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Abstract: Cyclic steam stimulation (CSS) is one of the main offshore heavy oil recovery methods
used. Predicting the production of horizontal CSS wells is significant for developing offshore heavy
oil reservoirs. Currently, the existing reservoir numerical simulation and analytical models are the
two major methods to predict the production of horizontal CSS wells. The reservoir numerical simu-
lation method is tedious and time-consuming, while the analytical models need many assumptions,
decreasing models’ accuracy. Therefore, in this study, a novel methodology combining the particle
swarm optimization algorithm (PA) and long short-term memory (LM) model was developed to
predict the production of horizontal CSS wells. First, a simulation model was established to calculate
the cumulative oil production (COP) of horizontal CSS wells under different well, geological, and
operational parameters, and then the correlations between the calculated COP and parameters were
analyzed by Pearson correlation coefficient to select the input variables and to generate the initial
data set. Then, a PA-LM model for the COP of horizontal CSS wells was developed by utilizing the
PA to determine the optimal hyperparameters of the LM model. Finally, the accuracy of the PA-LM
model was validated by the initial data set and actual production data. The results showed that,
compared with the LM model, the mean absolute percentage error (MAPE) of the testing set for the
PA-LM model decreased by 4.27%, and the percentage of the paired points in zone A increased by
2.8% in the Clarke error grids. In addition, the MAPEs of the training set for the PA-LM and LM
models stabilized at 267 and 304 epochs, respectively. Therefore, the proposed PA-LM model had a
higher accuracy, a stronger generalization ability, and a faster convergence rate. The MAPEs of the
actual and predicted COP of the wells B1H and B5H by the optimized PA-LM model were 8.66% and
5.93%, respectively, satisfying the requirements in field applications.

Keywords: offshore heavy oil reservoirs; cyclic steam stimulation; particle swarm optimization
algorithm; long short-term memory model; cumulative oil production

1. Introduction

The current pandemic, downturn, and low oil prices result in a larger global energy
demand for hydrocarbon [1]. As the conventional onshore oil resources decrease, the
interest in developing heavy oil resources from offshore reservoirs increases [2,3]. The
proven heavy oil resources in Bohai Bay, China, are more than 4 billion tons [4]. Cyclic steam
stimulation (CSS) is one of the main methods used for offshore heavy oil reservoirs [5].

Predicting the production of horizontal CSS wells is significant for developing offshore
heavy oil reservoirs. Currently, the existing reservoir numerical simulation and analytical
models are the two major methods to predict the production of horizontal CSS wells [6].
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However, the reservoir numerical simulation is tedious and time-consuming, because it
requires comprehensive data collection, a reliable simulation model, and history match-
ing [7,8], while the analytical models need many assumptions to simplify the production
process of horizontal CSS wells, decreasing the models’ accuracy [9,10].

Recently, artificial intelligence algorithms, such as back propagation (BP) neural net-
works, support vector machines (SVM), and autoregressive integrated moving average
(ARIMA) have been commonly used in the petroleum industry to solve some unsettled
problems by conventional methods.

Yang et al. built an ARIMA model to predict oil well production [11]. Yuan et al.
studied the profile control of the 32 wells of the Dongxin block by using the SVM method
instead of numerical simulations [12] Based on the historical data of 15 oilfields in China,
Hu et al. improved the BP neural network by the combination of fuzzy clustering algorithm
and a genetic algorithm and used the network for oil production prediction [13]. Lu. et al.
coupled the particle swarm optimization algorithm (PA) and machine learning to form a
computational framework, which was used to predict shale oil production and optimize
the fracturing parameters [14].

Compared with the aforementioned methods, recurrent neural networks (RNN) can
predict time-series data by introducing the concept of timing sequence [15]. To solve the
shortcomings of the traditional RNN model, such as gradient explosion and disappearance,
Hochreater et al. developed a long short-term memory (LM) model by designing the cell
state and gate structure in the RNN model [16,17]. Currently, the LM model has been
successfully used in many areas, such as climate prediction, machine life prediction, and
disease prediction [18–21].

Malhotra et al. developed an LM-based encoder–decoder scheme to estimate the
remaining useful life of a machine [18]. Li et al. used the LM model for predicting the 24 h
PM2.5 and confirmed that the LM model performed well with a short training time and
low errors [19]. Kırbas et al. simulated the COVID-19 cases by using the ARIMA, RNN,
and LM models and found that the LM model was the most accurate [20]. Kratzert et al.
observed that the LM model could exactly characterize the trend of time-sequence data
and was utilized to predict the rainfall-runoff [21].

At present, the LM method has not been used to predict the cumulative oil production
(COP) of horizontal CSS wells in offshore heavy oil reservoirs. In addition, as mentioned
above, the LM model solved the shortcomings of the RNN model by introducing the cell
state and gate structure. However, this improvement also increases some hyperparameters
in the LM model. Currently, the empirical method was commonly used to manually
determine these hyperparameters, which results in low prediction accuracy. Therefore, the
PA was utilized to determine the optimal hyperparameters of the LM model in this study.
Then, a novel methodology combining the PA and LM model was developed to predict the
COP of horizontal CSS wells in offshore heavy oil reservoirs located at Bohai Bay, China.

2. Methodology

The workflow of the methodology combining the PA and LM model for predicting
the COP of CSS horizontal wells is presented in Figure 1, which includes the following
processes. (1) Generation of the initial data set: the COP values of horizontal CSS wells
under different geological, well, and operational conditions were calculated by an estab-
lished simulation model. Then, the correlations between the COP and model parameters
were analyzed by Pearson correlation coefficient to determine the input variables. Finally,
the values of input variables and COP were normalized to form the initial data set. (2) Es-
tablishment of the PA-LM model: the PA-LM model was developed by using the PA to
determine the optimal hyperparameters of the LM model. (3) Evaluation and application
of the PA-LM model: the initial data set including the training and testing sets were used
to train and validate the accuracy of the developed PA-LM model. Then, the developed
PA-LM model was used to predict the COP of two typical horizontal CSS wells.
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Figure 1. The workflow of the methodology combining the PA and LM model for predicting the COP
of CSS horizontal wells.

3. Generation of the Initial Data Set
3.1. Establishment of the CSS Simulation Model

The STARS numerical simulator from CMG was used to build a typical CSS simulation
model. The calculated COP of horizontal CSS wells under different geological, well, and
operational conditions by the simulation model served as the initial data sets for the
subsequent PA-LM model.

Figure 2 shows the established three-dimensional reservoir model and the horizontal
well model. Table 1 shows the average values of the reservoir parameters, oil viscosities at
different temperatures, oil and water relative permeability curves, heat transfer parameters
of rocks and fluids, and operational parameters used in the CSS simulation model.

To ensure the accuracy of the established CSS simulation model and lay a solid
foundation for generating the initial data sets for the subsequent PA-LM model, the COP
values (primary production and the first cycle of the CSS process) of the horizontal CSS
well were matched by modifying the model parameters, such as oil and water relative
permeabilities, reservoir parameters, and heat transfer parameters of rocks and fluids
within a reasonable range. The history matching results from Figure 3 indicate that the
successful modification of the aforementioned parameters resulted in a satisfactory match
for the horizontal CSS well.
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Table 1. The basic parameters used in the CSS simulation model.

Reservoir Parameters Values

Reservoir porosity 0.3
Reservoir permeability (MD) 3000

Initial reservoir temperature (◦C) 54
Oil saturation 0.6

Well Parameters Values

Well spacing (m) 200
Well distance (m) 200

Heat Transfer Parameters of Rocks and Fluids Values

Rock volumetric heat capacity (kJ/(cm3·◦C)) 2.575 × 106

Reservoir rock thermal conductivity (kJ/(cm·min·◦C)) 1.634 × 105

Oil phase thermal conductivity (kJ/(cm·min·◦C)) 9.77 × 103

Water phase thermal conductivity (kJ/(cm·min·◦C)) 5.99 × 104

Gas phase thermal conductivity (kJ/(cm·min·◦C)) 1.9 × 103

Operational Parameters Values

Soaking time (day) 5
Steam injection volume (m3) 6600

Steam injection rate (m3/day) 300
Steam quality 0.4

liquid production rate (m3/day) 90
Steam temperature (◦C) 340

Oil Viscosities at Different Temperatures

Temperature (◦C) Viscosities (mPa·s)

20 74,704.94
50 3969.97

100 198.82
150 35.19
200 11.84
250 5.66
300 3.32

Water and Oil Relative Permeabilities

Sw Krw Kro

0.305 0.000 1.000
0.373 0.006 0.738
0.427 0.012 0.572
0.497 0.036 0.380
0.505 0.045 0.360
0.533 0.060 0.292
0.588 0.080 0.173
0.626 0.100 0.104
0.720 0.147 0.000
1.000 1.000 0.000

After obtaining a suitable history match, 275 sets of simulations were performed to
predict the COP of the horizontal CSS well under different well, geological, and operational
conditions. The values of the well, geological, and operational parameters used in the
simulations are within the parameter range of actual reservoirs in Bohai Bay, China. Figure 4
exhibits some of the calculated COPs of the horizontal CSS well at various conditions.
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3.2. Correlation Analysis

The quality and diversity of the calculated data have a decisive effect on the accuracy
of the artificial intelligence model [22]. The Pearson correlation coefficient (PCC) was intro-
duced to determine the relationships between the COP (Y) and geological and operational
parameters (X). According to the paired data of COP and operational parameters {(x1,y1),
. . . ,(xn, yn)}, PCC can be calculated as follows [23]:

PCC =
∑n

i=1 (yi − y)(xi − x)√
∑n

i=1 (yi − y)2(xi − x)2
(1)

where n is the number of the paired data in the initial data set; xi and yi are the data points

of operational parameters and COP, respectively, in the initial data set; x = 1
n

n
∑

i=1
xi, and

analogously for y. If the PCC is equal to 1, X and Y are linearly related. If the PCC is equal
to 0, X and Y are not correlated.

It is clear from Table 2 that the liquid production rate, oil saturation, and reservoir
permeability have strong correlations with the COP. The porosity, well spacing, well
distance, steam temperature, and initial reservoir temperature have a medium relation with
the COP. However, the PCC values between the soaking time, steam injection volume, steam
injection rate, steam quality, and COP are less than 0.01, indicating that these parameters are
weakly related to the COP. The correlation results are in line with the reality of horizontal
CSS well production. Therefore, the selected input variables were the liquid production rate,
reservoir permeability, oil saturation, porosity, well length, well spacing, steam temperature,
and reservoir initial temperature.

Table 2. The calculated PCC values and the order of the parameters.

Geological and Operational Parameters PCC Order

Reservoir porosity 0.0171 4
Reservoir permeability (MD) 0.0217 3

Oil saturation 0.0557 2
Well spacing (m) 0.0160 5
Well distance (m) 0.0147 6

Initial reservoir temperature (◦C) 0.0104 8
Steam temperature (◦C) 0.0111 7

Steam quality 0.0022 11
Steam injection volume (m3) 0.0045 10

Steam injection rate (m3/day) 0.0051 9
Liquid production rate (m3/day) 0.6321 1

Soaking time (day) 0.0018 12

3.3. Data Processing

To decrease the noise of the initial data set generated by the CSS simulation model, the
normalization was conducted in the data processing processes, in which all of the values of
input and output variables were transformed to the range of [0, 1] by the following Equation (2).

X′ =
X− Xmin

Xmax − Xmin
(2)

where the X′ and X are the processed and initial values of the input and output variables,
respectively. The Xmax and Xmin are the minimum and maximum data points. It is noted
that the predicted COP by the developed PA-LM model needs to be rescaled to the original
scale using the same parameters used for the normalization.
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4. Establishment of the PA-LM Model

In this study, a novel model was developed by combing the PA and LM model to predict
the COP of horizontal CSS wells. The aforementioned process is presented in Figure 5.
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4.1. LM Model

The architecture of LM model was developed through a trial phase in which we tested
various model architecture settings such as layer count, size, and so on. The first layer is the
input layer, including eight input variables, which are the well, geological, and operational
parameters. The LSTM and dropout layers follow the first layer. A dense layer is used to
encode the feature pattern of the input data and an output layer is the prediction of the COP.
The addition of dropout layers improves the model performance by reducing overfitting [19].

The LM model was used to improve the RNN model by introducing the cell state and
gate structures, as shown in Figure 6 [15,16]. When the initial data sets are input into the
LM cells, the gate structures select appropriate information for the cell state. Therefore, the
LM can be used to solve time-series problems.
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As shown in Figure 6, the symbols × and + mean the multiplication and addition in the
LM cell, respectively, and the arrow indicates the flow direction of initial data sets. The forget
gate first applied to remove unnecessary information for the cell state is shown as follows:

ft = σ([ht−1, xt]×W f + b f ) (3)

where σ is the activation function; ft is the forgetting threshold at time t; Wf and bf are the
weight and bias terms; ht−1 means the output values at time t− 1; and xt is the input values
at time t.

The input gate can select and store information in the cell state from the current initial
data sets. The specific expressions are shown below:

it = σ(i[ht−1, xt]×W + bi) (4)

C̃t = tanh([ht−1, xt]×WC + bC) (5)

where it and C̃t are the input threshold at time t; tanh is the activation function; bc and bi
are bias terms; and Wc and Wi are the weights.

The cell state is updated as follows:

Ct =t Ct−1 · × f + C̃t · ×it (6)

where Ct−1 and Ct are the cell state at time t − 1 and t, respectively.
The output gate is used to output information at time t, which is written below:

ot = σ([ht−1, xt]×Wo + bo) (7)

where ot denotes the output threshold at time t; Wo and bo are the weights and bias terms,
respectively.

The output value ht and yt at time t can be obtained as follows:

ht = yt = ot × tanh(Ct) (8)

4.2. PA

In this study, the eight hyperparameters of the LM model, including the number of
hidden layers (n1), mini-batch size (m), number of neurons in hidden layers (n2), learning
rate (L), max epochs (M), learning rate drop factor (F), learning rate drop period (P), and
dropout rate (D), were treated as the optimized parameters of PA in eight dimensions. The
fitness value as the optimization objective was calculated to achieve the globally optimal
values (the optimal hyperparameters). The position and velocity values of a particle can be
calculated as follows.

Vk+1
i,j = wVk

i,j + c1r
(

pbestk
i,j − Xk

i,j

)
+ c2r

(
gbest k

i,j − Xk
i,j

)
(9)

Xk+1
i,j = Xk

i,j + Vk
i,j (10)

where r is a random number; c1 and c2 are the learning factors; w is the weight; Vk
i,j, Xk

i,j,

pbestk
i,j, and gbest k

i,j are the velocity values, position values, individual optimal values,
and global optimal values of the ith particle in the jth dimension and the kth iteration,
respectively, and Xk+1

i,j and Vk+1
i,j are the position and velocity values of the ith particle in

the jth dimension and the k + 1th iteration.
In this study, a linear method was used to calculate the inertia weight, which can

effectively enhance the optimization ability of the PA.

ωt = ωmax −
p(ωmax −ωmin)

Tmax
(11)
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where ωmin and ωmax are the minimum and maximum inertia weights, respectively; Tmax
is the maximum iteration number; p is the current generation number; and ωt is the tth
inertia weights.

4.3. Process of PA Optimizing LM Model

Firstly, the aforementioned eight hyperparameters of the LM model were selected as the
optimized parameters of the PA, and the position values of all the particles were randomly
initialized within the ranges of the eight hyperparameters. Then, the LM model was developed
and then trained by the training data set. The detailed processes are shown below.

(1) Initialize the particle parameters, including the number of particles n, c1, c2, r, and
Tmax in the PA. (2) A particle Xi,O (n1, n2, m, L, M, P, F, and D) was randomly generated.
The values of the particle Xi,O were assigned to the hyperparameter of the LM model.
(3) The initial data set was used to train and test the LM model and the corresponding COP
values were calculated. The fitness value fiti of the Xi,O was calculated as follows:

f iti = 0.5∗
J

∑
j=1

∣∣ŷj − yj
∣∣

yj ∗ 1
J
+ 0.5∗

K

∑
k=1

∣∣∣ŷk − yk
∣∣∣

yk ∗ 1
K

(12)

In Equation (12): yk and yj are the COP values in the testing and training sets, re-
spectively, ŷk and ŷj are the predicted COP values by the PA-LM model in the testing and
training sets, and J and K are the size of the training and testing sets, respectively.

(4) The pbestk
i,j, was initialized as the particle position in the initial state, and the

gbest k
i,j was taken as the particle position with the lowest fiti. (5) During each iteration,

the velocity and position values of the particles were updated based on the pbestk
i,j, and

gbest k
i,j was calculated by Equations (9) and (10). Then, the new fiti of the particles were

calculated and the pbestk
i,j and gbest k

i,j of the particles were updated. (6) After Tmax was

reached, the gbest k
i,j (the corresponding hyperparameters) were the optimal values for the

LM model.

5. Evaluation and Application of the PA-LM Model
5.1. Model Evaluation Criteria

To verify the reliability of the model for predicting the COP of horizontal CSS wells
under different conditions, the root mean squared error (RMSE), mean absolute percentage
error (MAPE), mean squared error (MSE), and R2 were selected as the model evaluation
indicators, which are expressed as follows:

MAPE =
1
n∑n

i=1

∣∣∣∣yi − ŷi
ŷi

∣∣∣∣ (13)

MSE =
1
n∑n

i=1 (ŷi − yi)
2 (14)

RMSE =

√
1
n∑n

i=1 (ŷi − yi)
2 (15)

R2 = 1− ∑n
i=1 (yi − ŷi)

2

∑n
i=1 (y− ŷi)

2 (16)

where yi and ŷi are the COP value predicted by the model and COP value in the initial
data set; i is the indicator of data points; and n is the total number of data points in the
initial data set. A lower value of RMSE, MSE, and MAPE and a higher value of R2 indicate
a higher accuracy of the model.
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5.2. Evaluation of the PA-LM Model

According to the aforementioned results of PCC, the liquid production rate, reservoir
permeability, oil saturation, porosity, well length, well spacing, steam temperature, and
reservoir initial temperature were highly related to the COP of horizontal CSS wells.
Therefore, the aforementioned eight parameters were selected as the input variables, and
the corresponding COP was utilized as the output variable for the model.

Based on the initial values of the input variables and the corresponding output variable
(COP), the processed values of the input variables and output variable were obtained by
the data processing (Equation (2)) and used as the initial data set. To build the PA-LM
model and verify its reliability, 80% and 20% of data were randomly selected from the
initial data set as a training set and a testing set. The key parameters used in the PA-LM
model are shown in Table 3.

Table 3. The key parameters used in the PA-LM model.

Hyperparameters of the LM Model Values

n1 250
Number of input variables 8

Number of output variables 1
n2 200
m 15
L 0.01

Loss function MAPE
Optimizer Adam

M 400
P 20
F 0.8
D 0.3

PA Parameters Values

n 20
c1 and c2 1.5

Tmax 300
r [0, 1]

During the training process, the hyperparameters of the LM model were optimized by
the PA until the Tmax was reached. Figure 7a presents the loss decline curves of the LM
and PA-LM models in the training processes. As shown in Figure 7a, the MPAE values of
the PA-LM model decrease with the increase in the number of epochs, confirming that a
reliable PA-LM model for the testing process was formed. A comparison of the loss decline
curves shown in Figure 7a indicates that the MAPEs stabilize at 267 and 304 epochs and the
final MAPEs are 2.34% and 7.68% for the PA-LM and LM models, respectively. Therefore,
the PA-LM model has a faster convergence rate and a higher accuracy than the LM model
because the PA effectively improved the prediction accuracy. Figure 7b shows that the loss
decline curves of the LM model and PA-LM model in the testing processes have a similar
trend with those in the training processes.

The Clarke error grid method was also used to further verify the reliability of the
PA-LM model [15].

The results from Figure 8 show that, for the LM model, 97.2% of the paired points were
in the acceptable zones A, 2.1% in B, and 0.7% in zone C and D. No paired point ended up
in zones E or F. For the PA-LM model, 100% of the paired points were in zone A, which
was significantly more compared with the LM model. There were no paired points in zone
B, C, D, or E.
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The paired points in zone A mean that the COP values predicted by the models do not
deviate from the COP values determined by simulations by more than 20%. A comparison
of the results in Figure 8 shows that the PA-LM model achieved a higher accuracy due to
the higher percentage of paired points in zone A.

In addition, four typical data were randomly selected from the initial data set and
compared with those predicted by the LM and PA-LM models (Figure 9). The results show
that the COP values predicted by the PA-LM model fit well. However, the COP values
predicted by the LM model deviated greatly from those in the initial data set. Therefore,
the PA-LM model can predict the COP of horizontal CSS wells more accurately.

The four indicators of the training and testing sets for the two models, MAPE, MSE,
RMSE, and R2, are listed in Table 4. The lower values of MAPE, MSE, and RMSE as well as
the higher values of R2 of the training and testing sets indicate that the PA-LM model has
higher accuracy than the traditional LM model.
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Table 4. Comparisons of MAPE, MSE, RMSE, and R2 of the initial data sets for the LM and PA-LM models.

The Types of Data Sets and Model MAPE (%) MSE RMSE R2

The training set of the LM model 7.68 8876.42 8876.4 0.9135
The testing set of the LM model 9.33 10,124.82 10,124.8 0.9027

The training set of the PA-LM model 2.34 3931.32 3931.3 0.9913
The testing set of the PA-LM model 5.06 6054.332 6054.33 0.9807

5.3. Application of the PA-LM Model

In this section, we showed two field applications of the established PA-LM model. Two
typical horizontal wells of CSS (B1H and B5H) were selected from the Lvda 21-2 reservoirs
in Bohai Bay, China. These two horizontal wells only conducted one cycle of CSS. Therefore,
the COP values of the first cycle of the horizontal wells were utilized to evaluate the PA-LM
model’s accuracy. As shown in Figure 10, good agreements between the predicted and
actual COP values are obtained in the two cases. Table 5 shows that the MAPEs of the
COP values for the two wells are 8.66% and 5.93%, respectively. Although the geological,
well, and operational parameters are different for the two horizontal wells, the optimized
PA-LM model presents the reliable predictions in the two horizontal wells. The results
indicate that the developed PA-LM model has a good generalization. In conclusion, the
aforementioned evaluations based on the initial data set and actual production data proved
the PA-LM model’s accuracy.
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Figure 10. Comparison of the actual and predicted COP of the first cycle of the two horizontal wells:
(a) well B1H; (b) well B5H.

Table 5. Evaluation of the accuracy of the PA-LM model by the actual COP values of the two
horizontal CSS wells.

Well Name MAPE (%) MSE RMSE

B1H 8.66 1363.812 1363.81
B5H 5.93 1058.662 1058.66

However, it is noted that more COP data need to be collected from the following
cycles or other CSS wells to further verify the PA-LM model’s accuracy with the subsequent
development of the reservoirs in Bohai Bay, China. In addition, the developed PA-LM
model in this study can only be used to predict the COP values of horizontal CSS wells
in Bohai Bay, China, because the model was developed based on the parameters of actual
reservoirs in Bohai, Bay, China. When the method is used in other offshore heavy oil
reservoirs, the establishment process of the PA-LM model shown in this study should be
re-conducted based on the practical reservoir conditions.

Figure 11 shows the predicted COP values of the two CSS horizontal wells in the eight
cycles by the optimized PA-LM model. The predicted COP values of the eight cycles of two
CSS horizontal wells are 226,753 and 147,117 m3, respectively, which are expected to provide
important references for decision-makers in developing offshore heavy oil reservoirs.
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Figure 11. Prediction of the COP values of the two CSS horizontal wells by the optimized PA-LM model.

6. Conclusions

(1) Compared with the LM model, the MAPE of the testing set for the PA-LM model
decreased by 4.27%, and the percentage of the paired points in zone A increased by
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2.8% in the Clarke error grids. In addition, the MAPEs of the training sets for the
PA-LM and LM models stabilized at 267 and 304 epochs, respectively. Therefore, the
developed PA-LM model had a higher accuracy, a stronger generalization ability, and
a faster convergence rate.

(2) The PA can be used to determine the optimal hyperparameters of the LM model.
Therefore, the PA-LM model outperform the LM model in predicting the COP of
horizontal CSS wells in offshore heavy oil reservoirs.

(3) The MAPEs of the predicted and actual COP values of the first cycle of the wells
B1H and B5H (two horizontal CSS wells in Bohai Bay, China) by the optimized PA-
LM model are 8.66% and 5.93%, respectively, satisfying the requirements in field
applications. More COP data need to be collected from the following cycles or
other CSS wells to further verify the PA-LM model’s accuracy with the subsequent
development of the reservoirs in Bohai Bay, China.

(4) The developed PA-LM model provides an effective method for predicting the COP
values of horizontal CSS wells in Bohai Bay, China, which was validated by the initial
data set and actual production data. However, when the method is used in other
offshore heavy oil reservoirs, the establishment process of the PA-LM model shown
in this study should be re-conducted based on the practical reservoir conditions.

(5) According to the calculated PCC results, the liquid production rate, oil saturation,
and reservoir permeability are strongly related to the COP of the horizontal CSS wells.
The soaking time, steam injection volume, steam injection rate, and steam quality
have weak correlations with the COP of the horizontal CSS wells.
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