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Abstract: Optical communication modulation technology and networking technology are two im-
portant technologies for constructing free-space optical (FSO) communication. In this paper, pulse
width modulation (PWM) is used to realize free-space optical communication. The process of signal
modulation and demodulation is implemented by means of a field programmable gate array (FPGA).
An optical communication relay system is constructed to realize communication networking. The
binary data bits in the communication process are converted into pulse signals of different widths,
the data demodulation process is realized by sampling with a high-speed analog-to-digital converter
(ADC), the data level is determined by counting the proportion of high and low voltages sampled
in a pulse period. The relay system analyzes the routing target after receiving the pulse signal from
the transmitter, and then sends the data to the target receiver. The experimental results show that
the constructed system can achieve point-to-multipoint free-space optical communication. Addition-
ally, using ADC to demodulate the received signal increases the stability of the free-space optical
communication system. This system provides the design prototype system of FSO communication
networking technology.

Keywords: free-space optical (FSO) communication; pulse width modulation (PWM); field pro-
grammable gate array (FPGA); relay station; communication networking

1. Introduction

With the development and progress of science and technology, space laser commu-
nication technology has gradually expanded from satellites to the ground. At present,
laser communication technology has been studied in the fields of lidar, the military, and
underwater communication [1–3]. Space laser communication facilitates the exchange of
information between two devices without any connection relationship in free-space. During
laser communication, the laser transmitting end and the receiving end need to be aligned
with high accuracy, and there should be no obstacles blocking the optical path between
the two ends; otherwise, data transmission will fail. At the same time, point-to-point
laser communication cannot complete point-to-multipoint reception. This greatly increases
the difficulty of using laser communication technology in cities and in vehicle-mounted
lidars. Therefore, laser communication technology is not widely used in life at present [4–6].
Compared with traditional wireless communication, laser communication does not require
complex antennas and frequency applications. At the same time, it has the advantages of
large transmission capacity, long transmission distance, good confidentiality, and strong
anti-interference ability. Therefore, laser communication technology has broad application
prospects in the field of wireless communication [7–9]. Realizing data and information
transfer of free-space optical communication and information transmission of one-to-many
and many-to-many communication devices is a necessary condition for the application of
free-space optical communication technology. Therefore, the research on free-space optical
communication networking technology has important research significance for the wider
use of optical communication [10–13].
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In the application of a free-space optical communication system, the atmospheric
turbulence effect is an important problem to consider [14], due to the changes in wind
speed, the unevenness of the sun’s radiation energy on the ground and other factors which
cause local atmospheric density changes and produce vortexes in the atmosphere. Various
vortex superpositions produce atmospheric turbulence, which greatly reduces the commu-
nication distance of free-space optical communication and damages the free-space optical
communication link between the satellite and the ground, resulting in the attenuation of
laser signals. Increasing the gain of the signal at this point does not necessarily improve
the quality of the laser beam [15]. However, adaptive optics can effectively improve the
effects of atmospheric turbulence or scattering and increase the speed of communication
systems [16,17]. Adaptive optics technology is a correction module that adds a conjugate
with a distortion phase in front of the communication terminal, thereby suppressing the
atmospheric turbulence effect, which is of great significance for the realization of high-rate
laser communication such as satellite–ground communication, air–ground communication,
and underwater optical communication [18,19].

Free-space optical communication technology needs to load the information to be
transmitted onto the laser light wave and send the data in the form of a light wave, which
involves converting the data into optical signals (signal modulation) [20,21]. At present,
the modulation methods of space laser communication mainly include switch keying
(OOK) modulation, pulse interval modulation (PIM), single pulse position modulation
(LPPM), differential pulse position modulation (DPPM), pulse amplitude modulation
(PAM), etc. [22–25]. Among these modulation modes, the OOK mode has the simplest
modulation principle, but its average transmission power is large. The number of timeslots
included in each symbol of PIM mode is not fixed, and it has a high channel capacity, but
its intersymbol interference is large, and its bit error rate is high. The LPPM mode has a
fast transmission rate and low requirements for energy, but it requires high peak power.
The DPPM mode has a high-power utilization ratio and frequency band utilization ratio,
and a low channel occupation ratio, but its modulation and demodulation are difficult to
achieve due to its great difficulty. The PAM mode requires a large transmission power, a
complex modulation and demodulation circuit, and a high bit error rate. At the same time,
in the above-mentioned modulation methods, it is necessary to ensure that the clocks of
the transmitting system and the receiving system are strictly aligned, or data transmission
may be misaligned, which may lead to information exchange failure between the two
information systems [26–31].

In order to realize point-to-multipoint free-space optical communication on the ground
and improve the quality of information transmission, based on the full analysis of the
advantages and disadvantages of the above modulation methods, this paper proposes a
realization method of free-space optical communication networking technology based on
pulse width modulation (PWM). The binary data transmitted by each bit is characterized
by sending a pulse signal with a fixed period and an unfixed pulse width into the space.
The pulse signal with a narrow pulse width represents datum 1, and the pulse signal
with a wide pulse width represents datum 0. At the same time, the receiver samples the
signal received by the detector at a fixed frequency through high-speed ADC. In each part
of the data modulation period, the width of the modulation pulse is determined by the
number of times the ADC samples to a high level. According to the different data frame
codes demodulated by the relay system, the data are sent to targets in different directions
to achieve point-to-multipoint free-space optical communication. The modulation and
demodulation processes are implemented by FPGA [32–36].

2. Theory and System Design

A. Theory of optical communication based on pulse width modulation.

When modulating and demodulating data, one needs to consider the symbol length
of the data. If binary data are represented by M bits, this can represent 2M different types
of data. If the M is larger, the probability of errors in data modulation and demodulation is
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greater, and the modulation and demodulation circuits are more complex. In order to build
a free-space optical communication system more easily, we choose M = 1 to realize space
optical communication. When M = 1, the symbol structure diagram of several free optical
communication modulation methods is shown in Figure 1.
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Figure 1. Symbol structure of several modulation modes of optical communication when M = 1 [37].

For M = 1, the OOK method only characterizes datum 1 or datum 0 according to
whether a pulse signal appears. The number of time slots in PIM mode is not fixed, and
it is characterized by datum 1 or datum 0 according to the number of time slots. The
LPPM method is characterized by datum 1 or datum 0 according to the different locations
where a single pulse appears. The DPPM method is similar to the LPPM method, and
is also characterized by datum 1 or datum 0 according to the different positions where
a single pulse appears, the difference being that when the pulse signal in the DPMM
method appears, it represents the end of a datum—that is, the rest of the time slots are all
removed, so the number of time slots in the DPPM method is not fixed. The PAM method
is characterized by datum 1 or datum 0 according to the amplitude of the pulse. The PWM
method is characterized by datum 1 or datum 0 depending on the pulse width [38–40].

Further analysis of the performance of various modulation methods, assuming the
transmission power of the light source, the transmission bandwidth of OOK, and the
channel capacity of OOK, is performed according to the principle of optical communi-
cation modulation [41–46], and the performance comparison histogram of the average
transmission power, transmission bandwidth and channel capacity of various modulation
modes when M = 1 is shown in Figure 2. For the data with symbol length M, the average
symbol length, average transmit power, transmission bandwidth, channel capacity, and
signal synchronization of the above optical communication modulation methods are further
summarized according to Figure 2, as shown in Table 1.
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Figure 2. Performance histogram of several optical communication modulation methods when
M = 1 [47,48]. (a) Average power. (b) Transmission bandwidth. (c) Channel capacity.
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Table 1. Performance index of several modulation modes in optical communication.

Modulation Mode OOK PIM LPPM DPPM PAM PWM

Average symbol length M 2M+3
2 2M 2M+1

2 1 2M + 1

Average Power 1
2 PS

2
2M+3 PS

1
2M PS

2
2M+1 PS

2M+1
2M+1 PS

1
2 PS

Transmission Bandwidth Rb
2M+3

2M Rb
2M

M Rb
2M+1

2M Rb MRb
2M+1

M Rb

Channel Capacity Cb
2M

2M+3 Cb
2M
2M Cb

2M
2M+1 Cb MCb

M
2M+1 Cb

When M = 1, the PWM mode requires a lower average power than other modulation
methods, although the transmission bandwidth of the PWM mode is large and the channel
capacity is low, while the system studied in this paper is mainly used to verify whether
the proposed relay scheme is feasible, and initially realize the basic free-space optical
communication, so that the transmission bandwidth and channel capacity of PWM mode
meet the communication requirements. Compared with the other five modulation methods
mentioned, the PWM method only needs to perform slot synchronization, without frame
synchronization (symbol synchronization)—that is, each datum to be demodulated does
not need to wait for timing, and only needs to wait for the rising edge of the detection signal,
meaning that the PWM method will greatly reduce the modulation and demodulation
difficulty of the communication system, but also reduce the error probability of data
transmission, and achieve more reliable and stable communication compared with other
modulation methods that need frame synchronization. The system implemented in this
paper uses a repeater to complete point-to-multipoint free-space optical communication,
and its implementation requires the ADC in the repeater to sample the received signal in all
directions in a serial manner; if the pulse signal is narrow, a certain direction may not be able
to sample the received signal, and then the wider pulse signal can increase the stability of
the system. From Figure 1, it can be seen that under the condition of fixed time slot width,
the PWM mode pulse width can be wider, compared with other modulation methods.
PWM mode can make it easier for repeaters to sample the received signal, so PWM is more
suitable for the research on networking technology of spatial optical communication than
other modulation methods.

Figure 3 shows the PWM modulation and demodulation schematic, which is imple-
mented through an FPGA. First, the binary data are discriminated; for datum 1, a pulse
signal with a pulse width of T1 is generated by the FPGA, and for datum 0, a pulse signal
with a pulse width of T2 is generated by the FPGA, and the pulse signal period is fixed to T.
The demodulation process is implemented by the ADC, which has a sampling interval of τ
in each direction during the fixed pulse signal period T time, and if there are N directions
that need to probe the signal, the sampling rate of the ADC in the repeater is Nτ. In Figure 3,
H represents when the sampled level signal is logic level 1, L represents when the sampled
level signal is logic level 0, and the number of instances of H is counted in T time. N1
represents the number of times the ADC samples to logic level 1 when the pulse width is
T1 in a pulse period T, and N2 shows the number of times the ADC samples to logic level 1
when the pulse width is T2 in a pulse period T, and the data can be judged according to the
size of the Count value.

This paper focuses on the design of a point-to-multipoint free-space optical com-
munication system, which aims to provide an effective solution for free-space optical
communication networking technology, and the experiment is carried out in a relatively
ideal environment, so this paper does not consider the influence of atmospheric turbulence
on the performance of a free-space optical communication system and the suppression
of the atmospheric turbulence effect by adaptive optical technology. Assuming that only
Gaussian white noise is added to the communication system, and the error caused by other
factors is not considered, under the condition that the matching filter is an ideal linear filter,
the input signal of the matching filter can be expressed as:
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x(t) =
√

P + n(t) (1)

where P represents the peak optical power of the emitted light pulse, while n(t) represents
white Gaussian noise with a mean of 0 and a variance of σn

2. The resulting signal-to-noise
ratio is:

SNR =
P
σ2

n
(2)

The probability of misidentifying datum 1 as datum 0 is set to P1−0, and the probability
of misidentifying datum 0 as datum 1 is set to P0−1; then, we can obtain that [22,27]:
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where the error function er f (x) = 2√
π

x∫
0

e−t2
dt, k is the decision threshold, and then the bit

error rate of the PWM method is [44,47]:
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1
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√
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Figure 3. Principle of pulse width modulation and demodulation [34].

B. Theory of laser relay station networking

Figure 4 is a schematic diagram of the structure of the laser relay station networking
system we constructed. The system consists mainly of a repeater and multiple transceivers.
The repeater can simultaneously realize the integration of the transceiver in any direction
on the same receiving level, and the transceiver can transmit data in any direction within
360◦ centered on the repeater, while the repeater can send data to other transceivers in any
direction, without considering the high-precision alignment between the transmitter end
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and the final receiving end, and also avoid the signal interference problem when multiple
devices in different positions are cross-laser communication.
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The transceiver can be placed anywhere around the repeater, the repeater is responsible
for transmitting data, and the transceiver can send data to the repeater or receive the data
forwarded by the repeater. When the transceiver transmits data, it first encodes the address
of the data to be transmitted, specifies the position of the receiving end, and then modulates
the encoded data. The data are sent in the form of a laser signal through laser secondary
light (LD), realizing the conversion from a digital signal to an optical signal. In Figure 4, TX
represents the laser signal sent by the transceiver to the repeater, which contains address
information and data. The laser transceiver area in the repeater contains an avalanche
photodiode and laser diode, which can be used for laser transmission and laser reception,
realizing the function of the integrated transceivers. In the repeater, it is necessary to
scan and control the photodetectors in all directions, so as to receive the laser signals
in different directions. The repeater demodulates the received laser signal, parses the
address information and data information, sends the data to the transceivers in different
directions according to the address information, realizes the function of address routing,
and also completes the conversion of the laser signal into a digital signal. Therefore, the
data demodulation and re-modulation are completed in the repeater. TX represents the
laser signal sent by the repeater to the transceiver. This signal is a re-modulated optical
signal. Because they specify the specific direction of the receiver, the RX signals only contain
data. When the transceiver is used as a receiver, it is only responsible for receiving the laser
signal sent by the repeater and demodulating it. The demodulated data are the data that the
transmitter wants to send to the target receiver transmitter, enabling laser communication
between the transceivers in different directions.

Figure 5 shows the internal structure of the laser relay station. The data routing module
is responsible for selecting the data path and specifying the receiving and transmitting
paths. The data forwarding module completes the data demodulation and re modulation,
realizes the forwarding of the received data, and selects the forwarding path according
to the data routing module. The laser transceiver area is composed of a lens array, an
avalanche photodiode and a laser diode. The avalanche photodiode and laser diode are
close to each other to achieve laser reception and transmission through an optical lens. If
the divergence angle of the laser diode selected is 30◦, and the photosensitive area of the
avalanche photodiode is 500 µm, the placement angle of the lens array can be shown in
Figure 5. Each lens in the lens array is closely arranged, and 360◦ data can be transmitted
and received to further complete communication with transceivers in any direction.



Appl. Sci. 2023, 13, 2567 7 of 17

Appl. Sci. 2023, 13, 2567 7 of 17 
 

sary to scan and control the photodetectors in all directions, so as to receive the laser sig-

nals in different directions. The repeater demodulates the received laser signal, parses the 

address information and data information, sends the data to the transceivers in different 

directions according to the address information, realizes the function of address routing, 

and also completes the conversion of the laser signal into a digital signal. Therefore, the 

data demodulation and re-modulation are completed in the repeater. TX represents the 

laser signal sent by the repeater to the transceiver. This signal is a re-modulated optical 

signal. Because they specify the specific direction of the receiver, the RX signals only con-

tain data. When the transceiver is used as a receiver, it is only responsible for receiving 

the laser signal sent by the repeater and demodulating it. The demodulated data are the 

data that the transmitter wants to send to the target receiver transmitter, enabling laser 

communication between the transceivers in different directions. 

Figure 5 shows the internal structure of the laser relay station. The data routing mod-

ule is responsible for selecting the data path and specifying the receiving and transmitting 

paths. The data forwarding module completes the data demodulation and re modulation, 

realizes the forwarding of the received data, and selects the forwarding path according to 

the data routing module. The laser transceiver area is composed of a lens array, an ava-

lanche photodiode and a laser diode. The avalanche photodiode and laser diode are close 

to each other to achieve laser reception and transmission through an optical lens. If the 

divergence angle of the laser diode selected is 30°, and the photosensitive area of the ava-

lanche photodiode is 500 μm, the placement angle of the lens array can be shown in Figure 

5. Each lens in the lens array is closely arranged, and 360° data can be transmitted and 

received to further complete communication with transceivers in any direction. 

 

Figure 5. Internal structure diagram of the laser relay station. 

Figure 6 shows the data address routing scheme. The input signal in any direction 

can be output in any direction after the address routing selection, and the specific config-

uration is selected according to the transceiver address, or it can be set during the human–

computer interaction of the repeater; here, the address routing scheme in six directions is 

given. The address routing process is completed through a switch array—each switch has 

a different state, the input signal can choose a different path for output, and the specific 

implementation process is implemented in the FPGA. Each switch is composed of two 

two-choice data selectors; when the control terminal Select is high, the output end out_a 

corresponds to the input end in_a, and the output end out_b corresponds to the input end 

in_b; when the control terminal Select is low, the output end out_a corresponds to the 

input end in_b, and the output end out_b corresponds to the input end in_a, meaning that 

each switch has two working states. Each switch in the switch array with different states 

is combined with each other, and the signal output of any path can be realized. The output 

end in each direction corresponds to an address number. The signal input end in each 
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Figure 6 shows the data address routing scheme. The input signal in any direction can
be output in any direction after the address routing selection, and the specific configuration
is selected according to the transceiver address, or it can be set during the human–computer
interaction of the repeater; here, the address routing scheme in six directions is given.
The address routing process is completed through a switch array—each switch has a
different state, the input signal can choose a different path for output, and the specific
implementation process is implemented in the FPGA. Each switch is composed of two
two-choice data selectors; when the control terminal Select is high, the output end out_a
corresponds to the input end in_a, and the output end out_b corresponds to the input
end in_b; when the control terminal Select is low, the output end out_a corresponds to
the input end in_b, and the output end out_b corresponds to the input end in_a, meaning
that each switch has two working states. Each switch in the switch array with different
states is combined with each other, and the signal output of any path can be realized. The
output end in each direction corresponds to an address number. The signal input end in
each direction will carry a piece of address information. The address router will configure
the switch array according to the address information, so as to output the input signals
in different directions along the specified direction. If the sent data do not carry address
information, we can configure the input and output paths in human–computer interaction,
and manually select to output the input signal in the specified direction.
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C. Design of system

Figure 7 is a block diagram of the hardware composition of the point-to-multipoint free-
space optical communication system, which aims to transmit the data from the transmitter
to the receiver in different directions through the repeater. In the laser emission system,
the data in the microprocessor (MCU) are first sent to the data transmission module of
FPGA, and the data transmission module sends the obtained data to the PWM modulator
for modulation. The modulated signal drives the laser emission circuit. The optical
communication relay system can receive laser signals in all directions. The relay controller
realizes the functions of ADC sampling, data demodulation, address distribution, data
re-modulation, and the control of the receiving and transmitting directions of the received
signals in all directions. The modulated data drive the laser transmitting circuits in different
directions according to the distributed addresses. The receiving end detects the laser signal
through APD, the laser signal is sent to the PWM demodulator for demodulation through
the receiving circuit, and the demodulated data are sent to MCU through the data receiver,
thus completing point-to-multipoint free-space optical communication.
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Figure 7. Hardware composition block diagram of a point-to-multipoint free-space optical communi-
cation system.

A diagram of the operation of the relay station is shown in Figure 8, mainly composed
of a direction selector and a relay controller (inside FPGA). The direction selector is mainly
composed of ADC and analog switches. RX represents the sampling signal of ADC, which
controls the ADC to sample the received signals (RX_1~RX_n) in different directions by
controlling the analog switch. TX represents the driving signal of the laser transmitting
circuit, which drives the LD in different directions by controlling the analog switch driv-
ing signals (TX_1~TX_n). The relay system requires fast ADC sampling. Here, AD9226
from Analog Devices (ADI) Semiconductor Company was selected to achieve a sampling
frequency of 65M. The relay controller is mainly composed of a PWM demodulator, an
address resolver, a PWM modulator, and a direction controller. The principles of the PWM
modulator and the PWM demodulator are shown in Figures 9 and 10, respectively. The
direction controller controls the analog switch to further control the sampling direction
and laser emission direction of ADC. The sampling results (data) of ADC are directly
sent to the PWM demodulator for data discrimination and further data demodulation.
Point-to-multipoint communication involves each group of data having a specific code;
the demodulated data are sent to the address parser, the transmission direction target is
selected according to the different coding addresses of the data, and the data are sent to
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different receiving targets through the PWM modulator, thus realizing point-to-multipoint
free-space optical communication.
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Figure 10. Pulse width demodulation and receiving circuit.

Figure 9 is the system block diagram of the transmitting device, which is mainly
composed of a PWM modulator and a laser transmitting circuit. The PWM modulator
is contained inside the FPGA, which is mainly composed of a PWM pulse generator, a
data converter, and an optional data selector. The laser emission circuit is composed of
a voltage-controlled current source, N-MOSFET, and a laser diode (LD). The data input
to the PWM modulator is data with a bit width of 8. The data converter converts the
8-bit parallel data into serial data and modulates the converted data bit by bit. If the data
belong to datum 1, the PWM pulse generator will generate a narrower pulse signal and
send it through the data selector. If they belong to datum 0, the PWM pulse generator will
generate a wider pulse signal and send it through the data selector, and the PWM signal TX
generated by the PWM modulator drives N-MOSFET. When TX is logic level 1, N-MOSFET
is on, the voltage-controlled current source generates a constant current, and the LD emits
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light. When TX is logic level 0, N-MOSFET is off, and the LD does not emit light. Therefore,
the transmitting system realizes the function of modulating data into a PWM laser signal.

The circuit principle of the receiving device is shown in Figure 10, which is mainly
composed of a laser receiving circuit and a PWM demodulator (inside the FPGA). The laser
receiving circuit is mainly composed of an avalanche photodiode (APD), a trans-impedance
amplifier (TIA), and a reverse proportional operational amplifier. The PWM demodulator
is mainly composed of an ADC sampler, logic discriminator, pulse width discriminator,
shift controller, counter, data discriminator, and data converter. The APD photocurrent
I received by the pulse laser receiving circuit is converted into voltage V1, and then the
voltage V1 is further amplified by the second amplifier to obtain voltage V2, so the laser
signal is converted into the voltage signal RX, where the voltage V2 is:

V2 = −R3

R2
V1 = −R3

R2
(−IR1) =

R1R3

R2
I (8)

ADC samples the RX signal, converts the voltage signal into data and sends the
sampled data to the PWM demodulator.

In the PWM demodulator, the ADC sampler drives ADC to sample the RX signal. The
logic discriminator judges the logic level according to the data obtained. When logic level 1
is detected, the counter starts counting. When logic level 0 is detected, the counter stops
counting. At the same time, the pulse width detector counts the logic judgment results, the
data discriminator judges the data according to the statistical results of the pulse width
detector, and finally converts the serial 8-bit data to the parallel 8-bit data output through
the shift controller and data converter.

3. Experiment and Analysis

Figure 11 shows the test diagram of the point-to-multipoint free-space optical com-
munication system. We mainly verified that the data at the transmitting end were sent to
the receiving end in different directions through the repeater. Considering the production
cost and the convenience of the test, we created a simple optical communication system
that can send and receive data in six directions. We completed the basic prototype of
the optical communication network group technology and verified it. The system mainly
included a laser transmitter, a communication relay and three laser receivers. The hardware
circuit mainly included a laser transmitting circuit, a laser receiving circuit and a system
control circuit. A continuous laser diode was selected as the emission light source in the
laser emission circuit. Considering the safety of human eyes during the experiment, the
emission power of the laser diode was 200 mW, and the wavelength was 940 nm. The
voltage-controlled current source chip IC-HK of iC Haus Company was used to drive
the laser diode. The maximum switching frequency of 155 MH was achieved to meet the
communication requirements. LSSAPD9-500 was selected as the photodetector of the laser
receiving circuit. The APD had high reliability and low dark current, with a response band
of 400–1100 nm and a high response to 940 nm laser, which could improve the reliability of
the communication system. In the relay system, LD and APD shared a focus lens. They
fitted together and were in the focus position of the lens, saving hardware resources and
realizing the function of integrated transceiver. The system control circuit sampled FPGA
and MCU as the main control chip. FPGA was responsible for data modulation, data
demodulation, data address allocation, etc. MCU was responsible for communication
debugging, displaying the sent data or received data on the liquid crystal display (LCD).
The system displayed the data on the LCD in the form of two-dimensional images. The
FPGA was EP4CE55F23C6N from Altera Company, and the MCU was STM32F103ZET6
from Italy France Semiconductor Company.
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In the system, the test diagram of which is shown in Figure 11, we sent three 250 × 250-
pixel color pictures with 16-bit color. The picture contents were pens, pavilions, and cartoon
characters. Without moving the transmitter transmission angle, we needed to send the picture
with pen contents to receiver A, the picture with pavilion contents to receiver B, and the
picture with cartoon characters to receiver C. The three receivers were in different directions.
We fixed the repeater on the optical platform. The transmitter was 25 cm away from the
repeater, receiver A was 27 cm away from the repeater, receiver B was 30 cm away from the
repeater, and receiver C was 26 cm away from the repeater. The communication distance was
limited by the transmission power of the LD. Increasing the transmission function power
increased the communication distance. Considering the safety of the experiment, we chose
an LD with smaller transmission power and a shorter communication distance to complete
the experiment. In order to verify the point-to-multipoint optical communication system,
we sent three pictures to three different receiving targets through the relay system. The
experimental results show that the picture content received by receiver A was a pen, the
picture content received by receiver B was a pavilion, and the picture content received by
receiver C was a cartoon character. Therefore, the system realized point-to-multipoint optical
communication. At the same time, compared with the point-to-point optical communication
system, it was more flexible and efficient.

In order to verify the communication quality, we used an oscilloscope to detect the
signal waveforms of the transmitting end and the three receiving ends, respectively. The
three pictures were sent out serially in pixel units. One pixel in the picture was composed of
16-bit data. Each pixel was divided into two groups of 8-bit data and sent out successively.
Each group of data has a fixed code to represent the address of the receiver. The repeater
retransmits the data to different receiving targets according to different coded information.
In Figure 12, the yellow signal represents the signal waveform at the transmitting end, the
blue signal represents the signal waveform received by receiver A, the red signal represents
the signal waveform received by receiver B, and the green signal represents the signal
waveform received by receiver C. The modulation and demodulation of the signal are
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realized by a finite state machine. The data bit width transmitted by the transmitting end
each time is 10 bits, where the first two bits represent the receiver address code, and the
last eight bits represent the data of the picture. The repeater demodulates the signal at the
transmitting end, selects the address routing, and automatically extracts the picture data
and sends them to the designated receiving target. The receiving data at the receiving end
are 8 bits in size. The address code of receiver A is 01, that of receiver B is 10, and that of
receiver C is 11. 01_1101_1110 represents the data sent by the transmitter in Figure 12, in
which 01 represents the address information of receiver A. After the relay system recognizes
the address information, the data 1101_1110 are sent to receiver A. At this time, the data
received by receiver A do not contain address information.
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In the experiment, the cycle of PWM was T = 1.2 µs, the pulse width time of character-
ization datum 1 was T1 = 0.4 µs, and the pulse width time of characterization datum 0 was
T2 = 0.8 µs. Therefore, the transmitting end needed at least 1.2 µs to send 1-bit data, and the
receiving end needed at least 0.6 µs to demodulate 1-bit data. Since the relay system needed
to receive complete 10-bit data and send them to the receiving target through address
judgment, the signal time difference between the transmitting end and the final receiving
end was 11.975 µs. Since the transmission power of the light source is 200 mW, the average
output power of the PWM signal is:

PPWM = (
T1

T
+

T2

T
)Ps = 200 mW (9)

It takes 10 cycles to send 1 byte of data, and so the data transmission bandwidth is:

BWPWM =
1

10T
≈ 81.38 KB/s (10)

Reducing the pulse width of PWM can reduce the average output power. For example,
T1 = 0.2 µs, T2 = 0.4 µs, then the average transmission power becomes 100 mW. However,
during modulation, we needed to make the characteristics of datum 1 and datum 0 more
distinctive—that is, make the pulse width difference between the narrow pulse and the
wide pulse more obvious. Since the communication is performed in bad conditions, the too
small pulse width signal will be demodulated after APD detection, which will increase the
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error probability, Therefore, we sacrificed the average transmission power and increased
the pulse width to ensure the stability of the communication system.

To verify the stability of the system, we gently moved the three receivers so that the
transmission light source of the relay system was not directly aimed at the lens of the
receiver. In this way, the pulse signal received by the receiver was not a signal with high
energy, so the amplitude of the pulse received by the receiver could be controlled. In this
way, we simulated poor communication conditions. In Figure 13, we control the amplitude
of the received pulse voltage of receiver A to be about 2.055 V, that of receiver B to be about
1.527 V, and that of receiver C to be about 1.406 V. The yellow pulse signal represents the
drive signal of LD at the transmitting end, with a pulse amplitude of 3.3 V. The blue signal
represents the signal received by receiver A, the red signal represents the signal received
by receiver B, and the green signal represents the signal received by receiver C. The 13-bit
parallel ADC was used in this system. The highest bit represents the symbol bit, and the
sampling voltage range is −5 V~+5 V. After the ADC was calibrated, we set the threshold
voltage of the system discrimination data to about 1.17 V.
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When the signal waveform at the receiving end was not ideal, we demodulated the
received signal with ADC (ADC samples the signal and sends it to FPGA) and the signal
directly with FPGA. When the signal was demodulated directly with FPGA, we directly
sent the received pulse signal to FPGA to detect its edge and then used a counter to measure
the pulse width to demodulate the data. Figure 14 shows the picture transmission and bit
error rate of three receivers under three conditions. The ADC was used for demodulation,
and the three receivers received the corresponding pictures accurately without error. When
the FPGA was used to directly demodulate the signal when the voltage at the receiving
end was 2.055 V, receiver A successfully received the picture and there was no bit error.
When the voltage at the receiving end was 1.527 V, receiver B successfully received the
picture, but the bit error rate was high, at about 0.37437600. There were many white dots in
the picture, which is different from the original picture. When the voltage at the receiving
end was 1.406 V, the bit error rate of receiver C was 0.99958403, and the picture could not
be received, the receiving area was blank. At this time, the FPGA could not recognize the
pulse signal, resulting in the failure of information transmission.

Since the hardware circuit, mechanical structure and electronic components of the three
receivers were almost identical, in order to further verify the impact of ADC demodulation
on system stability, we conducted many experiments with receiver A. It can be seen from the
experimental results in Table 2 that when the pulse amplitude voltage at the receiving end is
between 1.661 V and 2.055 V (under the condition of a good communication environment),
ADC sampling for demodulation and FPGA direct demodulation can accurately transmit
data without bit error rate; When the pulse amplitude voltage at the receiving end gradually
decreases from 1.585 V (in the case of poor communication environment), the bit error rate
of the FPGA direct demodulation mode begins to appear, and with the gradual decrease
in the pulse amplitude voltage at the receiving end, the bit error rate gradually increases,
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and when the pulse amplitude voltage at the receiving end decreases to 1.413 V (under the
condition of a harsh communication environment), the bit error rate of the FPGA direct
demodulation mode reaches 100%; However, for the method of demodulation using ADC
sampling, when the pulse amplitude voltage at the receiving end is reduced to 1.413 V, the
system has a lower bit error rate, and when the pulse amplitude voltage at the receiving end
is reduced to 1.007 V, the system has a bit error rate of 100%. Through experimental data, we
can analyze that in the case of a good communication environment, the two demodulation
methods are no different for this system; in the case of a poor communication environment,
the ADC sampling method for demodulation can accurately transmit data. At this time, the
FPGA sampling mode has a higher bit error rate, and the data transmission is inaccurate.
In the case of a harsh communication environment, although the bit error rate occurs in
the demodulation method using ADC sampling, the data can still be transmitted, and the
FPGA direct demodulation method cannot transmit data. Therefore, this experiment proves
that demodulation using ADC sampling can increase the stability of the communication
system, and further proves that the scheme proposed by us using pulse width modulation
technology to implement a point-to-multipoint free-space optical communication system
is feasible.
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Table 2. Bit error rate corresponding to different pulse amplitudes at the receiver.

Method of demodulation
Bit Error Rate (%)

2.055 V 1.914 V 1.859 V 1.716 V 1.661 V 1.585 V 1.544 V 1.508 V

ADC demodulation 0 0 0 0 0 0 0 0

Direct demodulation 0 0 0 0 0 2.75920 3.39679 98.95840

Method of demodulation
Bit Error Rate (%)

1.413 V 1.364 V 1.311 V 1.287 V 1.233 V 1.197 V 1.007 V 0.965 V

ADC demodulation 0.001605 16.64621 29.18241 38.39984 44.65121 99.53920 100 100

Direct demodulation 100 100 100 100 100 100 100 100
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4. Discussion

Table 3 compares some of the performances of the free-space optical communication
system, mainly including the response time of the receiving end, whether frame synchro-
nization is required, and whether mechanical alignment is required. It is obvious that our
system does not need frame synchronization when realizing point-to-multipoint free-space
optical communication, greatly simplifying the demodulation circuit, and does not need
to perform mechanical scanning to lock the direction of data transmission, demonstrating
certain advantages compared with other free-space optical communication systems. In
addition, compared with point-to-multipoint free-space optical communication systems
that require mechanical alignment, our system has obvious advantages in its response time
at the receiving end. Although the point-to-point free-space optical communication system
has a fast response speed, its function is singular and it cannot complete point-to-multipoint
data transmission, so our system has certain advantages in realizing point-to-multipoint
free-space optical communication.

Table 3. Performance comparisons of the reported laser communication system.

Structures of FSO
Communication System

Multi-Destination
Data Transfer Response Time Frame

Synchronization
Mechanical
Alignment Refs

Rotating double prism Yes 1.5 s Yes Yes [3]
magnetometer sensors Yes <5 s — Yes [7]
VIPA-based 2D optical

beam-steering technique Yes — Yes No [11]

Point-to-Point System No 28.87 ns No No [34]
wavelength-division

multiplexing Yes — Yes No [46]

Relay system Yes 11.957 us No No Our work

5. Conclusions

In this paper, we use PWM modulation technology combined with the data routing and
forwarding capabilities of laser relay stations to realize free-space optical communication
networking, and use high-speed ADC to demodulate the received signal, which increases
the stability of the free-space optical communication system. A series of two-dimensional
image transmission experiments and bit error rate test experiments are carried out on the
system. The experimental results show that the system is more flexible than the point-to-
point laser communication system, and the communication quality is higher. At the same
time, the system realizes point-to-multipoint free-space optical communication without
adjusting the transmission angle, we believe that the system proposed in this paper can
provide an effective solution for free-space optical communication networking technology.
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