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Abstract: Target localization has been a popular research topic in recent years since it is the basis
of all kinds of location-based applications. For GNSS-denied urban or indoor environments, the
localization method based on time-of-arrival (TOA) is one of the most popular localization meth-
ods due to its high accuracy and simplicity. However, the Non-line-of-sight (NLOS) error is the
major cause that degrades the accuracy of the TOA-based localization method. Identifying whether
a received signal at a base station (BS) is due to a line-of-sight (LOS) transmission or NLOS is the key
to TOA-based localization methods. In the popular LOS signal identification methods, compared
with statistic signal methods and machine learning methods, the geometric constraint method has
the advantages of simplicity and without requiring priori knowledge of signals and large amounts of
training datasets. In this paper, we propose a geometric constraint two-step LOS signal identification
method based on common chord intersection point position deviation from mobile stations (MS).
In the first step, all BSs are divided into multiple BS combinations with every three BSs, the TOA
distance error of each BS combination is estimated based on common chord intersection point position
deviation from MS, the BS combinations whose TOA distance error satisfy Gaussian distribution
are roughly identified as LOS BS combination and enter the second step, the other BS combinations
are discarded as NLOS BS combination. In the second step, based on mutual distance threshold
and discrimination result matrix, common chord intersection points of LOS BS combination, and
corresponding LOS BS combinations are identified. The BSs of LOS BS combinations are identified
as LOS BS and the signals received at LOS BS are identified as LOS signal ultimately. Compared
with the other two geometric constraint methods, the proposed algorithm has better identification
accuracy, and the setting of the identification threshold value has a theoretical basis, which facilitates
the application of the proposed algorithm.

Keywords: common chord; intersection point; identification; line-of-sight (LOS)

1. Introduction

With the rapid development of the Internet of Things and wireless technology, target
localization has been a popular research topic in recent years [1–6]. Target localization has
a variety of applications, such as emergency assistance, target tracking, geographical
routing protocols, environmental monitoring, and intelligent transportation systems. In
GNSS-denied urban or indoor environments, accurate localization is still an unsolved prob-
lem due to the unavailability or degradation of GNSS signals. For GNSS-denied urban or
indoor environments, measurements in localization typically include distance-based param-
eters such as time-of-arrival (TOA) [7–11] and time-difference-of-arrival (TDOA) [12,13],
angle-of-arrival (AOA) [14,15], or their combinations [16]. However, the TOA-based meth-
ods, which are also known as range-based methods, are the most common ones due to high
accuracy and simplicity.
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The TOA-based algorithms have been proved to be very effective when applied to
open-air environments, in which the line-of-sight (LOS) paths are dominant. However,
Non-line-of-sight (NLOS) radio propagation between source, e.g., mobile station (MS),
and sensor, e.g., base station (BS), generally exists in the localization scenarios due to
dense obstacles or buildings, which dramatically degrades the performance of TOA-based
localization algorithm. NLOS propagation results in time and corresponding distance
measurements error. For TOA-based localization algorithm, the extra propagation distance
of the NLOS path directly leads to an overestimate of the distance between the source
and sensor. This causes a severe degradation of localization accuracy if the TOA-based
localization algorithm for LOS scenarios is directly employed. NLOS is considered as the
most severe source of TOA-based localization errors [17,18].

To mitigate the NLOS impact, a variety of algorithms have been proposed in the
literature. Algorithms for NLOS impact mitigation can be broadly divided into three ways.
The first way tries to mitigate the negative impact of NLOS measurements and exploits both
LOS and NLOS signals such as propagation model compensation method [19–22]. This
way requires an explicit knowledge of the NLOS propagation model, which has limitations
in practical applications. The second way is virtual base station method, which locates the
scatterers in NLOS environment firstly, and then regards scatterers as virtual base stations
for LOS localization, so the localization of NLOS scenario is converted into a problem
of LOS, and its performance depends on the localization accuracy of scatterers [23–27].
This way usually requires assumption or prior knowledge about the scatterer, BS or MS,
which limits its applicability in many situations. The third way identifies LOS and NLOS
signals first, and then discards NLOS signals, so that only the LOS signals are applied
for localization [28–39]; unlike the other two ways, it requires at least three LOS signals
for localization. The performance of the third way will be close to the Cramer-Rao lower
bound (CRLB) when the algorithm has high identification accuracy, therefore, accurately
identifying the LOS signals and using them for localization can improve the localization
accuracy greatly, we will consider the third way in this paper.

For the identification of LOS/NLOS signals, the algorithms can be mainly divided
into three categories. The first category is machine learning method [28–31], based on
training data set and machine learning algorithm, LOS/NLOS signals can be identified.
This category of methods requires a large amount of training data for pre-training, and
the independent identical distribution (i.i.d) of data cannot be guaranteed usually due to
different practical scenarios. The second category is the statistical signal method, which uti-
lizes statistical characteristics of received signal to achieve the identification of LOS/NLOS
signals [32–35]. This category of methods requires priori knowledge of signals, which is an
unrealistic assumption in practical scenario usually. The third category is the geometric
constraint method, which identifies LOS/NLOS signals based on the spatial geometric rela-
tionship between the sensors and source. For the reason of simplicity, only requiring TOA
measurements, and without requiring priori knowledge and a large amount of training
datasets, the geometric constraint method has received immense attention in the research
society [36–39].

In geometric constraint methods, reference [36] provided residual testing (RT) algo-
rithm, which adopted approximate maximum likelihood (AML) to estimate the position
of signal source in recursive procedure based on TOA measurements, if all measurements
are LOS signals, then the residuals normalized by the Cramer–Rao lower bound, will have
a central Chi-square distribution. If there are NLOS signals, the distribution is noncentral
Chi-square. Consequently, LOS/NLOS signals were identified by the residual testing. The
authors of [37,38] improved the algorithm of [36] in computational complexity. The authors
of [39] provided a two steps area measurement (AM) algorithm. In the initial identifica-
tion step, the BS combinations including three BSs, whose overlapping area are smaller
than threshold or not being, are identified as LOS BS combinations. Then, residual test,
overlapping area measurement or statistical method are adopted to identify the LOS signal
ultimately. Compared with the RT algorithm, the AM algorithm improves identification
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accuracy greatly, but the setting of the identification threshold value lacks a theoretical
basis, which limits its applicability in practical environments.

In this paper, a novel geometric constraint LOS signal identification method is pro-
posed to improve identification accuracy of LOS signals. Compared with the above two ge-
ometric constraint algorithms, the proposed method has better identification accuracy and
is more convenient to implement in a practical scenario. The main contributions of this
paper are three folds.

1. Better identification accuracy. We propose a two-step LOS signal identification
algorithm based on common chord intersection point position deviation from MS. Com-
pared with RT algorithm and AM algorithm, the proposed algorithm has better identifica-
tion accuracy.

2. Providing the basis of the setting of the identification threshold value. Based
on the characteristics of LOS error and Gaussian distribution, we derive the setting of
identification threshold value, which facilitates the application of the proposed algorithm.
Simulation results are in agreement with the results of derivation.

3. A novel clustering method. Based on characteristic of position distribution of
common chord intersection point, we provide a concise and efficient clustering method to
identify common chord intersection points of LOS BS combinations.

The remainder of the paper is organized as follows. Section 2 introduces the system
model, Section 3 describes the first step of proposed algorithm, and the second step is
illustrated in Section 4, Section 5 shows simulation results to demonstrate the effectiveness
of the proposed algorithm, and final conclusions are summarized in Section 6.

2. System Model

We consider a two-dimensional (2-D) localization scenario. The task is to locate
a source signal, e.g., an MS from the measurements of sensors, e.g., BS, and moreover,
MS and BS operate in an environment where NLOS signals may exist. For TOA-based
localization algorithm, three BSs are used to locate the MS, the corresponding three BSs are
referred to as a BS combination.

The geometric position relationship of three BSs and MS in absence of distance error,
including measurement noise error and NLOS error, is depicted as Figure 1. The circle
constructed with BS as the center and the distance between the MS and the BS as the radius,
is referred to as the localization circle. The connecting line between the intersection points
of two localization circles is referred to as the common chord of the two localization circles.
Obviously, in environments without measurement noise error and NLOS error, for the same
MS and three BSs, the three localization circles intersect at a point, and the corresponding
three common chords intersect at a point too. Furthermore, the two intersection points
(denoted by point P) all overlap with the position of MS, which is shown in Figure 1.
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However, in practical environments, measurement noise error is inevitable, and NLOS
error may occur due to the presence of obstruction. Therefore, the three localization
circles no longer intersect at a point although the corresponding three common chords still
intersect at a point, and the intersection point of three common chords no longer overlaps
with the position of MS, which is depicted as Figure 2.
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For the condition of Figure 2, let ri is the actual distance between ith BS and MS. The
distance error corresponding to ri, which results from measurement noise error or NLOS
error, is denoted as ∆ri. Then, the measurement of the distance between ith BS and MS, ri

′,
can be written as

r′i = ri + ∆ri = ri + ni + ei, (1)

where ni denotes measurement noise error satisfying Gaussian distribution, and ei denotes
NLOS error with positive value if the ith BS received signal is due to NLOS transmission.
Clearly, when the ith BS received signal is due to LOS transmission, ei = 0, and the
corresponding ith BS is referred as LOS BS, otherwise, the ith BS is referred as NLOS BS.
So, the identification of LOS/NLOS signals can be converted into the identification of
LOS/NLOS BSs.

When the received signals at the three BSs of BS combination are all due to LOS
transmission, i.e., ei = 0 (i = 1, 2, 3), ∆ri(i = 1, 2, 3) only results from measurement noise
error, ∆ri is small or not being, thus the distance between MS and the intersection point of
three common chords (referred as common chord intersection point for simplicity in the
following) is small or not being, the BS combination is referred as LOS BS combination.
Accordingly, each BS of LOS BS combination is LOS BS, because it only receives LOS signal
from MS.

However, if any received signal at the three BSs of BS combination is due to NLOS
transmission, i.e., ei 6= 0 (i = 1 or 2 or 3), corresponding ∆ri (i = 1 or 2 or 3) is much
greater, the distance between MS and common chord intersection point increases greatly,
corresponding BS combination is referred to as NLOS BS combination. Among the three
BSs of NLOS BS combination, there must be NLOS BS, but the three BSs are not necessarily
all NLOS BS.

Therefore, we can identify a BS combination is LOS BS combination or not, based on
the distance between MS and common chord intersection point. On the basis of LOS BS
combination identification, all BSs of LOS BS combination are identified as LOS BSs

According to this idea, all BSs receiving signal from the same MS are divided into
multiple BS combinations with every three BSs, for instance, n BSs can be divided into C3

n
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BS combinations, one BS can belong to multiple BS combinations when the number of BS is
more than three. Each BS belonging to LOS BS combination is identified as LOS BS and
a BS can be identified as LOS BS because it belongs to any LOS BS combination. The signals
received at LOS BSs are identified as LOS signals.

Let the coordinate of the common chord intersection point is (x′, y′), the coordinates of
three BSs are (x1, y1), (x2, y2) and (x3, y3), respectively. Thus, for the case of measurement
noise error or NLOS error exist, i.e., ∆ri 6= 0 (i = 1, 2, 3), the linear equations of the three
common chords can be expressed as Equations (2):

k1 − k2 + 2x′ · (x2 − x1) + 2y′ · (y2 − y1) = r1
′2 − r2

′2

k1 − k3 + 2x′ · (x3 − x1) + 2y′ · (y3 − y1) = r1
′2 − r3

′2

k2 − k3 + 2x′ · (x3 − x2) + 2y′ · (y3 − y2) = r2
′2 − r3

′2
(2)

where ki = xi
2 + yi

2, i = 1, 2, 3. Equations (2) can be rewritten as the form of matrix,

δ′ = A′·θ′ (3)

where

δ′ =

r1
′2 − r2

′2 − k1 + k2

r1
′2 − r3

′2 − k1 + k3

r2
′2 − r3

′2 − k2 + k3

 (4)

A′ =

2(x2 − x1)
2(x3 − x1)
2(x3 − x2)

2(y2 − y1)
2(y3 − y1)
2(y3 − y2)

 (5)

θ′ =

[
x′

y′

]
(6)

Similar to Equation (3), for the case of without measurement noise error and without
NLOS error, i.e., ∆ri = 0 (i = 1, 2, 3), we can obtain

δ = A·θ (7)

where δ, A and θ correspond one-to-one to δ′, A′ and θ′ for the case of measurement noise
error or if the NLOS error exists.

Suppose that coordinate of MS is (x, y), and the coordinate deviation of common
chord intersection point from MS is (∆x, ∆y), i.e., x′ = x + ∆x and y′ = y + ∆y, then

θ′ =

[
x′

y′

]
=

[
x
y

]
+

[
∆x
∆y

]
= θ + ∆θ (8)

where θ =

[
x
y

]
and ∆θ =

[
∆x
∆y

]
.

Obviously, θ is independent of the measurement noise error and NLOS error, but the
two categories error all have impact on ∆θ.

Similarly, dividing the other two variables of Equation (3) into two parts: error-related
and error-independent, Equation (3) can be written as

(δ + ∆δ) = (A + ∆A)·(θ + ∆θ) (9)



Appl. Sci. 2023, 13, 2566 6 of 17

where δ′ = δ + ∆δ, A′ = A + ∆A, and

δ′ =

(r1 + ∆r1)
2 − (r2 + ∆r2)

2 − k1 + k2

(r1 + ∆r1)
2 − (r3 + ∆r3)

2 − k1 + k3

(r2 + ∆r2)
2 − (r3 + ∆r3)

2 − k2 + k3


=

(r1
2 − r2

2 − k1 + k2) + (∆r1
2 + 2r1∆r1)− (∆r2

2 + 2r2∆r2)(
r1

2 − r3
2 − k1 + k3

)
+ (∆r1

2 + 2r1∆r1)− (∆r3
2 + 2r1∆r3)(

r2
2 − r3

2 − k2 + k3
)
+ (∆r2

2 + 2r2∆r2)− (∆r3
2 + 2r1∆r3)


(10)

Let

δ =

r1
2 − r2

2 − k1 + k2
r1

2 − r3
2 − k1 + k3

r2
2 − r3

2 − k2 + k3

 (11)

which is independent of measurement noise error and NLOS error, and

∆δ =

(∆r1
2 + 2r1∆r1)− (∆r2

2 + 2r2∆r2)
(∆r1

2 + 2r1∆r1)− (∆r3
2 + 2r1∆r3)

(∆r2
2 + 2r2∆r2)− (∆r3

2 + 2r1∆r3)

 (12)

which is related to measurement noise error and NLOS error.
Substitute (7) into (9), and note that A′ only depends on the coordinates of BSs, which is

independent of measurement noise error and NLOS error, i.e., ∆A = 0, then we can obtain

∆δ = A·∆θ (13)

3. First Step of Identification Algorithm

For LOS BS combination, there is only measurement noise error, the distance error
corresponding to ri, i.e., ∆ri , should satisfy Gaussian distribution. Hence, if we can estimate
∆ri on the basis of measurements of the distance between BS and MS, i.e., ri

′ (i = 1, 2, 3),
we can identify the LOS BS combination based on whether estimate of ∆ri satisfies Gaussian
distribution. Without loss of generality, suppose that ∆ri satisfies Gaussian distribution
with zero mean and standard deviation σ when there is only measurement noise error.

If there is only measurement noise error, we can obtain

ri � ∆ri (i = 1, 2, 3) (14)

so, we can approximate ∆δ as

∆δ ∼=

2∆r1r1 − 2∆r2r2
2∆r1r1 − 2∆r3r3
2∆r2r2 − 2∆r3r3

 =

2r1 −2r2 0
2r1 0 −2r3
0 2r2 −2r3

 ·
∆r1

∆r2
∆r3

 = R·∆R (15)

where

R =

2r1 −2r2 0
2r1 0 −2r3
0 2r2 −2r3

, ∆R =

∆r1
∆r2
∆r3

 (16)

Substitute (15) and (16) into (13) yields

R·∆R = A·∆θ (17)

According to Equation (17), if we can obtain the coordinate deviation of common
chord intersection point from MS, i.e., ∆θ, and R, we can obtain an estimate of ∆R, i.e.,
estimate of ∆r1, ∆r2 and ∆r3, and then identify LOS BS combination based on whether the
estimate of ∆ri (referred as ∆ri for simplicity in the following) follows Gaussian distribution,
because the estimate of ∆ri should follow the Gaussian distribution if only measurement
noise error exists.
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Note R, i.e., ri, is the actual distance between ith BS and MS, which is unknown.
Nevertheless, because of measurement noise error satisfies Gaussian distribution with
zero mean, ri is an unbiased estimate of the measurement of the distance between ith
BS and MS, i.e., ri

′. Thus, we approximate ri in R with ri
′ in (17) for the case of only

measurement noise error exists, that is

R ∼= R′ =

2r1
′ −2r2

′ 0
2r1
′ 0 −2r3

′

0 2r2
′ −2r3

′

 (18)

On the other hand, the coordinate deviation of common chord intersection point from
MS, i.e., ∆θ is unknown, too. Similar to reference [39], for the case of only measurement
noise error exists, we can adopt the mean value of the coordinates of three intersection
points of three localization circles to approximate the actual coordinate of MS. Meanwhile,
the coordinate of common chord intersection point can be solved according to Equation (2).
On the basis of approximation of MS coordinate and common chord intersection point
coordinate, corresponding coordinate deviation ∆θ can be solved.

Substitute the approximation of ∆θ and R into (17), and with least squares method,
the estimate of ∆R, denoted by ∆Rest, can be obtained as

∆Rest = argmin‖R′·∆R− A·∆θ‖2 (19)

It should be noted that, though it is ∆R cause ∆θ instead of ∆θ cause ∆R, we can
inversely deduce the estimate of ∆R according to ∆θ, and then identify whether the estimate
of ∆R satisfies Gaussian distribution.

Without loss of generality, we can suppose that ei � ni. As depicted in Figure 3a, when
received signals are all LOS signal, the distance between MS and common chord intersection
point is very short, and ∆ri (i = 1, 2, 3) are all small. However, when the received signal
of any BS in BS combination is due to NLOS transmission, i.e., ei 6= 0 (i = 1 or 2 or 3), for
instance BS1 in Figure 3b, corresponding NLOS error will result in the distance between MS
and common chord intersection point increases greatly, accordingly, ∆θ increases greatly,
too. According to Equation (17), the estimate of ∆R will increase greatly, and the estimate of
∆rj (j 6= i) will increase greatly, too. Thus, the probability of P(∆r1 < σ & ∆r2 < σ & ∆r3 < σ)
can be approximated with P(∆ri < σ ) (i = 1 or 2 or 3).

For Gaussian distribution, 68.2% of the measurement noise errors lie within 1 standard
deviations of the mean and 95.5% lie within 2 standard deviations. Let 1 standard deviations
σ as the identification threshold value of ∆ri satisfies Gaussian distribution; in other words,
if received signals at the three BSs are all due to LOS transmission, they should satisfy the
following inequality,

∆r1 < σ & ∆r2 < σ & ∆r3 < σ (20)

Then, when only measurement noise error exists, the probability of a LOS BS combina-
tion is misjudged as a NLOS BS combination, denoted by Pmis, is estimated as following

Pmis = 1− P(∆r1 < σ & ∆r2 < σ & ∆r3 < σ) ∼= 1− P(∆ri < σ ) ∼= 31.8% (21)

If there are four BSs are LOS BS in all BSs, for any LOS BS of the four LOS BS, it belongs
to C2

3 = 3 LOS BS combinations, thus, the probability of this LOS BS is misjudged as NLOS
BS is

Pmis
3 ∼= 3.2 % (22)
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Figure 3. Demonstration of the variation of distance between MS and common chord intersection
point (a) in absence of NLOS error (b) in presence of NLOS error e1 6= 0.

As shown in Equations (21) and (22), when only measurement noise error exists, for
the case of four BSs are LOS BS in all BSs, if we choose one standard deviations σ as the
identification threshold value of ∆ri only resulting from measurement noise errors, although
the probability of a LOS BS combination is misjudged as a NLOS BS combination is up to
31.8%, the probability of LOS BS is misjudged as NLOS BS is small enough to be neglected.
Therefore, we can choose 1 standard deviations σ as the identification threshold value. As
the number of LOS BS continues to increase, the probability of LOS BS is misjudged will
decrease dramatically.

Nevertheless, if there are only three BSs are LOS BS in all BSs, for any BS of the three
LOS BSs, it only belongs to one BS combination, the probability of LOS BS is misjudged,
i.e., the probability of the sole LOS BS combination is misjudged as NLOS BS combination,
is up to 31.8%. Therefore, when only measurement noise error exists, for the case of
only three BSs are LOS BS in all BSs, identification threshold value of ∆ri only resulting
from measurement noise errors, should be amplified from 1 standard deviations to 2σ,
corresponding identification inequality is

∆r1 < 2σ & ∆r2 < 2σ & ∆r3 < 2σ (23)
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When only measurement noise error exists, and only three BSs are LOS BS in all BSs, if
we choose two standard deviations as identification threshold value of ∆ri only resulting
from measurement noise errors, the probability of LOS BS is misjudged as NLOS BS, which
equals to the probability of LOS BS combination is misjudged as NLOS BS combination, is

Pmis = 1− P(∆r1 < 2σ & ∆r2 < 2σ & ∆r3 < 2σ) ∼= 1− P(∆ri < 2σ ) ∼= 4.5% (24)

The probability of LOS BS is misjudged is small enough to be neglected, so we can
choose two standard deviations (2σ) as the identification threshold value for the case of
only three BSs are LOS BS in all BSs. If there are multiple BS combinations satisfying
Inequality (23), adopting the same method in [39], the BS combination, which has the least
overlapping area, is identified as the sole LOS BS combination. The overlapping area is the
area of triangle whose three vertices are intersection points of the three localization circles.

Accordingly, the first step of algorithm procedure can be summarized as follows.
1. All BSs receiving signal from the same MS are divided into multiple BS combinations

with every three BSs.
2.1. If there is not any BS combination satisfying inequality (20), the BS combination

which satisfy inequality (23) and has the least overlapping area, is identified as LOS BS
combination, and the whole identification procedure is completed. If there is not any BS
combination satisfying inequality (23), we conclude that the number of LOS BS less than
three, and the whole identification procedure is completed.

2.2. If there is only one BS combination satisfying inequality (20), this BS combination
is identified as LOS BS combination, and the whole identification procedure is completed.

2.3. If there are more than one BS combination satisfying inequality (20), corresponding
BS combinations are roughly identified as LOS BS combination and enter the second step of
identification algorithm, the other BS combinations are discarded as NLOS BS combination.

4. Second Step of Identification Algorithm

With identification Inequality (20), LOS BS combinations can be identified roughly.
Note that Inequality (20) may have a small probability in presence of NLOS error. Hence,
identification Inequality (20) can only roughly identify LOS BS combination, but cannot
eliminate all NLOS BS combinations, the remaining will be eliminated by the second step.

For LOS BS combination, the coordinate deviation of common chord intersection
point from MS, only results from measurement noise errors. Therefore, corresponding
common chord intersection points are randomly distributed near the position of MS, these
intersection points are close to each other and are all close to MS. Nevertheless, for the NLOS
BS combination, the NLOS error may lead to much greater coordinate deviation between
common chord intersection point and MS, which causes corresponding intersection points
are far away from that of LOS BS combinations and MS. After the first step, most NLOS
BS combination are eliminated, so the intersection points corresponding to the NLOS BS
combinations are outliers in all common chord intersection points in the second step. Thus,
we can furtherly identify the LOS BS combinations based on the distance between these
common chord intersection points.

The schematic diagram of distribution of common chord intersection points after the
first step is shown in Figure 4. Most of the common chord intersection points are close to
each other and near MS, the other few common chord intersection points, which correspond
to NLOS BS combinations, are far away from that of LOS BS combination and MS.

To make full use of the characteristic that the common chord intersection points of LOS
BS combinations are all near MS and reduce the computational complexity, in this paper,
instead of adopting traditional clustering algorithm to identify common chord intersection
points corresponding to LOS combination, for every two common chord intersection points,
we introduce mutual distance threshold to judge whether the two intersection points are
close to each other and whether they are near MS at the same time. For any two intersection
points, only the mutual distance is less than the mutual distance threshold, corresponding
two intersection points are judged as being close to each other and being near MS. On
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this basis, for all common chord intersection points in second step, threshold matrix and
discrimination result matrix are introduced, then the judgement of whether common chord
intersection points are close to each other and whether they are all near MS is achieved.

Now we discuss how to choose the proper mutual distance threshold for judgement
of whether two intersection points are close to each other and near MS. The illustration as
to how to determine the mutual distance threshold is shown in Figure 4. Point P denotes
the position of MS, point O denotes common chord intersection point of a BS combination,
|PO| denotes the distance between point O and MS. Point Q and |PQ| is similar.

Based on (17), we can get

∆θ = A−1·R·∆R =
(

AT ·A
)−1
·AT ·R·∆R (25)

let
K =

(
AT ·A

)−1
·AT ·R (26)

(25) would become
∆θ = K·∆R (27)
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According to Equation (27), we can obtain the coordinate deviation of common chord
intersection point from MS under the condition of giving ∆R,

∆x = k11·∆r1 + k12·∆r2 + k13·∆r3 (28)

∆y = k21·∆r1 + k22·∆r2 + k23·∆r3 (29)

where kij is the element of matrix K, ∆x and ∆y is coordinate deviation of common chord
intersection point from MS on X axis and Y axis, respectively.
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Taking absolute value in both sides of (28) and (29) and using the inequality rela-
tion yields

|∆x| = |k11·∆r1 + k12·∆r2 + k13·∆r3| ≤
|k11·∆r1|+ |k12·∆r2|+ |k13·∆r3|

(30)

|∆y| = |k21·∆r1 + k22·∆r2 + k23·∆r3| ≤
|k21·∆r1|+ |k22·∆r2|+ |k23·∆r3|

(31)

For the case of LOS BS combination, the distance error of each LOS BS, i.e., ∆ri(i = 1, 2, 3)
only results from measurement noise error. Similar to first step, in Inequality (30) and
Inequality (31), ri in R can be approximated by ri

′, and let ∆ri = σ, thus, the upper bound of
|∆x|, denoted by |∆xmax|, and upper bound of |∆y|, denoted by |∆ymax|, can be expressed as

|∆xmax| = |k11·σ|+ |k12·σ|+ |k13·σ| (32)

|∆ymax| = |k21·σ|+ |k22·σ|+ |k23·σ|. (33)

Thus, for the ith LOS BS combination, the upper bound of distance between common
chord intersection point and MS can be calculated as

di =
√
|∆xmax|2i + |∆ymax|2i , (34)

where |∆xmax|i and |∆ymax|i is upper bound of coordinate deviation between common
chord intersection point of ith BS combination and MS on X axis and Y axis, respectively.

As shown in Figure 4, according to the triangle edge-length relation, we can have

OQ < |PO|+ PQ (35)

Based on Inequality (35), for the case of LOS BS combination, the upper bound of the
mutual distance between common chord intersection point of ith BS combination and that
of jth BS combination, tij, can be expressed as

tij =
√

∆xmax
2
i + ∆ymax

2
i +

√
∆xmax

2
j + ∆ymax

2
j (36)

The tij can be used as the mutual distance threshold to identify whether the two com-
mon chord intersection points are close to each other and whether the two common chord
intersection points are near MS.

For each pair of BS combinations, there is a corresponding mutual distance threshold.
Suppose that there are n BS combinations and corresponding n common chord intersection
points in the second step, the corresponding mutual distance threshold matrix is given by

threshold =

t11 · · · t1n
...

. . .
...

tn1 · · · tnn

 (37)

Let the common chord intersection point distance matrix of n BS combinations is

dis =

d11 · · · d1n
...

. . .
...

dn1 · · · dnn

, (38)

where dij is the distance between common chord intersection point of ith BS combination
and that of jth BS combination.
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Subtracting (37) from (38), let REij = dij − tij, and adopt following discrimina-
tion expression

reij =

{
1 i f REij< 0, i.e. tij >dij

0 i f REij > 0, i.e. tij < dij
, (39)

we can obtain the discrimination result matrix

resu =

re11 · · · re1n
...

. . .
...

ren1 · · · renn

 (40)

In the discrimination result matrix resu, the elements of row i demonstrate the distance
between common chord intersection point of of ith BS combination and that of other
BS combinations. reij = 1 illustrates that common chord intersection point of ith BS
combination and that of jth BS combination are close to each other and the two intersection
points are all near MS. The elements equaling to 1 in row ith form an intersection point set,
in which all intersection points are close to each other and near MS. For instance, suppose
that in 5th row, re51, re52, re54 and re55 equal to 1 and the other elements equal to 0, this
denotes that the common chord intersection points of 1st, 2nd, 4th and 5th BS combination
are close to each other and are all near MS, and the other intersection points are far away
from the above intersection points and MS.

For n rows discrimination result matrix, there are n intersection point sets. In the
second step of identification algorithm, most NLOS BS combinations have been eliminated
in first step, and the common chord intersection points corresponding to the rest of NLOS
BS combinations should be outliers in all intersection points. Therefore, for n intersection
point sets of discrimination result matrix, the intersection point set, which has the maximum
number of elements equaling to 1, can be identified as the intersection point set corresponds
to LOS BS combinations, and the BSs belonging to these LOS BS combinations are identified
as LOS BS.

Now, the whole proposed algorithm can be summarized as follows.
1. Construct BS combinations with every three BSs.
2. Calculate the coordinates of three intersection points of three localization circle for

each BS combination.
3. Calculate the coordinate of common chord intersection point for each BS combina-

tion.
4. Estimate ∆Rest using (19) and then obtain estimate of ∆ri.
5.1. If there is not any BS combination satisfying (20), identify LOS BS combination

with (23), if there is still no BS combination satisfying (23), we conclude that the number
of LOS BS less than 3, and the whole identification procedure ends. Otherwise, the BS
combination which satisfies (23) and has the least overlapping area, is identified as LOS BS
combination, the BSs which belong to this LOS BS combination are identified as LOS BS,
and the whole identification procedure ends.

5.2 If there is only one BS combination satisfying (20), it is identified as LOS BS
combination, the BSs which belong to this LOS BS combination are identified as LOS BS,
and the whole identification procedure ends.

5.3 If there are more than one BS combination satisfying (20), the BS combinations
which satisfy (20) are roughly identified as LOS BS combination and enter the second step of
identification algorithm, the other BS combinations are discarded as NLOS BS combination.

6. Calculate mutual distance threshold for every two common chord intersection
points using (36), then obtain mutual distance threshold matrix threshold with (37).

7. Calculate the distance matrix dis of all BS combinations.
8. Obtain discrimination result matrix resu using discrimination expression (39).
9. The intersection point set, which has the maximum number of elements equaling

to 1, is identified as common chord intersection point set which corresponds to LOS BS
combinations.
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10. All BSs belong to LOS BS combination are identified as LOS BS ultimately.
The flow chart of the proposed algorithm is shown in Figure 5.
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5. Simulation and Analysis

Simulations are carried out to evaluate the performance of the proposed algorithm.
In order to compare performance of the three geometric constraint algorithms, the same
scenario as [36,39] is considered for data generation. As shown in Figure 6, seven BSs are
located at (6000, 0), (3000, −6000), (−3000, −5000), (−6000, −1000), (−4000, 6000), (0, 5000)
and (4000, 6000), respectively, MS is located at (2000, 1000), all units are in meters. The
measurement noise error of distance of TOA satisfies Gaussian distribution with zero mean
and standard deviation σ, σ equals to 9 or 18, which denotes low measurement noise error
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or high measurement noise error, respectively. The NLOS error of distance of TOA satisfies
uniform distribution from 100 to 1300. Each of the data in the tables below are calculated
from 1000 independent trials. In the simulations, the number of LOS BSs varies from three
to seven, the NLOS BS and LOS BS are randomly selected from the seven BS for each trial.
The correct identification is defined as all LOS BSs are correctly identified and all NLOS
BSs are correctly identified, too. The performance of the proposed algorithm is compared
with the other two geometric constraint methods, RT algorithm and AM algorithm.
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For the case of σ equals 9, the performance comparison is shown in Table 1. The
proposed algorithm outperforms the RT algorithm greatly. Compared with AM algorithm,
when there are only three LOS BS, i.e., there is only one LOS BS combination, the two al-
gorithms have the same accuracy because the second step of proposed algorithm cannot
be performed, and the two algorithms adopt the same method. However, when there are
four or more LOS BS, proposed algorithm outperforms AM algorithm. This demonstrates
that the effectiveness of second step of proposed algorithm, which helps to improve the
performance of the proposed algorithm when there are more than three LOS BS and at least
two BS combinations pass the first step.

Table 1. Algorithm performance comparation (σ = 9).

The Number
of LOS BS

The Number of Correctly Identified

RT
Algorithm

AM
Algorithm

Proposed
Algorithm

3 853 926 926

4 949 970 988

5 948 990 1000

6 951 996 1000

7 943 1000 1000

It is observed from Table 2 that when σ equals to 18, the performance of the proposed
algorithm is superior to that of RT algorithm and AM algorithm too. Comparing the
results of Tables 1 and 2, we can see that the performance of all three geometric constraint
algorithms degrade with the increasing in standard deviations of measurement noise errors
σ (except for one data of RT algorithm). This is because as σ increase, the measurement
noise error is more easily confused with the NLOS error, which results in the performance
degradation of geometric constraint algorithm.
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Table 2. Algorithm performance comparation (σ = 18).

The Number
of LOS BS

The Number of Correctly Identified

RT
Algorithm

AM
Algorithm

Proposed
Algorithm

3 729 823 823

4 943 941 950

5 955 964 976

6 943 975 978

7 936 1000 1000

It can be seen from Tables 1 and 2, for proposed algorithm, when the number of LOS
BSs is four, the probability of BS being misjudged is 1.2% and 5%, respectively. This result
approximates the theoretical analysis results of Equation (22). This shows the effectiveness
of our theoretical derivation.

6. Conclusions

In GNSS-denied urban or indoor environments, accurate localization is still an un-
solved problem due to the unavailability or degradation of GNSS signals. For GNSS-denied
urban or indoor environments. TOA-based method is the most common localization
method due to high accuracy and simplicity. The localization accuracy could be dramati-
cally degraded if the NLOS signals are misapplied as LOS signals in TOA-based methods.
Identifying and localization with the LOS BS can provide performance close to CRLB
when the identification algorithm has high identification accuracy and there are at least
three LOS BSs. In this paper, a two-step LOS signal identification algorithm exploiting the
geometric relationship has been proposed. In the first step, all BSs are divided into multiple
BS combinations with every three BSs, the TOA distance error of each BS combination is
estimated based on common chord intersection point position deviation from MS, the BS
combinations whose TOA distance error estimate satisfy Gaussian distribution are roughly
identified as LOS BS combination and enter the second step, the other BS combinations
are discarded as NLOS BS combination. In the second step, mutual distance threshold
is introduced to judge whether two common chord intersection points are close to each
other and whether they are near MS at the same time. On this basis, discrimination result
matrix for all common chord intersection points is obtained and then LOS BS combinations
are identified. The BSs of LOS BS combinations are identified as LOS BS, and the signals
received at LOS BS are identified as LOS signal ultimately. Simulation results show that
the proposed algorithm outperforms the other two geometric constraint methods. Simu-
lation results also confirm the effectiveness of our theoretical derivation, which provides
a theoretical basis for the setting of the identification threshold value and facilitates the
application of proposed algorithm.
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