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Abstract: The distributed dynamic load is difficult to obtain due to the complexity of loads in
practical engineering, such as the aerodynamic loads of aircraft and the distributed dynamic loads of
sea-crossing bridges. Thus, distributed dynamic load identification is important to deal with these
difficulties, which is generally an ill-posed problem considering the inversion of the infinite dynamic
loads. The traditional Tikhonov regularization technique is limited on the optimal regularization
parameters selection. Consequently, in this paper, we develop a novel distributed dynamic load
identification algorithm in combination with the orthogonal polynomials and the Bayesian framework.
Thus, the orthogonal polynomial coefficients in the load identification model are regarded as the prior
probability distribution of unknown variables in the Bayesian inference. Simultaneously, the posterior
probability distribution of the orthogonal polynomial coefficients is derived based on the Bayesian
formula and the likelihood function. The regularization parameters and the standard deviation of the
response error are also treated as random variables to obtain the corresponding prior distribution
in the multi-level Bayesian model. Moreover, the maximum posterior estimate is applied aiming
at determining the regularization parameters, as well as the orthogonal polynomial coefficients to
reconstruct the distributed dynamic loads. Compared with the Tikhonov regularization, a series
of numerical simulations are studied to verify the effectiveness and high accuracy, as well as the
noise resistance, and the results illustrate that this approach is effective to reconstruct the distributed
dynamic loads.

Keywords: distributed dynamic load identification; Bayesian inference; orthogonal polynomials;
maximum posterior estimate

1. Introduction

Dynamic load identification is a typical class of inverse problems aiming at determin-
ing the unknown loads acting on the mechanical structures from the measured responses
and dynamical models. It is of great significance to measure the force for a large number of
industrial applications, e.g., the dynamic model design and optimization [1–9], vibration
control [10], and structural health monitoring [11].

In the past decades, numerous load identification studies have been developed, involv-
ing concentrated dynamic load identification and distributed dynamic load identification.
In terms of concentrated load identification, the time history of the load, that is, the one-
dimensional function of time, is obtained assuming that the excitation location of the
load is known. On the contrary, the distributed dynamic load involves two-dimensional
variables of space and time. Due to the continuous distribution characteristic in space
and the dynamicity in time, the distributed loads are more complex compared with the
concentrated load, hence, limited research is available in the area of distributed dynamic
load identification. For example, line distributed dynamic load identification [12] acting on
the composite structures was discussed via separating the time–space domain based on an
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iterative algorithm, and the identified loads are well in agreement with the real distributed
loads considering the spatial distribution and the magnitude with the small cost of iteration
operation. In order to reconstruct the external excitation and improve the efficiency, the spa-
tial variable of the unknown force [13], as well as the system response, were decomposed
and denoted as the local basis functions, and the feasibility was also proved by introducing
the regularization to decrease the effect of the noise on load identification and improve the
accuracy. Moreover, the finite-difference schemes were developed by Djamaa to carry out
the local distributed load identification research acting on a cylindrical thin shell structure;
however, this method can lead to a higher sensitivity of the noise when the displacements
are given through integrating the velocities [14]. Then, the difference procedure can be
converted to the integral form based on the virtual field method, and the robustness of
distributed dynamic load identification, as well as the local dynamic lateral force of the thin
plate surface, were verified by numerical simulation and experiment, which indicated the
better behavior on the problem of the smooth pressure distributions through measuring the
plane deflections at some definite grids [15]. The problem of identifying one-dimensional
distributed dynamic loads applied on the cutting instrument point by point was also dis-
cussed in space from the displacement response based on the conjugate gradient method,
and the results were evaluated with the various loads, the sensors, and the noise levels [16].
Meanwhile, considering the sensitivity of the noise to the identification of distributed
dynamic loads, the correction coefficient was used in the load analysis approach, which
improved the accuracy without the regularization [17]. Other distributed load identification
methods were investigated by Kumar [18], Coates [19], Hwang [20], and Nakamura [21] to
reconstruct the distributed loads of the engineering structures with different approaches,
e.g., the equivalent nodal force method and the Kalman filter method. More recently,
the identification of distributed loads were studied in the context of uncertain structures.
For instance, when dealing with uncertainty systems, an interval analysis utilized the
Taylor expansion and the polynomial coefficients was developed to obtain the envelope
interval of unknown distributed loads for the interval analysis of multiple uncertainties
structures with the cost of lower computation, including the load identification model, the
achievement of the interval analysis method based on Taylor expansion (IAMBTE), and the
estimation of the unknown load [22]. Subsequently, this approach was employed in the
aircraft via the Taylor expansion and the particle swarm optimization algorithm, which bal-
anced the sensor cost and the performance of load identification in the system framework.
However, only the polynomial distributed load can be identified, and it is critical to discuss
the intricate load identification [23]. In another work, a comprehensive method based
on the Latin hypercube sampling genetic algorithm (LHS-GA) and the improved L-curve
method was proposed to determine the upper and lower bounds of the distributed force
on uncertain structures, which improved the ill-posedness and the anti-noise compared
with the traditional regularization method [24].

Unfortunately, distributed dynamic load identification is often an ill-posed prob-
lem. A common method to bypass the problem is to apply the regularization tech-
nique to stabilize the solution. The most widely adopted regularization is the Tikhonov
regularization [25–27]. For example, based on the truncated singular value decomposition
(TSVD) and the L-curve, the regularization method was presented to evaluate the internal
excitations and the regularization efficiency, which encouraged obtaining knowledge of
the defects on the drive train models [28]. Although widely used, it should be noted that
there is a significant limitation on the selection of the optimal regularization parameters.
For this particular reason, extensive research efforts have been focused on the Bayesian
method in recent years. For example, a sparse convex optimization model of the load
identification was established with different basis functions by minimizing the components
of the non-zero status in the coefficients of the sparse regularization, and the effectiveness
and applicability of the cantilever thin plate structure were verified through the simulation
and the experiment [29]. Furthermore, B. Jin proposed the augmented Tikhonov regu-
larization method, namely, the Bayesian regularization method, which provided a novel
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idea for the selection of the regularization parameters in load identification [30,31]. In the
same vein, the superiority of the Bayesian method, using the Gaussian kernel functions
to obtain the time history of unknown impact load, was presented for the impact load
identification of the composite structures by organizing the simulations and the test [32,33].
Apparently, the enormous advance was observed by making the most of the Bayesian
inference and the generalized iterative weighted least squares algorithm to identify the
external excitation [34–36]. In general, the aforementioned application of the Bayesian
method mainly focused on the concentrated load identification, however, there was no
relevant research on distributed dynamic load identification. Therefore, it is essential to
develop the Bayesian framework to reconstruct the distributed dynamic load. In this paper,
a novel distributed dynamic load identification based on the Bayesian method is proposed.
The key of the proposed method is that the orthogonal polynomial coefficients are regarded
as random variables to obtain the prior probability distribution. Then, the estimate of the
posterior probability distribution is carried out by using the statistical inference.

This paper is arranged as follows. In Section 2, the load identification algorithm of the
proposed method is introduced, including the load identification model and the application
of the Bayesian method in load identification for a simply supported beam; in Section 3,
the effectiveness and the accuracy under various noise levels are discussed and compared
with the Tikhonov regularization. Some conclusions are generalized in Section 4.

2. The Bayesian Formulation of the Distributed Dynamic Load Identification
2.1. Identification Model for Simply Supported Beams in the Frequency Domain

For the simply supported beam shown in Figure 1, the connection between the dis-
tributed dynamic load and the response in the frequency domain is given by:

∫ l

0
H(xk, x, ω)F(ω, x)dx = X(xk, ω) (1)
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Here, H(xk, x, ω) denotes the frequency response function (FRF), xk is the response
position, and X(xk, ω) is the frequency response. F(ω, x), which is rewritten as Equation (2)
in the complex field, is the fast Fourier transform (FFT) of f (x, t). Substituting Equation (2)
into Equation (1), Equation (1) is rewritten as Equation (3).

Fr(x) =
[
P1(x) P2(x) · · · Pj(x)

]


a1
a2
...
aj


Fi(x) =

[
P1(x) P2(x) · · · Pj(x)

]


b1
b2
...

bj


(2)



Appl. Sci. 2023, 13, 2537 4 of 19

∫ l

0

[
HrP1(x) · · · HrPj(x) −HiP1(x) · · · −HiPj(x)
HiP1(x) · · · HiPj(x) HrP1(x) · · · HrPj(x)

]
dx



a1
...
aj
b1
...

bj


=

{
Xr

Xi

}
(3)

where Pj(x) is the normalized one-dimensional Legendre polynomials, and aj, bj are the
polynomial coefficients. Hr, Hi are the real and imaginary parts of FRF, while Xr, Xi denote
the system responses. Therefore, Equation (3) is converted as Equation (4) in the case of a
multipoint response and then abbreviated as Equation (5).

∫ l

0


Hr

1P1 · · · Hr
1Pj −Hi

1P1 · · · −Hi
1Pj

Hi
1P1 · · · Hi

1Pj Hr
1P1 · · · Hr

1Pj
...

...
...

...
Hr

nP1 · · · Hr
nPj −Hi

nP1 · · · −Hi
nPj

Hi
nP1 · · · Hi

nPj Hr
nP1 · · · Hr

nPj

dx



a1
...
aj
b1
...

bj


=



Xr
1

Xi
1

...
Xr

n
Xi

n


(4)

Q
{

A1
B1

}
= X (5)

In Equation (4), Hr
n, Hi

n are the representations of the symbols Hr(xn, x, ω), Hi(xn, x, ω),
while Q, A1, B1 in Equation (5) are given as:

Q =
∫ l

0


Q1
Q2
...

Qn

dx, Qn =

[
Hr

nP1 · · · Hr
nPj −Hi

nP1 · · · −Hi
nPj

Hi
nP1 · · · Hi

nPj Hr
nP1 · · · Hr

nPj

]
(6)

A =



a1
...
aj
b1
...

bj


, A1 =


a1
...
aj

, B1 =


b1
...

bj

, X =



Xr
1

Xi
1

...
Xr

n
Xi

n


(7)

where Q is the dynamic calibration matrix [3]. Therefore, we have the coefficient vectors as
Equation (8): {

A1
B1

}
= Q−1X(n = j){

A1
B1

}
=
[
QTQ

]−1QTX = Q+X(n > j)

(8)

Consequently, the distributed dynamic load is identified by

Fr(x) =
[
P1(x) P2(x) · · · Pj(x)

]
A1

Fi(x) =
[
P1(x) P2(x) · · · Pj(x)

]
B1

(9)

2.2. Bayesian Basis Framework

The core of the Bayesian framework is the Bayesian formula. Based on the conditional
probability and the prior probability of the assumed unknown variable, the posterior prob-
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ability is obtained and estimated through the Bayesian formula. Therefore, the Bayesian
framework is written as:

p(θ|x ) = p(θ)p(x|θ )
p(x)

=
p(θ)p(x|θ)∫
p(θ)p(x|θ )dθ

∝ p(θ)p(x|θ ) (10)

Notice that p(x) can be regarded as a constant. Additionally, p(θ), which means the
prior knowledge, represents the prior probability distribution of the unknown variable;
p(x|θ) represents the likelihood function, i.e., the conditional probability that the measure-
ment is x with the unknown variables θ. Similarly, p(θ|x) is the posterior probability of the
unknown variables, representing the probability that the unknown variables are θ when
the measured response is x. Based on Equation (10) and the maximum a posteriori (MAP)
estimation, the estimated value θ is obtained as Equation (11).

We assume the measurement x is contaminated by a noise µ, which is written as in
Equation (12). The noise µ is considered to be independent identically distributed Gaussian
noise with the mean value 0 and the standard deviation σ. Consequently, the likelihood
function p(x|θ) is given by Equation (13).

θ̂map = argmax
θ

p(θ |x ) (11)

x = x̂(θ) + µ (12)

p(x |θ) ∝ (σ2)
− n

2 exp(−‖x̂(θ)− x‖2
2

2σ2 ) (13)

where ‖‖2 is the Euclidean norm, ∝ is the positive proportion symbol and n is the dimension
of the discrete signal x.

2.3. The Prior Probability Distribution and the Bayesian Model

The prior model p(θ), which is a measure of the prior knowledge of the experimenter
reflecting the no-determinacy relevant to the unknown knowledge θ, plays an important
role in dealing with the inverse problems. In fact, the appropriate prior model, containing
almost all the knowledge of the unknown parameters, can accurately solve the statistical
inversion problem in the Bayesian framework. Here, the Markov random field is employed
as the prior model, while the prior probability distribution is written as Equation (14):

p(θ) ∝ exp(−∑
i∼j

Wijφ(γ(θi − θj))) (14)

where γ, φ(γ(θi − θj)) are the amplification coefficient and the non-negative function,
respectively. Wij is a non-negative weight. Assuming φ(t) = 1/2t2, Equation (14) is
rewritten as Equation (15):

p(θ) ∝ λm/2 exp(−1
2

λθTWθ) (15)

where θ, W are the vector of m× 1 and the symmetric matrix of m×m, respectively. The
parameter λ is the scaling parameter. Substituting Equations (13) and (15) into Equation (10),
the posterior probability is transformed into Equation (16) and the maximum a posteriori
probability estimation of θ is obtained as Equation (17).

p(θ |x ) ∝ (σ2)
− n

2 exp(−‖x̂(θ)− x‖2
2

2σ2 )λ
m
2 exp(−1

2
λθTWθ) (16)

θ̂map = argmax
θ

p(θ |x ) = argmin
θ

{
‖x̂(θ)− x‖2

2 + λσ2‖θ‖2
2

}
(17)
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Compared with the Tikhonov regularization, the MAP is equivalent to the Tikhonov
minimization functional:

L(θ) = ‖x̂(θ)− x‖2
2 + α2‖θ‖2

2 (18)

where α2 = λσ2. Therefore, the scaling parameter λ and the standard deviation σ as-
sume the crucial role of the regularization parameters, which affect substantially posterior
probability density function and the posterior point estimates.

2.4. Distributed Dynamic Load Identification Algorithm Based on the Bayesian Method

The identification model of the distributed dynamic load is given by:

y = QA + ynoise (19)

where y, Q, A represent the measurement response, dynamic calibration matrix, and the
orthogonal polynomial coefficients, respectively. We assume the noise is the Gaussian
noise and the prior distribution is the Markov random field, thus, the posterior probability
density of the orthogonal polynomial coefficients is derived as Equation (20) based on the
Bayesian inference:

p(A |y ) ∝ (σ2)
− n

2 exp(−‖QA− y‖2
2

2σ2 )λ
m
2 exp(−1

2
λATWA) (20)

To determine the parameters λ, σ2, the hierarchical Bayesian model is adopted via
treating the parameters as random variables with its own prior distribution to obtain the
prior probability distribution. The Gamma distribution is used as the prior distribution of
λ and τ = 1/σ2, that is,

p(λ) =
βα1

1
Γ(α1)

λα1−1 exp(−β1λ) (21)

p(τ) =
βα2

2
Γ(α2)

τα2−1 exp(−β2τ) (22)

where α1, β1, α2, β2 denote the Gamma distribution parameters. Consequently, the hier-
archical model for the joint posteriori probability density of the orthogonal polynomial
coefficients A and the parameter λ, τ is derived using:

p(A, λ, τ |y ) ∝ p(y|A, τ )p(A|λ )p(τ)p(λ) (23)

where p(y|A, τ ) is the likelihood function and p(A|λ ) is the prior probability density of
the orthogonal polynomial coefficients. Based on Equations (13) and (15), the expressions
are defined as:

p(y|A, τ ) ∝ τ
n
2 exp(−τ

2
‖QA− y‖2

2) (24)

p(A|λ ) ∝ λm/2 exp(−1
2

λ‖A‖2
2) (25)

Combining Equations (21), (22), (24), and (25) with Equation (23), the posteriori
probability density is rewritten as Equation (26).

p(A, λ, τ |y ) ∝ τ
n
2 +α2−1λ

m
2 +α1−1 exp(−τ

2
‖QA− y‖2

2 −
1
2

λ‖A‖2
2 − β1λ− β2τ) (26)

In this paper, the maximum a posteriori estimation given by Equation (27), as proposed
in Equation (11), is performed to determine the values of the unknown variables. However,
it should be noted that there are some limitations to solving various estimators of parame-
ters through the posterior probability distribution with the common methods. Therefore,
the maximum of the posterior density function can be converted to the minimizer of the
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functional, and then derived with the iterative methods. By the logarithm and the negative
of Equation (26), we have Equation (28):

θ̂
{

Â, τ̂, λ̂
}
= argmax{p(A, λ, τ|y)} (27)

J(A, λ, τ) =
τ

2
‖QA− y‖2

2 +
λ

2
‖A‖2

2 − (
n
2
+ α2 − 1) ln τ − (

m
2
+ α1 − 1) ln λ + β1λ + β2τ (28)

Taking the partial derivative of J(A, λ, τ) and setting as 0, we have

∂J(A, λ, τ)

∂A
= 0 (29)

∂J(A, λ, τ)

∂τ
= 0 (30)

∂J(A, λ, τ)

∂λ
= 0 (31)

That is,

(QTQ +
λ

τ
I)A−QTy = 0 (32)

n + 2α2 − 2
τ

− ‖QA− y‖2
2 − 2β2 = 0 (33)

m + 2α1 − 2
λ

− ‖A‖2
2 − 2β1 = 0 (34)

Thus, the orthogonal polynomial coefficient vectors and the unknown parameters are
given by:

A = (QTQ +
λ

τ
I)
−1

QTy (35)

λ = m+2α1−2
‖A‖2

2+2β1

τ = n+2α2−2
‖QA−y‖2

2+2β2

(36)

Therefore, the unknown distributed load is identified based on the coefficient vectors
A and the orthogonal polynomials. Moreover, the common difficulty to solve the maximum
posterior estimator of the hierarchical model is to obtain the minimum value of the function.
Some approaches have been developed, such as the gradient iterative, the simulated an-
nealing method, and the genetic algorithm. In this paper, we mainly employ the alternating
direction iterative algorithm to solve the optimization problem. The following steps present
the numerical iteration of the unknown parameters, and the schematic diagram of the
distributed dynamic load identification is shown in Figure 2:

(1) Select the appropriate initial value α1, β1, α2, β2, λ, τ, and set k = 1.
(2) Determine the regularization parameters ηk = λk/τk.
(3) Determine the orthogonal polynomial coefficient vectors Ak = (QTQ + ηkI)−1QTy.
(4) Update the regularization parameters by:

λk+1 = m+2α1−2
‖Ak‖2

2+2β1
τk+1 = n+2α2−2

‖QAk−y‖2
2+2β2

(5) Set k + 1 and repeat from Step (2) until the iteration stopping criterion is supplied:

‖Ak+1 − Ak‖2/‖Ak‖2 < ε

Considering the iteration accuracy and the computing time, the value of ε is
ε = 1× 10−8.
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In conclusion, the distributed dynamic load identification approach based on the
Bayesian estimation is constructed according to the above deduction. Obviously, it is
critical to select the appropriate prior model to reconstruct the unknown loads. Meanwhile,
contrasted with the Tikhonov regularization, the prior model selection of the parameters in
the Bayesian model is also important to determine the optimal parameters. Therefore, the
hierarchical Bayesian model of the load identification is derived by combining the prior
distribution and the posterior probability distribution to solve the MAP estimation, as well
as the corresponding parameters. Next, the simulations are performed to investigate the
feasibility and effectiveness.

3. Numerical Simulation

In the previous section, it can be seen that the identification method established in this
paper based on the Bayesian method can identify the distributed loads using a recognition
system different from the traditional Tikhonov regularization.

In this section, the numerical examples are presented to verify the proposed method
in the frequency domain. The simply supported beam is selected as the simulation model.
The simple and complicated distributed loads are all considered in order to verify the
feasibility. Simultaneously, the simulation examples with low-level noise and high-level
noise are presented, respectively. We employ various error descriptions to evaluate the
identification results, e.g., relative error (RE), peak relative error (PRE), and average relative
error (ARE), as shown in Equation (37). The identification errors are listed in the tables,
including the proposed method, the Tikhonov regularization with L_curve method, and
the Tikhonov regularization with generalized cross-validation (GCV) method. This proves
the superiority of the method proposed in this paper.

RE = ‖ fide− ftrue‖
‖ ftrue‖ , PRE = max

∣∣∣ fide− ftrue
ftrue

∣∣∣
ARE = mean

∣∣∣ fide− ftrue
ftrue

∣∣∣, Error =
∣∣∣ fide− ftrue

ftrue

∣∣∣ (37)
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The distributed dynamic load f (x, t) acting on the simply supported beam shown in
Figure 1 is given by Equation (38), and the beam parameters are given in Table 1.

f (x, t) = A(x) sin(ω0t + β(x)) (38)

where A(x) and β(x) are the amplitude and phase of the distributed load, respec-

tively, while ω0 is the excitation frequency. We define A(x) =
√
(Fr(x))2 + (Fi(x))2,

β(x) = arctan( Fi(x)
Fr(x) ). Here, Fr(x), Fi(x) are fitted by Legendre orthogonal polynomials.

Table 1. The beam parameters.

Beam Parameters Value

Length l/m 1
Width w/m 0.01

Thickness h/m 0.01
Elastic modulus E/GPa 210

Density ρ/(kg ·m−3) 7800
Damping ratio ζ 0.02
Poisson’s ratio µ 0.3

3.1. Test Example 1

To test the accuracy of this numerical simulation in the case of low-level noise, the
load acting on a simply supported beam is given by: Fr(x) = cos 2πx

l + sin πx
2l , Fi(x) = 0

with the excitation frequency ω0 = 20. Meanwhile, the measuring points, 10, are uniformly
distributed and the orders of polynomials are 8 to accurately identify the load. Moreover,
this method is compared with the Tikhonov regularization to evaluate the superiority.
To analyze the resistance to the various noise levels, Gaussian noise was added with
RMS amplitudes of 1% and 5% of the response amplitudes. All the computations are
run on a Windows PC with an Intel Core(TM) i5 1.6 GHz CPU and 8 GB of RAM. The
identification results are shown in Figures 3 and 4 and the error analysis is shown in Table 2.
Furthermore, to investigate the operation efficiency of the proposed method, the CPU time
of the algorithm and the Tikhonov regularization [37] are compared in Table 3.
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Table 3. Calculation time in Example 1.

Proposed Method Tikhonov with L−Curve
Regularization

Tikhonov with GCV
Regularization

Calculation time (s) 1.442 3.70 4.55

Figures 3 and 4 show the identification results of the 3 methods in the case of 1% and
5% Gaussian noise, respectively. Figures 3a and 4a show the best approximation of the
proposed method. In addition, compared with the Bayesian method, some fluctuations are
observed based on the Tikhonov regularization at both ends of the simply supported beam.
This suggests the improved algorithm in this paper is accurate even while the responses
are contaminated. Table 2 shows the various errors, e.g., RE, PRE, and ARE. The RE and
PRE of the proposed method with 1% noise are 0.64% and 1.12%, respectively, while the
RE and PRE of the proposed method with 5% noise are 1.13% and 1.41%, respectively.
Although these 3 methods are all in low noise conditions, the 2 errors of the Tikhonov
method with GCV regularization with 5% noise are 11.4% and 31.5%, which indicates that
the errors are more greatly magnified than the proposed method at the identical noise level.
Table 3 indicates that the operation time of the Tikhonov regularization is nearly three times
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that of the Bayesian method, which regards the unknown variable as a prior probability
distribution; hence, it is superior in increasing the operational efficiency.

3.2. Test Example 2

In this example, a more complicated distributed load is considered compared with
the test example 1. The load is now defined as Fr(x) = (x− l

2 + 1)(x− l
2 + 3) + cos(2πx),

Fi(x) = 0 with the excitation frequency of ω0 = 50π. This helps to investigate the
reconstruction effect in case of high noise levels and irregular loads. Other parameters of
the problem remain unchanged as in Example 1. Moreover, this method is compared with
the Tikhonov regularization to evaluate the superiority. We applied 10% and 15% Gaussian
noise to the measurement vectors to investigate the anti-noise performance of the proposed
approach and the identification results are demonstrated in Figures 5 and 6. Moreover, the
identification errors are shown in Table 4 and the calculation time is compared in Table 5.
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Figures 5 and 6 show the results with the high-level noise. Although the errors still exist
in identified load and the exact load, the results suggest that the identified load obtained
by the proposed method is well in agreement with the exact load of the simply supported
beam. Table 4 also illustrates the corresponding errors in the two considered cases. Through
the error analysis of the results, we find that the RE errors of the 2 noise conditions are
3.05% and 8.11%, respectively, the PRE errors are 2.96% and 7.61%, respectively, and the
ARE errors are 1.54% and 4.08%, respectively. In addition, the RE, PRE, and ARE errors
are lower compared with the Tikhonov regularization method. Therefore, despite the
error increasing significantly with the improvement of noise level when identifying the
distributed load, the PRE errors remain reasonably small, which demonstrates the obvious
suppression effect on the PRE error of the proposed method. Furthermore, the larger error
is focused on both ends of the distributed load. The accuracy of the proposed distributed
load identification algorithm in this paper is validated considering the perspective. Table 5
indicates that this algorithm is superior to the Tikhonov regularization method in efficiency.

3.3. Test Example 3

In this subsection, we aim to investigate the identification accuracy, while the real
and imaginary parts are both considered. The distributed load is now rewritten as
Fr = 50 cos 6x + 2x4 + 40, Fi = cos(2πx) + sin(πx + π

4 ) with an excitation frequency
of ω0 = 80π. Other parameters of the problem remain unchanged. Moreover, this method
is compared with the Tikhonov regularization to evaluate the superiority. Again, the
3 different cases of noise level are all considered, e.g., 5% noise, 10% noise, and 15% noise
to investigate the anti-noise performance of the proposed approach. Figures 7–9 show the
identified results using the proposed algorithm and the Tikhonov method. The RE, PRE,
and ARE errors are shown in Table 6. Table 7 lists the calculation time required for the
proposed approach and Tikhonov to compare their operation efficiency.
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Table 6. Identification error in Example 3.

Noise Level
Proposed Method Tikhonov with L−Curve

Regularization
Tikhonov with GCV

Regularization

RE PRE ARE RE PRE ARE RE PRE ARE

5% 3.67% 5.67% 1.63% 4.11% 7.18% 1.77% 4.15% 7.3% 1.78%
10% 7.7% 9.79% 3.48% 8.13% 11.37% 3.62% 8.16% 11.5% 3.63%
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Table 7. Calculation time in Example 3.

Proposed Method Tikhonov with L−Curve
Regularization

Tikhonov with GCV
Regularization

Calculation time (s) 1.4 4.79 4.80
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Figures 7–9 show the identification results with the real and imaginary parts. It can be
shown that the feasibility of this algorithm for the simulation model is tested. As we can
see, considering the proposed method, the RE errors of the three noise conditions are 3.67%,
7.7%, and 9.74%, respectively, the PRE errors are 5.67%, 9.79%, and 11.86%, respectively,
and the ARE errors are 1.63%, 3.48%, and 4.4%, respectively. The identifications under
15% noise conditions have some slight fluctuations in spatial distribution. However,
the error is still within the acceptable range, which proves that the proposed approach
can realize satisfactory identification effects under high levels of noise. On the contrary,
these errors of the Tikhonov regularization with 5%, 10%, and 15% noise are higher than
the algorithm proposed in this paper. Thus, the proposed distributed dynamic load
identification combining Bayesian inference and numerical iteration can perform perfectly
for the beam structure. Table 7 shows that the Bayesian method spends much less time
and is more efficient than the Tikhonov regularization method for distributed dynamic
load identification. In general, the main advantages of the proposed method are verified in
terms of the identification accuracy and efficiency.

4. Conclusions

In this paper, we proposed distributed dynamic load identification using a Bayesian
method based on the Bayesian inference to identify the distributed dynamic load. This
method is discussed with the various noise levels and the irregular loads in the frequency
domain. Firstly, the identification model of the simply supported beam is given by using
the generalized Fourier series expansion, while the dynamic calibration matrix is also
determined to obtain the orthogonal polynomial coefficient vectors. Secondly, based on
the Bayesian inference, the Markov random field is employed as the prior model and the
Gaussian noise is used to obtain the likelihood function. Therefore, the hierarchical Bayesian
model of the load identification is derived to better determine the parameters. Finally, we
select the Gamma distribution to derive the joint posteriori probability density function of
the orthogonal polynomial coefficients through combining the likelihood function and the
prior probability distribution, and the coefficients, as well as the unknown parameters, are
solved via the numerical iteration.

The algorithm performance is tested through a series of numerical simulations with
various spatial distributions. Meanwhile, the comparison between the Tikhonov regulariza-
tion and the proposed method is performed to show the advantage of the proposed method.
In example 1, the results show the RE error of the proposed method is 0.64% when the 1%
noise is added; on the contrary, the RE are 9.3% and 8.86% using the Tikhonov regulariza-
tion, which is a higher error level compared with the proposed method at the identical
noise level. This suggests that the prior information fully used in the distributed dynamic
load identification achieves the better accuracy. Test example 2 indicates the suppression
effect on the PRE error of the proposed method is obvious in the case of more complicated
distributed load and high noise levels. In example 3, the proposed approach resilience
to noise is investigated with different levels of noise, considering both the real part and
imaginary parts. In these circumstances, identified distributed loads remain robust and
accurate, which reflect a strong anti-noise performance. In addition, the operation accuracy
based on the Bayesian method is superior contrasted with the Tikhonov regularization in
the three different cases of simulation examples. This work presents a first attempt to obtain
the distributed loads using the Bayesian inference and has broad application prospects.
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