

Figure 9. Comparison between the total training time and the number of hidden layers for the FNN
when fixing the kernel size to 50 (blue) and 100 (orange).

When comparing the previous graphs and results, it is possible to conclude that the
configuration of the parameters and algorithm architecture that brought the most-consistent
and highest values of accuracy, while still taking the least time, was:

• Batch size: 128;
• Number of hidden layers: seven;
• Kernel size: 50.

Therefore, the chosen configuration for the FNN had a total of four dense layers, as
shown in Figure 10.
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Figure 10. Graphic representation of the FNN configuration, chosen after the optimization process,
with a total of 7 dense hidden layers.

Although the batch size can be defined for all algorithms, every one has specific
characteristics that need to be altered individually. One example of this concerns the CNN,
which not only has the kernel size, but also has filters and utilizes max pooling layers,
which have their own individual parameters, namely the pool size. In these cases, the base
parameters are maintained as much as possible, while each unique parameter must be
individually studied.

When optimizing the two RNN algorithms, the main obstacle was related to the
training time. This was not only due to a large number of inputs, but also to the very nature
of the algorithms, in which each neuron had a recurring unit, which further necessitated
calculations and, thus, required additional computational power. Due to these restrictions,
the optimization of the RNNs was limited to creating a model that requires a training
time similar to that of the FNN and CNN. This optimization led to a simple algorithm
that had only two recurring layers, each one with a kernel size equal to 10. The batch
size was maintained from the previous analysis at the value of 128. Therefore, the chosen
configuration for the GRU had a total of two recurrent GRU layers, as shown in Figure 11,
and for the LSTM, there was a total of four dense layers, as shown in Figure 12.

Figure 11. Graphic representation of the GRU’s configuration, chosen after the optimization process,
with two layers.

Figure 12. Graphic representation of the LSTM’s configuration, chosen after the optimization process,
with two layers.
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In comparison to the RNNs, the CNN algorithm did not have the training time as
a limiting factor, and thus, it was possible to test multiple configurations, as done with the
FNN. The first analysis conducted was to determine the batch size that would be used for
the CNN. It is possible to see in Figure 13 that the overall batch size did not influence the
training time greatly, while the size of the kernel did. Therefore, the chosen batch size was
64, as it is an average value that could be used as a base for the next variable testing. It
is important to note that, although not explicitly shown in the following figures, the first
criterion when choosing the variables was the achieved overall accuracy, and only after
confirming that the differences in the accuracy were small, the time criterion was used.

Figure 13. Comparison between the total training time and the number of hidden layers for the CNN
when fixing the kernel size to 5 (blue) and 10 (orange).

With the batch size chosen, the next variable studied was the kernel size. It was already
shown in Figure 13 that the kernel size played an important role in the training time, and
this becomes more apparent in Figure 14, where it is possible to see that, with low pooling
sizes, the training time grew significantly. Therefore, to minimize the training, the chosen
kernel size was five.

Figure 14. Comparison between the total training time and the kernel size for the CNN when fixing
the pool size to 2 (blue) and 5 (orange).

Although Figure 15 shows that the fastest training cycles occurred at a pool size of
10 and a filter of 50, the chosen values for these were slightly different. To choose the
pooling and filter size, the accuracy criterion was used instead of the time, as the values
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obtained from a pooling size of two and a filter size of 50 were slightly larger than the
other values.

Figure 15. Comparison between the total training time and the pool size for the CNN when fixing
the filter size to 50 (blue) and 100 (orange).

Therefore, the chosen configuration for the CNN had a total of two convolutional and
two pooling layers, as shown in Figure 16.

Figure 16. Chosen architecture for the CNN, with two convolutional and two pooling layers with the
total size of each layer represented under the graphical representation.

5.2. Results and Discussion

With all models’ architecture and parameters chosen, the algorithms were trained for
400 epochs. As stated previously, this was performed to fully understand the behavior of
each algorithm. As expected, after model optimization, the algorithms quickly converged
and had the lowest loss values before 100 epochs, as seen in Figures 17–20. For the FNN, at
about 250 epochs, the validation loss function started to grow, indicating that the algorithm
was overfitting the data. While this showed that the FNN was more prone to overfitting
compared to the other algorithms, the quick convergence mitigated the problem and
allowed the algorithm to be suitable for the problem at hand. For the other algorithms, no
overfitting occurred, even after 400 epochs, showing that they were more robust.
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Figure 17. Comparison between the loss and accuracy for the FNN algorithm in both training and
validation cycles.

Relative to the FNN, the CNN presented little variation in the graphs, with a smooth
decrease in loss and a steady increase in accuracy.

Figure 18. Comparison between the loss and accuracy for the CNN algorithm in both training and
validation cycles.

Compared to the other algorithms, the GRU started with the highest value of the
accuracy, around 0.60, while the others yielded about 30. Moreover, it had the lowest
loss. This demonstrated the exceptional learning capacity of the algorithm for the type
of problem presented. This was further confirmed by the aggressive overall growth until
convergence, with around 35 epochs until the value stabilized. It is also important to
point out that the maximum value was achieved in less than 20 epochs, but it took around
40 epochs until the values stabilized. Utilizing just the accuracy and loss criteria, the GRU
emerged as the most-suitable algorithm of the ones studied in this work.

Figure 19. Comparison between the loss and accuracy for the GRU algorithm in both training and
validation cycles.

The LSTM presented an initial and final accuracy similar to that of the CNN and FNN.
The most-striking difference was the low learning rate that the algorithm showed, taking
between 150 and 200 epochs to converge. This can be further seen with the erratic initial
behavior of this algorithm, which implies that the weight values were being altered, which
created an overshooting effect. When only analyzing Figure 20, it can be concluded that
the LSTM algorithm was the least suitable for the problem at hand.



Appl. Sci. 2023, 13, 2642 16 of 19

Figure 20. Comparison between the loss and accuracy for the LSTM algorithm in both training and
validation cycles.

As expected, due to the low layer count of all algorithms, there was no plateau
followed by large decreases in the loss. With the plots broadly observed, it is still possible
to dive deeper by using the variables listed in Table 2, where a condensed version of the
information obtained from the graphs can be seen. These variables are commonly used
to describe the performance and represent information that could be seen in a confusion
matrix or error matrix:

− The accuracy score (acc) is used to evaluate the ratio of correct predictions to the total
number of instances. This can be calculated as

acc =
tp + tn

tp + f p + tn + f n
; (15)

where tp denotes true positives, tn stands for true negatives, f p represents false
positives, and finally, f n corresponds to false negatives.

− The precision score (p) is the ratio of correctly predicted positive observations to the
total number of positive ones. From a more intuitive perspective, it is the capacity of
the algorithm to not label a positive sample as a negative one. It is given by:

p =
tp

tp + f p
; (16)

− The recall score (r) is the ratio of correctly predicted positive observations in a class,
thus from an intuitive perspective, it is the capacity of the algorithm to determine all
positive samples. Its value is calculated as:

r =
tp

tp + f n
; (17)

− The F1-score (F1) is the weighted average of the recall and precision and is commonly
more important when there are large imbalances of the data in the class distributions.
It is given by:

F1 =
2× precision× recall

precision + recall
. (18)

In the case of the tested algorithms, the lowest values can be seen for the CNN,
while the highest ones were observed for the FNN and GRU models. Even with these
differences, the overall results showed that all algorithms could be used to determine the
classes presented in this work. It is worth noting that, when evaluating an SLJ, it is more
important that the algorithm does not give false negatives than it generates false positives.
This remark makes the recall score more important than the other indices. Indeed, the
recall score is directly dependent on the false negatives, while the other criteria use false
negatives more indirectly. Using this as a basis, it is possible to see in Table 2 that both
LSTM and the CNN presented lower recall values than the FNN and GRU. This makes
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both LSTM and the CNN less suitable for the problem at hand and both the FNN and GRU
the most-promising ones.

Table 2. Algorithms’ evaluation criteria.

Evaluation Criteria

Algorithm Accuracy Precision Recall F1-Score

FNN 0.99 0.99 0.99 0.99
CNN 0.975 0.97 0.98 0.97
GRU 0.99 0.99 0.99 0.99
LSTM 0.98 0.98 0.98 0.98

It is important to understand that the accuracy, precision, recall, and F1-scores of
Expressions (15)–(18) are relevant, but other evaluation criteria need also to be analyzed,
such as the number of epochs to reach convergence and the total time taken to achieve
the solutions. In Table 3, it is possible to compare the results, which give a more accurate
insight into each algorithm. One surprising value is that, although the GRU took longer to
calculate for each epoch compared to the CNN and FNN, the total epochs required were
fewer, which allowed for the total time to be minimized. It is also possible to see that the
GRU and LSTM would largely benefit from a feature extraction protocol, which could
reduce the number of features to a few dozens, as large datasets tend to slow calculations
and the training process.

Table 3. Performance comparison of the algorithms.

Epochs and Total Time

Algorithm Epochs to Converge Time to Converge (min) Total Time (min)

FNN 100 7 28.0
CNN 150 4.5 12.3
GRU 35 15 177.5
LSTM 150 89 238.3

When considering the results summarized in Tables 2 and 3, it is possible to see that,
out of all the algorithms, the CNN presented good results, as it was only 2% off the best
accuracy and could accomplish this in almost half the time of the next fastest algorithm.
At the other end of the spectrum, LSTM took quite a long time to reach the solution and
presented the second-lowest value for the accuracy. Finally, the FNN and GRU presented
the best accuracy and had relatively acceptable convergence times, making them overall
the most-suitable choices.

6. Conclusions

This paper proposed an NDT technique based on LW data and artificial intelligence
algorithms to detect weak adhesion defects in an SLJ. Four algorithms were trained and
tested with simulated LW data from an FEM developed and experimentally validated. The
algorithms were assessed and compared. A total of 20 different levels of weak adhesion
could be detected, with overall accuracy between 97% and 99%. The results showed the
effectiveness of the proposed nondestructive methods to treat the problem, which, until
now, could only be solved with classical destructive mechanical testing. Furthermore, the
overall training capability was studied, revealing that the training time for each algorithm
could be reduced by almost 60% by altering the algorithm’s parameters. The LSTM emerged
as the least-suitable, taking over 200 epochs to converge, and the GRU the most-applicable,
converging in less than 50 epochs. Regarding the training time, the FNN proved to be
more appropriate. Therefore, the FNN and GRU presented the best accuracy and showed
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relatively acceptable convergence times, making them the most-suitable choices. Further
work will expand the technique to increase the resolution for detecting weak adhesion, as
well as to localize defects in adhesive joints with a larger and more complex geometry.
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