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Abstract: In recent advances, deep learning-based methods have been broadly applied in fault
diagnosis, while most existing studies assume that source domain and target domain data follow
the same distribution. As differences in operating conditions lead to the deterioration of diagnosis
performance, domain adaptation technology has been introduced to bridge the distribution gap.
However, most existing approaches generally assume that source domain labels are available under
all health conditions during training, which is incompatible with the actual industrial situation.
To this end, this paper proposes a semi-supervised adversarial transfer networks for cross-domain
intelligent fault diagnosis of rolling bearings. Firstly, the Gramian Angular Field method is introduced
to convert time domain vibration signals into images. Secondly, a semi-supervised learning-based
label generating module is designed to generate artificial labels for unlabeled images. Finally, the
dynamic adversarial transfer network is proposed to extract the domain-invariant features of all signal
images and provide reliable diagnosis results. Two case studies were conducted on public rolling
bearing datasets to evaluate the diagnostic performance. An experiment under variable operating
conditions and an experiment with different numbers of source domain labels were carried out to
verify the generalization and robustness of the proposed approach, respectively. Experiment results
demonstrate that the proposed method can achieve high diagnosis accuracy when dealing with
cross-domain tasks with deficient source domain labels, which may be more feasible in engineering
applications than conventional methodologies.

Keywords: intelligent fault diagnosis; domain adaptation; semi-supervised learning; adversarial
transfer network; rolling bearings

1. Introduction

Complex rotating machinery is widely deployed in critical engineering fields such as
aerospace, automobile manufacturing, rail transit, etc. [1,2]. Rolling bearings are considered
one of the most essential elements of rotating machinery; thus, an inconspicuous failure of
the bearing can lead to the destruction of the entire machine. Specifically, more than 30% of
rotating machinery failures are attributed to the deterioration of bearings [3]. Consequently,
detecting early rolling bearing faults in time is crucial to preventing accidents [4,5].

To accurately detect faults, data-driven approaches have recently been introduced
into this field due to their powerful ability to construct diagnosis models from condition
monitoring data without much expert domain knowledge [6]. Among them, fault diagnosis
using deep neural networks (DNNs), such as deep convolutional networks (DCNs) [7],
deep auto-encoders (DAEs) [8], and deep residual networks (DRNs) [9], have attracted
increasing attention. However, most of them are developed based on a key assumption
that the labeled source domain data and unlabeled target domain data are submitted to
the same distribution. In practical industrial scenarios, due to differences in operating
conditions and influence from assembly errors and noise, there are differences in data
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distribution, which leads to the deterioration of cross-domain diagnosis performance. Such
challenging issues that attempt to transfer learned features from source domain to target
domain are called the domain shift problem [10].

Specifically, the source-domain classifier can only utilize training data from the source
domain to effectively train. However, the performance of model is degraded owing to the
domain shift, which makes the diagnosis task unattainable. Figure 1 shows the domain
shift phenomenon.
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In order to address the above problems, scholars have developed the domain adapta-
tion (DA) method for diminishing sample distribution discrepancy [11]. Concretely, DA
can utilize relevant domain-invariant features extracted from the domain to accomplish
a diagnosis task. Meanwhile, many recent studies have shown that DA exhibits encour-
aging performance on cross-domain works, including semantic correlation transfer [12],
handwritten text recognition [13], speaker recognition [14], etc.

Although DA is effective in solving cross-domain problems, most of the existing meth-
ods assume that source-domain labels are available for each health state, i.e., all source
domain data should be labeled [15–18]. However, this assumption is almost unpractical in
real-world applications. On the one hand, for large rotating machinery, it is impractical to
perform massive and detailed full-cycle testing in actual field, because a lot of time must be
spent to obtain reliable fault status signals. On the other hand, due to the complexity and
uncertainty of mechanical systems, even if vibration signals can be collected in advance,
most of the signal labels are unknown. Consequently, source domain labels are insuffi-
cient for domain adaptation, resulting in inefficient detection performance. Fortunately, a
small number of labeled signals are easily available, and they can be applied to adaptive
fault detection.

To overcome the above drawbacks, a semi-supervised adversarial transfer network
for cross-domain diagnosis is proposed in this article. Different from the assumption
of most existing research, the proposed method does not require a sufficient number of
source domain labels for network training. First, a signal-to-image method is adopted to
convert vibration signals to images by employing the Gramian Angular Field (GAF). Next,
a generative label extension module is designed to generate artificial labels to address the
shortage of source domain labels. Then, the artificially labeled data and the labeled data
are fed into the dynamic adversarial transfer network for domain adaptation health states
detection. In this way, even if most source domain signals lack corresponding labels, the
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proposed method can still achieve promising performance in dealing with cross-domain
tasks. The contributions of this paper are summarized below:

1. A novel adversarial domain adaptation networks is proposed to recognize the health
conditions of rolling bearings. In addition to adopting a signal processing method to
provide more comprehensive characterization for feature extraction, an adversarial
domain adaptation approach is also introduced to optimize the cross-domain data
distributions, which is beneficial to fault diagnosis under significant changes in the
working conditions.

2. A semi-supervised learning (SSL)-based label generating module is designed to ad-
dress the issue of insufficient source domain labels. The generalized features are
extracted using consistency regularization and pseudo-labeling. Then, the artificial
labels are determined by predicted their probability. Both of them are applied in
source domain label generation for intelligent fault detection.

The remainder of this literature begins with a review of related works in Section 2.
The proposed intelligent fault detection approach is provided in Section 3. Experimental
validation is performed to evaluate the proposed method in Section 4. Section 5 concludes
this literature.

2. Related Works
2.1. Research on Intelligent Data-Driven Fault Diagnosis

The related literature about applications of fault diagnosis is summarized in Table 1,
which is divided into three categories in terms of detection technologies such as deep
learning, maximum mean discrepancy (MMD), and domain adversarial learning. Data-
driven health condition detection approaches are reaching remarkable strengths in han-
dling machinery health condition signaling [19–21]. In particular, deep learning has at-
tracted increasing attention in related research; thus, the basic fault diagnosis problems
that arise from source data and target domain data obeying the same distribution have
been well solved [22,23]. Meanwhile, due to increasing demand for generalization abil-
ity of monitor and diagnosis models in industry, the transfer learning has been widely
used to shrink distribution variance of the feature representations [24]. Currently, most
of the domain shift problem has been handled using domain adaptation methods [25],
and shallow domain-invariant features are extracted by optimizing the distribution net-
work [26,27]. Han et al. [28] proposed a novel transfer diagnosis approach to sparse tar-
get data to minimize distribution discrepancy and address the issue of label space mis-
matching. A deep convolutional neural-based diagnosis methodology was designed by
Azamfar et al. [29] to monitor health conditions and optimize the data distribution of
the ball screw. Qian et al. [30] considered the discriminative feature learning in network,
and realized fault diagnosis by building a deep discriminative transfer learning network
(DDTLN). Huang et al. [31] proposed a new transfer alignment method to solve the prob-
lem of the large data differences across domains. However, in the current literature, research
on domain adaptation detection with insufficient source domain labels is still limited.

In addition, the distance measurement is also an important issue of transfer learning.
Among many distance measures, the MMD is one of the most widely applied distance
metrics in transfer learning, which is to find difference between two probability distribu-
tions by mapping the data to another space [32–34]. By optimizing the MMD metric, the
domain distance can be minimized, and the extraction of generalized knowledge can also
be promoted. Lu et al. [35] proposed a novel domain adaptation model based on a deep
neural network for fault diagnosis, which realized the diagnosis by minimizing MMD
and enhancing representative features. Zhang et al. [36] proposed a sparse filtering-based
domain adaptation (SFDA) model to obtain high-dimensional features in cross-domain
diagnosis tasks, in which l1 norm and l2 norm were implemented on MMD. And a cross-
senor domain adaptation approach is proposed by Pandhare et al. [37] to achieve indirect
measurement of sensors and diminish the MMD of high-level representations.
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In addition to the popular MMD metric, the domain adversarial network developed
from the generated adversarial network (GAN) has also become an effective diagnosis
method because of its powerful capability to grasp domain generalization features [38,39].
Ganin et al. [40] added an adversarial mechanism to the training of neural network firstly,
and called the resulting network a domain adversarial neural network (DANN). Moreover,
the domain adversarial network demonstrated excellent performance in fault diagnosis in
recent years. Hu et al. [41] presented a hybrid fault diagnosis model based on data aug-
mentation generative adversarial networks (DAGAN) and DANN, wherein they effectively
utilized a small amount of sample data to realize fault diagnosis under different working
conditions. The novel deep subdomain adaptation graph convolution neural network was
proposed by Ghorvei et al. [42], and the adversarial network and structured subdomain
adaptation were adopted for reducing the distribution differences. In fields of industrial
applications, Guo et al. [43] proposed a reconstruction domain adaptation transfer network,
which contributes to identify health conditions and extract domain-invariant features. The
recent advances in domain adaptation approaches have been well reviewed [44,45], where
the adversarial transfer network has achieved high test accuracy on fault transfer tasks
across domains.

Although the domain adaptation technology in the existing fault diagnosis methods
have developed rapidly, most methods generally assume that all labels of source domain
training data are available during training process. However, it is almost impossible to
satisfy this assumption in the real industry. Currently, little research can be found in
diagnosis studies of artificial label generation in source domain data. This paper aims at
bridging the distribution gap and addressing the cross-domain problem of insufficient
source domain labels under diverse operating conditions.

Table 1. Summary of relevant literature on fault diagnosis applications.

Technologies References Methodologies

Deep
learning Shen et al. [24] A transfer approach with the TrAdaBoost algorithm for bearing fault diagnosis.

Han et al. [28] A deep transfer diagnosis framework for dealing with limited sparse target data.
Azamfar et al. [29] A deep learning-based diagnosis approach for ball screw across domain.

Qian et al. [30] The DDTLN model for intelligent cross-machine fault transfer diagnosis.
Huang et al. [31] A deep multisource transfer learning model for bearing fault diagnosis.

Maximum
mean dis-
crepancy

Xiao et al. [33] A feature-adaptive motor fault diagnosis method applying MMD as
parameter constraint.

Yang et al. [34] A diagnosis model based on polynomial kernel induced MMD reused for detection
knowledge across machines.

Lu et al. [35] A DNN model for domain adaptation in fault detection minimizes the distribution
discrepancy between data by maximizing MMD.

Zhang et al. [36] A sparse filtering domain adaption approach that incorporates l1-norm and l2-norm
for maximizing MMD.

Pandhare et al. [37] An indirect sensing fault diagnosis method for domain alignment by minimizing
MMD marginal distribution.

Domain
adversarial

learning
Li et al. [38] A machinery diagnosis method for partial domain adaptation using conditional data

alignment and unsupervised prediction consistency.

Hu et al. [41] A hybrid fault diagnosis model based on DAGAN and DANN utilizing a few data to
accomplish domain adaptation.

Ghorvei et al. [42]
A spatial subdomain adaption graph convolution neural network applying

adversarial domain adaptation and local MMD to reduce structural discrepancy
between domains.

Guo et al. [43] A reconstruction domain adaptation transfer network for cross-domain invariant
features extraction and equipment health condition detection.
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2.2. The ResNet Module

Convolutional neural networks (CNNs) are highly similar to ordinary neural net-
works, both consisting of neurons that can learn weights and biases. Each neuron receives
input and performs the corresponding dot product calculation, then outputs the score of
each classification [46]. The difference between the two is that CNN’s use images as an
input of, so that specific attributes can be encoded into the network structure and reduce
parameters effectively.

There are three prime layers in CNN: the convolutional layer, pooling layer, and fully
connected (FC) layer. First, each convolutional layer is made up of several convolutional
units, and the backpropagation algorithm optimizes the parameters of each convolutional
unit. The convolution operation’s goal is to extract features from the input. Only some low-
level features, such as edges or lines, can be extracted using the low-level convolution layer.
With the deepening of layers, more complex features can be extracted. Second, since features
with larger dimensions are acquired after the convolution layer, in order to obtain features
with lower dimensions, the features are divided into several parts and their maximum or
average values are acquired in the pooling layer. Finally, the FC layer transforms local
features to global features to calculate predicted value for each classification.

With the deepening of network layers, the accuracy of the network is also constantly
improved, and ultimately reaches the maximum value (accuracy saturation). Unfortu-
nately, when it reaches a certain depth, the precision of the model drops sharply. This
phenomenon, which is contrary to the cognition of scholars, is named degeneration. It was
found subsequently that degeneration occurs because the deepening of the network causes
gradient explosion and gradient disappearance.

To address degeneration, He et al. [47] presented the ResNet model. The idea of
ResNet was mainly derived from VLAD [48] (the source of ideas for residuals) and the
highway network [49] (the source of ideas for skipping connections). First, for a stacked
layer structure (several layers are stacked on top of each other), let the input be x. Then,
the learned feature is denoted as H(x) and the learned residuals from the network are
F (x) = H(x) − x. Therefore, it can be inferred that the primitive extracted feature is
H(x) = F (x) + x. This is due to the fact that learning residuals is easier than directly
learning original features. Although the stacking layer only executes identity mapping, the
network performance does not deteriorate when the residual is zero. The residuals will not
actually be zero, so that the stacked layers are allowed to learn new features and provide
better optimization performance for the model. The structure of the residual learning unit
is shown in Figure 2. The building block is denoted as

y = F (x, {Wi}) + x (1)

where y is stands for the output vectors of the regarded layer. The function F (x, {Wi}) is
the residual mapping studied by the building block. And the dimensions of x and F must
be equal. When the dimensions of the input or output channels do not match, the linear
projection Ws is conducted using shortcut connection to match the dimensions:

y = F (x, {Wi}) + Wsx (2)
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3. Proposed Method
3.1. Problem Formulation

Generally, this study was conducted under the following assumptions:

1. Due to the diversity in operating conditions, although the source domain and the
target domain are interrelated, they follow the distinct distributions.

2. The purpose of intelligent fault diagnosis in various domains is consistent.
3. The source-domain data (whether labeled or unlabeled) and all unlabeled data from

the target domain can be employed to train networks.
4. During training, not only are signals from the target domain unlabeled, but most

signals from the source domain are also unlabeled.

The above assumptions simulate the actual industrial situation where signal labels
are insufficient, i.e., a large amount of vibration signals can be collected, but only a small
part of them have health condition labels. Existing methods cannot obtain satisfactory
diagnosis results.

Let X denote the input signal space and Y = {1, 2, . . . , Nc} represent the set of Nc
health conditions, for any sample (xi, yi) with xi ∈ X, yi ∈ Y. A partial unlabeled source
domain Ds of ns samples and an unlabeled target domain Dt of nt samples are available.
The Ds and the Dt can be formulated as

Ds = {(xs
i , ys

i = Ch)}nsu
i=1 ∪ {(x

s
i , ys

i )}
nsl
i=nsu+1 (3)

Dt =
{(

xt
j, yt

j = 0
)}nt

j=1
(4)

where
(
xs

i , ys
i
)

and
(
xt

i , yt
i
)

denote the samples of (xi, yi) in Ds and Dt, respectively; Ch
denotes the labeled machine health conditions; nsu and nsl mean the number of unlabeled
and labeled source domain data, respectively; and ns = nsu + nsl . Similarly, nt denotes the
amount of target domain data. Ds and Dt are sampled from joint distributions Ps(X, Y)
and Pt(X, Y), and Ps 6= Pt. Particularly, since the label spaces of the source and target
domains are identical in this paper, Ds and Dt are considered as being sampled from
various marginal distributions—Ps(X) and Pt(X).

The purpose of this paper is to generate a source domain pseudo-label data set
DPseudo

s =
{(

xs
i , ys

i 6= Ch
)}nsu

i=1 ∪
{(

xs
i , ys

i
)}nsl

i=nsu+1 of nsu signals in operating conditions
based on Ds. The DPseudo

s is defined with the following formula:

DPseudo
s = {(xs

i , ys
i 6= Ch)}nsu

i=1 ∪ {(x
s
i , ys

i )}
nsl
i=nsu+1 (5)

Afterwards, feature extractors and domain discriminators are constructed for mini-
mizing the feature extractor loss and maximizing the discriminator loss so as to retrieve
generalization features and reduce the network loss.

3.2. The Hybrid Networks

Aiming at the dilemma of fault detection under diverse operating conditions in the
absence of sufficient labeled data, this study proposes a semi-supervised adversarial transfer
network for cross-domain diagnosis. Firstly, a signal-to-image conversion method for 1D
signal processing is presented. Secondly, a generative label extension network based on
SSL is designed to predict and generate artificial labels. Finally, a dynamic adversarial
transfer network is proposed for domain adaptation feature knowledge extraction and fault
detection classification. An overview of the proposed condition monitoring approach is
presented in Figure 3.

3.2.1. Stage 1: Signal Processing

As we have seen, deep learning has advanced considerably in intelligent condition
diagnosis, but it fails to preserve temporal dependency entirely when processing time
domain vibration signals, which leads to a loss of data signals. Furthermore, existing
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networks such as recurrent neural network are difficult to train; hence, it is hard to construct
accurate monitoring models. However, by converting time domain vibration signals into
2D image dataset through GAF, not only can enrich signal characteristics by filling vibration
signals with pixels, but also establish bijective mapping between 1D vibration signals and
2D space to ensure the integrity of information.
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Since the inner product operation cannot retain both observed values during con-
version process, both of them can only be converted into one value. To avoid this loss of
information, Gram-like matrix is generated by calculating x ⊕ y = cos(θ1 + θ2), so that
original values of scaled time series form diagonal lines, and 1D vibration signals are
approximately reconstructed with advanced features extracted by deep learning, so as to
maintain an absolute temporal relationship [50].

Therefore, it is crucial to convert 1D time series signals into 2D images efficiently [51].
And the GAF is offered to convert 1D time series into RGB images in this study. Assume a
time series X = {x1, x2, · · · , xn} of n real-valued observations, then rescale the time series
X to keep all values are in the interval (–1, 1) or (0, 1) by:

x̃i
−1 =

(xi −max(X)) + (xi −min(X))

max(X)−min(X)
(6)
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x̃i
0 =

xi −min(X)

max(X)−min(X)
(7)

where x̃i
−1 and x̃i

0 represent the values of xn falling within the interval (–1, 1) or (0, 1).
Therefore, the rescaled time series X̃ in polar coordinates can be obtained by encoding

the value as the angular cosine and the time stamp as the radius, and the corresponding
formula is as follows: {

∅ = arccos(x̃i),−1 ≤ x̃i ≤ 1, x̃i ∈ X̃
r = ti

N , ti ∈ N
(8)

where ti is the time stamp and N denotes a constant factor to regularize the span of the
polar coordinate system.

The encoding map of Equation (8) has several advantages. First, since it is bijective,
the original time series can be reconstructed by using θ and r. Second, the time dependence
in the original time series is preserved through the coordinates of r.

Additionally, it can be seen from Equation (8) that (–1, 1) represents the cosine function
in (0, π) and the cosine value decreases monotonically within this range. Likewise, (0, 1)
denote the cosine function in

[
0, π

2
]
. By calculating the cosine of the angle sum between

various points, the GAF can generate two different images, i.e., the Gramian angular
summation field (GASF) and the Gramian angular difference field (GADF). The two are,
respectively, represented by the following formulas:

GASF =
[
cos
(
φi + φj

)]
= X̃′·X̃−

√
I − X̃2

′
·
√

I − X̃2 (9)

GADF =
[
sin
(
φi − φj

)]
=

√
I − X̃2

′
·X̃− X̃′·

√
I − X̃2 (10)

where I denotes the unit row vector (1, 1, ···, 1).
In short, we only need to rescale the time series X into the polar coordinate system

using Equation (8), then utilize the corresponding equation to calculate; finally, we can
obtain the image from the GASF and GADF. The diagram of the above transformation
is presented in Figure 4. In this study, we use GASF to convert 1D vibration signals
into images.
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3.2.2. Stage 2: Label Generation

In traditional fault diagnosis method, the accuracy of diagnosis model is determined
by the quantity of data labels. Cross-domain diagnostic tasks cannot be performed if
there are sufficient signals but not enough labels [52]. Specifically, SSL can provide an
effective approach to reducing the dependence on labeled data by using unlabeled data [53].
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Therefore, this paper introduces an SSL-based generative label extension network, which
utilizes unlabeled images to predict and generate artificial labels. The generated labels can
be used for subsequent transfer learning to improve the accuracy of diagnosis models.

First, we define X = {(xb, pb) : b ∈ (1, 2, · · · , B)} as a batch of B-labeled samples
for an L-class classification problem, where xb are the training examples and pb denotes
one-hot labels. Then, let U = {ub : b ∈ (1, 2, · · · , µB)} be a batch of µB unlabeled examples
where µ is a hyperparameter used to dictate the relevant sizes of X and U . pm(y|x) is the
prediction category distribution generated by the input X . Additionally, we define H(p, q)
as the cross-entropy between two probability distributions p and q. Finally, two types of
augmentations are leveraged in the proposed method: strong and weak, denoted by A(·)
and α(·), respectively. In this work, weak augmentation makes use of standard flip-and-
shift strategy, while strong augmentation first uses RandAugment [54] or CTAugment [55],
then uses CutOut [56] to enhance images; severely distorted input images are output in
the end.

The training process consists of two parts as depicted in Figure 5: supervised training
and unsupervised training. Labeled data perform supervised training, and conventional
classification tasks are carried out to reduce the supervised loss. For unlabeled data, use
their weakly-augmented versions to train the model to output predictions. When the
probability for a class is higher than the threshold, the prediction of that class is considered
a pseudo-label. Next, this pseudo-label is used to supervise the output of a strongly-
augmented version of the same image.
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The detailed training process is as follows:

Step 1. Input:

Prepare the labeled batch X = {(xb, pb) : b ∈ (1, 2, · · · , B)}, the unlabeled batch U =
{ub : b ∈ (1, 2, · · · , µB)}, and unlabeled data ratio µ.

Step 2. Supervised training:

Use the conventional cross-entropy loss H(p, q) for classification task of labeled data,
and the supervised loss `s with labeled data being defined as

`s =
1
B

B

∑
b=1

H(pb, pm(y|α(xb))) (11)
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where α denotes a random function.

Step 3. Pseudo-labeling:

Apply weak and strong augmentation to unlabeled data to, respectively, obtain aug-
mented data. Then feed them into the model to acquire predictions and select the weakly
augmented prediction to generate pseudo-label using argmax.

Step 4. Consistency regularization:

Compute the cross-entropy loss H(p, q) between strongly augmented predicted value
and weakly augmented pseudo-label value; the unsupervised loss `u of unlabeled data is
defined as

`u =
1

µB

µB

∑
b=1

Z(max(qb) ≥ τ)H(q̂b, pm(y|A(ub))) (12)

where qb = pm(y|α(ub)), q̂b = argmax(qb) denotes pseudo-label, τ is a scalar hyperparam-
eter denoting the threshold for pseudo-label, and Z(·) represents the indicator function.

Step 5. Objective loss function:

The training objective is a cross-entropy loss, which can be formulated as:

L = ls + λulu (13)

where λu denotes the relative weight of unlabeled data loss.

Step 6. Label generation:

Feed unlabeled data are fed into the model to generate artificial labels for subsequent
diagnosis task.

3.2.3. Stage 3: Cross-Domain Diagnosis

Feature extraction is crucial to fault diagnosis. Conventional feature extraction methods
are not suitable for cross-domain diagnosis, while adversarial transfer networks can effectively
extract domain-invariant features to solve cross-domain problems. Therefore, the adversarial
transfer network is combined with the label generation module mentioned in Stage 2 to
address the degradation of diagnosis performance due to distribution discrepancy.

Figure 6 shows the architecture of the presented networks. Form the figure, the
network is composed of a feature extractor G f , a label classifier Gy applied to identify source-
domain labels, a global domain discriminator Gd applied to align marginal distributions of
source and target domains, and C local subdomain discriminators Gc

d(c ∈ {1, 2, · · · , C})
applied to align conditional distributions of source and target domains. In detail, labeled
source domain data, target domain data, and pseudo-labeled data in Stage 2 are mixed as the
input x of the network; then, the high-level features f are extracted by the feature extractor
G f . Then, feature f is fed into G f and the domain discriminators (including discriminator
Gd and Gc

d) for adversarial training. Finally, optimal domain-invariant feature extraction is
achieved by minimizing the loss Ly and maximizing Lg and Ll , where Ly is the loss of G f ,
Lg is the loss of Gd and Ll is the loss of Gc

d. We calculate the losses of Ly, Lg and Ll as:

Ly = − 1
ns

∑
Xi∈Ds

C

∑
c=1

PXi→C log Gy

(
G f (Xi)

)
(14)

Lg =
1

ns + nt
∑

Xi∈Ds∪Dt

Ld

(
Gd

(
G f (Xi)

)
, di

)
(15)

Ll =
1

ns + nt

C

∑
c=1

∑
Xi∈Ds∪Dt

Lc
d

(
Gc

d

(
ŷc

i G f (Xi)
)

, di

)
(16)

where PXi→C represents the probability that Xi belongs to class c, and ŷc
i denotes the

predicted probability distribution of the input sample Xi belonging to class C. Moreover,



Appl. Sci. 2023, 13, 2626 11 of 21

the dynamic adversarial factor ω can dynamically and robustly evaluate the Gd and Gc
d

weights according to the difference of data distribution in different diagnostic tasks. Theω
is defined as:

ω̂ =
dA,g(Ds, Dt)

dA,g(Ds, Dt) +
1
C ∑C

c=1 dA,l(Dc
s , Dc

t )
(17)

where dA,g(Ds, Dt) and dA,l(Dc
s , Dc

t ) represent the A-distance of global domain discrimina-
tor Gd and local domain discriminator Gc

d, respectively.
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dL  represent classification loss and domain loss. d̂  and ˆCd  present predicted domain label. GRL 
means the gradient reversal layer. 

In summary, the network maps feature of source and target domain to the same space 
by confusing the domain labels. By adaptively measuring the distribution difference be-
tween the two domains, the target-domain data is labeled using domain-invariant fea-
tures, which are indistinguishable between source and target domains. In addition, net-
work domain adaptation and feature extraction are performed simultaneously, and label 
classification is supervised by source domain labels, target domain labels, and domain 
labels at the same time. 

3.3. System and Steps of Diagnosis Process 
In general, the raw vibration signal is converted into RGB images using the GAF in 

Stage 1 firstly, including labeled images and unlabeled images. Secondly, unlabeled im-
ages are fed into the network in Stage 2, which combines supervised and unsupervised 
learning to generate artificial labels. Thirdly, the adversarial transfer network in Stage 3 
adaptively reduces distribution discrepancy to extract the generalization features, so as to 

Figure 6. The architecture of the dynamic transfer networks. ŷ denotes predicted label, Ly and Ld
represent classification loss and domain loss. d̂ and d̂C present predicted domain label. GRL means
the gradient reversal layer.

By integrating all components, the final objective function of transfer network can be
expressed as:

L
(

θ f , θy, θd, θc
d|

C
c=1

)
= Ly − λ

(
(1−ω)Lg + ωLl

)
(18)

In summary, the network maps feature of source and target domain to the same space
by confusing the domain labels. By adaptively measuring the distribution difference be-
tween the two domains, the target-domain data is labeled using domain-invariant features,
which are indistinguishable between source and target domains. In addition, network
domain adaptation and feature extraction are performed simultaneously, and label classifi-
cation is supervised by source domain labels, target domain labels, and domain labels at
the same time.

3.3. System and Steps of Diagnosis Process

In general, the raw vibration signal is converted into RGB images using the GAF in
Stage 1 firstly, including labeled images and unlabeled images. Secondly, unlabeled images
are fed into the network in Stage 2, which combines supervised and unsupervised learning
to generate artificial labels. Thirdly, the adversarial transfer network in Stage 3 adaptively
reduces distribution discrepancy to extract the generalization features, so as to deliver
accurate fault classification results. Using the proposed hybrid networks, the networks
realize feature transfer and complete intelligent fault identification of the signal.

Step 1. Collect one-dimensional bearing vibration signal under diverse operating conditions.
Step 2. Convert the raw signals collected in Step 1 into two-dimensional images using the GAF.
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Step 3. Divide the two-dimensional images into labeled datasets, unlabeled datasets,
and validation datasets according to required proportion, and input them into label
generative extension network for training.

Step 4. Feed the unlabeled data into the label generative extension model to obtain the
model prediction for label classification.

Step 5. Divide the dataset mixed with real and artificial labels into training set and valida-
tion set and input the training set into the dynamic adversarial transfer network for
cross-domain diagnosis.

Step 6. Calculate the accuracy of the validation set and output the health state detection
results of the model.

4. Case Studies

To verify the capability of the intelligent fault detection networks proposed in this
article, two practical case studies were carried out. In case study 1, a comparative experi-
ment of diagnosis performance under diverse working conditions was conducted, and case
study 2 compared the diagnosis performance of the proposed method with conventional
methods under various label proportions.

4.1. Dataset Descriptions

In this case, the proposed approach is performed on the public datasets acquired from
the Bearing Data Center of Case Western Reserve University [57]. Extensive studies have
been conducted on this rolling bearing fault diagnosis dataset. The vibration data used
in this work were collected from the sensor placed on the drive end of the motor, which
ran at a constant speed with four rotating speeds, i.e., 1730, 1750, 1772, 1797 r/min, and
on four health conditions, i.e., normal (NO), ball fault (BF), inner race fault (IF), outer race
fault (OF). The three different types of artificial faults were created with diameters of 7, 14,
21 mils. In addition, the CWRU experimental platform is shown in Figure 7.
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Ten operation patterns (containing one NO and nine faulty conditions) in four rotating
speed domains are included in the CWRU datasets. It is worth noting that the CWRU
dataset is widely considered as a publicly available dataset for fault detection of rolling
bearings due to its better data quality and less noise interference. In this study, seven
operation conditions were selected to examine the proposed method according to the
experimental requirements.

In the CWRU dataset, the vibration signal was acquired from the sensor at an operating
frequency of 1.2 kHz for about 10 s, and each dataset had about 120,000 data points. Taking
into account the above factors, performing data truncation on the original signal is critical.
Therefore, in this article, a sliding window truncation method is proposed to generate a
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dataset for seven operation patterns. As depicted in Figure 8, a truncation window slides
along the vibration signal at a shift length of 64 data points, and the window size is 512 data
points. Therefore, the signal is converted into a dataset consisting of 512 × 512 RGB images
under the action of the sliding window. The converted results are presented in Figure 9.
For example, BF-07 indicates a ball fault with a fault diameter of 7 mils, IF-14 indicates an
inner race fault with a fault diameter of 14 mils, and the rest follow the same pattern.
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4.2. Case Study 1: Variable Operating Conditions Transfer Experiment

Utilizing the sliding window truncation method, the raw vibration signal is processed
into datasets under four different load scenarios (0, 1, 2, 3 HP) using the GAF. The dataset
of each scenario contains seven types of faults, and each type of fault has 600 images. Thus,
there are a total of 4200 images for operating conditions, and each dataset is randomly
divided into the training dataset and testing dataset according to a ratio of 8:2. Detailed
data descriptions of the dataset are presented in Table 2.
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Table 2. The CWRU dataset details for each operating condition.

Class Label 1 2 3 4 5 6 7 Train/Test

Fault location NO BF BF IF IF OF OF
3360/840Fault size (mil) 0 7 14 7 14 7 14

In this case, the variable working conditions transfer experiment is mainly evaluated
by the proposed method in these 12 tasks, i.e., T01, T02, T03, T10, T12, T13, T20, T21, T23, T30,
T31, T32. For example, T01 represents a variable operating condition transfer task with 0
HP load as the source domain and 1 HP load as the target domain. The rest of symbols T
follow the same pattern as well. Part of the transfer details are shown in Table 3, where
labeled proportion represents the proportion of labeled images in the training dataset.

Table 3. Partial details of fault diagnosis tasks in this case.

Task Source Target Labeled Proportion

T01: 0→1 1797 rpm 1772 rpm 1
2

T12: 1→2 1772 rpm 1750 rpm 1
2

T23: 2→3 1750 rpm 1730 rpm 1
2

In this experiment, there are seven types of images, totaling 4200 images fed into the
hybrid network, of which 3360 images were divided into training dataset and 840 images
were divided into testing dataset. Then, half of the training data are randomly selected as
labeled data and the remaining training data are treated as unlabeled data. The labeled
data and unlabeled data are sent to the label generation model for training, and the
artificial label prediction results of unlabeled data are output. Next, the labeled data and
the artificially labeled data are imported together into the dynamic adversarial transfer
network for training until the network converges. Finally, an accurate cross-domain fault
diagnosis model is obtained. To illustrate effectiveness, the results of different transfer
tasks are compared. In addition, average identification accuracy is selected as the model
measurement standard; the accuracy is the average value of 10 rounds of experiments.
Table 4 shows the comparison results.

Table 4. Comparison results.

Task Name Motor Loads Number of Labeled Data Average Accuracy

T01 0→1 1680 99.88%
T02 0→2 1680 99.26%
T03 0→3 1680 99.38%
T10 1→0 1680 98.25%
T12 1→2 1680 99.28%
T13 1→3 1680 98.71%
T20 2→0 1680 98.62%
T21 2→1 1680 99.71%
T23 2→3 1680 99.64%
T30 3→0 1680 98.15%
T31 3→1 1680 99.42%
T32 3→2 1680 99.72%

It can be seen from Table 3 that the proposed method can maintain an average accuracy
of more than 99.17% in fault detection under diverse operating conditions, which indicates
that the designed approach has powerful ability to solve the seven classifications problem
with high efficiency. To sum up, this method can still maintain high accuracy of cross-
domain label recognition under various working conditions, as well as in the absence
of some source-domain labels, thus demonstrating the effectiveness of the fault transfer
diagnosis network proposed in this article.
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Taking task T31 as an example, the accuracy and loss curves of the model are shown in
Figure 10. With the increase in training epochs, the accuracy of the fault label classifier was
continuously improved, approaching 99% in 50 epochs and tended to be stable. Meanwhile,
the testing loss gradually declined until it approached 0.0087 within about 40 epochs, then
kept stable. From the result, it can be inferred that after sufficient training epochs, the
proposed network can effectively extract domain-invariant features of vibration signals and
accurately perform cross-domain detection, which indicates that the designed diagnosis
network is reasonable.
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Next, the influence of the evaluation metrics was investigated. In addition to accuracy,
precision, recall, and F1 score were selected to evaluate the validity of the fault detections.
Three representative tasks, T01, T12, and T23, were used as examples for analysis, and the
results are shown in Figure 11. It can be observed that the overall evaluation metrics of
the three tasks are above 99.2%, and T01, T23, and T12 decrease sequentially. Specifically,
precision, recall, and F1 score of each task were relatively stable and close to their corre-
sponding precision. The satisfactory transfer performance between domains was achieved
using the proposed networks, which demonstrates that the proposed networks are suitable
for domain adaptation with high robustness.

Furthermore, Figure 12 presents the fault diagnosis result of T21 after ten repeated
calculations by using the confusion matrix. The vertical axis of the confusion matrix
denotes the true label, and the horizontal axis is the predicted label. From the figure, it
can be seen that the average detection accuracy of the seven health states is 99.7%; the
diagnosis performance is satisfactory. Specifically, IF-07, OF-07, BF-14, and NO all have
100% detection accuracy, which implies that they have not assigned the label to others, with
BF-14 having received the wrong category from IF-14. BF-07 and OF-14 can accept the error
misclassification of each other. BF-07 has the lowest accuracy rate of 98.8%, and more BF-07
elements are assigned to OF-14. The results indicated that even though half of training data
lack health condition labels, the proposed approach can still achieve the precise diagnosis
of seven health conditions in the target domain. Thus, the effectiveness of the proposed
approach for domain adaptation detection is verified in the presence of insufficient labels.

Furthermore, Figure 13 shows the ROC curve of the fault diagnosis result of task T23.
As can be seen from the figure, all the fault classification curves coincide, for except some
deviation in the OF-14 curve, where the IF-07 and OF-07 curves overlap with the NO curve.
This means that seven kinds of bearing fault classification can be perfectly diagnosed by
using proposed networks, which also proves the validity of the proposed networks.
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4.3. Case Study 2: Insufficient Source Domain Label Transfer Experiment

To highlight the effectiveness of the proposed networks in fault detection on small
samples of labeled data, this experiment further expands the gap between the number of
labeled and unlabeled data in the source domain. For the vibration signal data collected at
the sampling frequency of 12 kHz, 1/2, 1/4, 1/8, and 1/16 of the source domain images
are selected as labeled data, and the rest are unlabeled data. Moreover, the diagnostic tasks
T01, T12, T23, T21, and T31 are performed for experimental evaluations.

In this case study, experiments were conducted to compare the proposed networks
with three other commonly used transfer learning models, namely deep adaptation network
(DAN), Deep CORAL, and DANN. The structure of the CNN feature extractor used for
comparison is the same as that of the proposed networks, and each group of trials was
performed 10 times and averaged.
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The diagnosis accuracies of the proposed method were compared with other popular
transfer methods, the comparison results are shown in Table 5. From the comparison results,
it can be seen that the network proposed in this experiment can still identify fault labels
with an average accuracy of 98.32%, even though the number of labeled samples is only one
in sixteen. Moreover, compared to the other transfer models, the accuracy fluctuation of the
proposed model tends to be stable when the labeled proportion is changed. This illustrates
the excellent robustness of the proposed method in extreme cases. On the other hand, the
proposed networks produce higher detection accuracy than other diagnosis models, and
are always higher than DANN. This is because the proposed model dynamically adjusts the
proportion of marginal distribution and conditional distribution when extracting domain-
invariant features, while DANN only considers the adaptation of marginal distribution.

Table 5. Average testing accuracies in the fault detection of case study 2.

Method DAN Deep CORAL DANN Proposed
Proportion 1/2 1/4 1/8 1/16 1/2 1/4 1/8 1/16 1/2 1/4 1/8 1/16 1/2 1/4 1/8 1/16

0→1 98.92 97.58 94.68 91.12 98.77 97.63 93.95 92.87 99.54 98.87 97.16 97.02 99.80 99.12 98.06 97.23
1→2 97.20 96.47 94.89 94.78 97.88 96.83 95.85 93.40 98.72 97.96 96.11 95.86 99.28 99.07 97.73 97.19
2→3 98.46 95.89 93.94 93.17 97.70 97.14 94.23 93.00 99.21 98.59 96.72 94.33 99.64 99.31 97.66 96.54
2→1 95.90 94.36 93.08 92.84 95.30 94.36 92.17 92.05 98.58 97.78 95.62 94.22 99.70 98.69 96.44 96.10
3→2 98.12 97.37 96.63 95.90 98.31 96.87 96.05 94.71 98.95 98.22 97.62 96.41 99.72 98.98 98.79 97.38

Average 97.72 96.33 94.64 93.56 97.59 96.57 94.45 93.21 99.00 98.28 96.65 95.57 99.63 99.03 97.74 96.89

Figure 14 manifests that with the decrease in labeled data in source domain, the
proposed model still maintains high accuracy, while other transfer learning methods exhibit
the overfitting phenomenon. It also indicates that when the labeled data are insufficient,
the proposed method can effectively alleviate the overfitting phenomenon, and provide
high accuracy results. Additionally, transfer adversarial networks are proven to maximize
the utilization of limited labeled data.

To visually present the training results of different transfer models, taking the 1/16 ex-
periment as an example, t-SNE dimensionality reduction processing was performed on the
last hidden layer of DAN, Deep CORAL, DANN, and the proposed networks, respectively.
The features were plotted into the 2D space, and the outcome of the visualization is shown
as Figure 15.

Figure 15 depicts that all four methods can separate the fault classifications from
the original distribution, but the DAN network and the Deep CORAL network cannot
completely overcome the difference in feature marginal distribution, and it is prone to the
negative transfer phenomenon when there are few available labeled data. On the other
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hand, the approach proposed in this study projects all types of labels perfectly to the same
area, demonstrating significant clustering and separability. This is sufficient to show that
the proposed networks can perform cross-domain operation states detection reliably in the
case of less available label data.
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5. Conclusions

Aiming at the domain shift problem in the case of insufficient source domain labels, a
method of applying semi-supervised adversarial transfer networks for cross-domain fault
detection was proposed in this literature. Initially, vibration signals were converted into
images using the signal-to-image method. Furthermore, a semi-supervised generation
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module was designed to generate artificial labels for unlabeled images, so as to solve the
dilemma of insufficient source domain labels. Eventually, the adversarial transfer networks
were introduced to extract domain-invariant features in different domains and achieve
fault detections. Two case studies were conducted on the public rolling bearing dataset to
validate the performance of the proposed approach. The analysis results clarify that the
proposed networks are able to diminish the distribution discrepancy and extract generalized
features for domain adaptation detection. Meanwhile, the generalization and robustness
of the proposed networks were demonstrated by carrying out a cross-domain transfer
experiment and insufficient source-domain label experiment. Therefore, the finding of this
research has great potential in practical applications, since comprehensive experimental
data on health status labels are generally hard to acquire in the real industry.

Although the proposed approach is effective for processing common cross-domain
diagnosis problems, when the training data in each health state are unbalanced, diagnostic
accuracy is dramatically degraded. To address this issue, future research will be considered
to perform accurate and efficient fault detection in the presence of an unbalanced health
state dataset.
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