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Abstract: Unmanned aerial vehicle (UAVs) is capable of adding significant potential to the internet
of thing (IoT) devices and hence smart UAV–IoT collaborative system has attracted the attention of
many researchers. This system has to be energy efficient for its nature and functionalities. Optimized
trajectory planning is a significant area of research for any automatic movable device. In this article,
we propose a technique, called EETO-GA for energy-efficient trajectory optimization of UAV–IoT
using a genetic algorithm (GA). This technique prescribes each device of: (i) the next timestamp
of arrival on the present cluster of IoT devices, at which the task queue of its header contains the
highest possible number of tasks, and (ii) the minimum amount of energy that requires to complete
all the tasks present in task queue of the IoT device. This technique uses a GA for optimization
where the fitness function is designed by optimizing objectives: (i) the total number of tasks that
can be completed, (ii) minimization of consumed energy, and (iii) the number of devices that could
be served. A GA is applied here to accommodate a large number of IoT devices. A binary method
of encoding is applied and methods like cross-over and mutation are used to arrive at the optimal
solution. Through a simulation study, the proposed technique shows significant improvement in
terms of UAV energy saved (UAVE), energy saving in IoT devices (IoTDEC), the average delay in
execution of the task (ADET), and the percentage of tasks that could be completed (PTSK). Proposed
EETO-GA improved average UAVE: 43%, IoTDEC: 56%, PTSK: 7.5%, and ADET: 38% over the state
of the art.

Keywords: ARMA model; clustered model; delay aware; energy efficient; internet of thing; path
planning; trajectory optimization; unmanned aerial vehicles

1. Introduction

There have been numerous applications of unmanned aerial vehicles(UAVs) in the last
decade in the fields of wireless ad hoc and sensor networks, vehicular networks, and the
internet of thing (IoT) devices [1–4]. The applications encapsulated various fields including
civilian purposes, military, disaster management, surveillance, source localization, task
execution, products delivery, agriculture, etc. [5–9]. The reason is that UAVs are fast,
lightweight, and cheap. If their trajectories are planned properly then a lot of tasks can
be completed through energy-efficient UAVs and less energy consumption means a lot of
money is saved [10–14]. This is entirely necessary from the perspective of the scarcity of
energy resources and the sustainability of mother earth [15–19].

The target in this context is energy optimization in UAV-controlled IoT-monitored
big agricultural fields, surveillance areas, etc., through energy efficient trajectory planning
and properly suggesting the IoT devices about the timestamp of submitting the next task
to the clusterhead (CH). Although many UAV trajectory deciding algorithms exist in the
literature as discussed in Section 2, to the best of the authors‘ knowledge, the issue of arrival
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of the UAV over a CH when its task queue is approximately full, has been inadequately
addressed in UAV–IoT systems. But it is extremely important for efficient task execution
and resource utilization. It is always better and energy-saving for the UAV to come to a
CH and execute the set of tasks in the completely full task queue than coming to the same
CH twice and executing the set of tasks in its half-filled task queue. This saves propulsion
energy in the UAVs. Energy in non-CH ordinary devices is saved by the CH IoT device as
it prescribes the next timestamp of submitting the next task by this particular ordinary IoT
device so that the chance of this task being dropped, becomes much less. The job of the
CH is to collect the tasks of the individual IoT devices and under it and arrange them in a
suitable sequence. This is extremely important because each retransmission of a task from
the source IoT device to CH doubles the consumption of energy by ordinary members. The
scheduling process has been made energy efficient because tasks are executed in order of
priority and starving tasks, especially those that have short lengths are assigned a higher
priority. This is an optimization problem where the optimal trajectory to be followed by
UAV changes dynamically with a number of tasks that are generated at each individual IoT
device, their length, the starvation status, predecessor, etc., until the history is developed,
we rely on the initial solution which is the trajectories suggested by the Dijkstra’s shortest
path algorithm [20]. Iterative improvements take place on existing solutions based on the
history that gradually develops in CH IoT devices. This matches with the nature of genetic
algorithm (GA) [21,22] and so we have used it in the proposed technique.

In this paper, we propose a GA-based trajectory optimization strategy that will optimize
the objectives including the number of distinct IoT devices served, the number of tasks that
are successfully completed, and the amount of energy consumed which includes propulsion
energy as well as the energy required to execute the task submitted by several different IoT
devices. Energy is saved not only in the UAVs but also in the IoT devices by avoiding the
resubmission of tasks as much as possible. Here we have considered the constraints like time
of use, tariff, etc., because the system has been implemented here using a simulator.

1.1. Highlights of this Article

The main highlights of our article are as follows:

• The IoT devices in our system are divided into multiple clusters with each cluster
having a CH. A UAV flies over these CHs in such a trajectory that optimizes the
number of tasks executed, the number of devices served, along with consumption of
energy. Here we have avoided the round-robin mode of task execution because tasks
are generally scheduled according to priority.

• Each CH maintains two tables, one corresponding to IoT devices under itself and
the other corresponding to other CHs. Information about IoT devices is required
to compute the priority of the current task submitted by one particular IoT device
whereas cluster information is required to compute the credibility of the CH to be
visited next. This trajectory planning of UAV is completely dynamic and with every
traversal of CH, training data is refined with the most recent experiences(that is, made
updated with the most recent records), so that the next CH to visit can be computed
efficiently. Dynamic planning of energy-conserving UAV trajectory is an important
contribution of this article.

• Energy is preserved not only during trajectory planning of UAVs but also during task
propagation from a non-CH IoT device to its CH. When submitting the next task,
this information is supplied to an IoT device by the CH so that its chance of being
dropped becomes lower. This preserves the energy that would have been required
otherwise for resubmitting the task. This is accomplished using the ARMA model [23]
and decision tree [24].

• Use of GA enables incorporating a large number of clusters of IoT devices providing a
scalability feature of the system.

• Simulation results demonstrate that our proposed scheme EETO-GA outperforms
other state-of-the-art UAV trajectory optimization algorithms in terms of performance
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Metrics like UAV energy saved (UAVE), energy saving in IoT devices (IoTDEC), the
average delay in execution of the task (ADET), and the percentage of tasks that could
be completed (PTSK). Proposed EETO-GA improved average UAVE: 43%, IoTDEC:
56%, PTSK: 7.5%, and ADET: 38% over the state of the art.

1.2. Organization of the Article and Description of Used Symbols

The rest of the paper is organized as: Section 2 illustrates literature on this topic.
Section 3 illustrates the proposed model (method) including computation of task priority,
predicting the time of submission of the next task, and GA-assigned trajectory planning.
Simulation experiments, results, and discussion appear in Section 4 whereas Section 5
concludes the paper with leftover a few immediate future scopes.

The paper presents many symbols and abbreviations that are tried to explain the
location where they are used. But Table 1 presents a brief description of each symbol and
abbreviations together.

Table 1. Symbols, Abbreviation, and their Descriptions.

Symbol/Abbreviation Brief Description

X_cen X co-ordinate centroid of the cluster C.

Y_cen Y co-ordinate centroid of the cluster.

num(c) Number of devices in cluster C.

dev(i) ith device of IoT devices.

hi Denotes x latitude point of dev(i) location.

ki Denotes y longitude point of dev(i) location.

cls_clg(i) This function denotes Eligibility of the ith device dev(i) as head of its cluster.

(R− Ei) Residual energy of the ith device.

τ(j) Denotes new task.

Pr(τ(j), dev(i)) Possible priority of a new task τ(j) submitted by the device dev(i) of cluster C.

IG Information Gain.

Comp_priority Computation priority.

Entropy(Parent) The entropy of the parent node.

Entropy(children) The average of entropies of all its children.

pi Probability of the random selection of an element in class i.

Max_pr The maximum possible priority in the the system.

Min_pr( f ‘) The minimum priority of a task present in the task queue at current time t.

multi_regress Denotes multiple regression function.

f ‘ This function denotes increase the priority value.

tm_gen(j) Timestamp of its generation based on current task τ(j).

tm_exec(j) Timestamp of completing execution of the task τ(j).

len_tsk(j) Length of the task where priority of the current task τ(j).

ST(i, t‘) A set of task submission sessions of dev(i) till current time t‘.

Prty Currently computed priority.

PTSK Percentage of task that could be completed.

IoTE Average energy saving in IoT devices.

UAVE UAV energy saved.

ADET Average delay in execution of the task.

UAV Unmanned aerial vehicles.

EETOGA Energy-Efficient Trajectory Optimization using Genetic Algorithm.

CEC Comprehensive energy consumption.
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Table 1. Cont.

Symbol/Abbreviation Brief Description

ST ∼ starve(i, t‘) The subset of ST(i, t‘), which consists of only the nonstarving tasks.

PEM The minimization of propulsion energy.

TDMA Time Division Multiple Access.

Prednext Predict the next suitable value.

tm_gen_next(i, t‘) Generation of the next task of device I at current time t‘.

cls(u) The CH closest to the UAV.

lat(u) Denotes the geographical position of the CHs in terms of latitude.

long(u) Denotes the geographical position of the CHs in terms of longitude.

GATE Genetic algorithm applied for task execution.

2. Related Work

These days a huge amount of research works are being carried out in the domain of
UAVs and drones in connection with wireless sensor networks, vehicular networks as well
as IoT devices because of the possibilities of huge applications expected to enhance the
performance of those systems [2–4,25]. When the number of such networks, nodes, or IoT
devices increases up to a great extent, these nodes or devices are generally clustered and
UAVs have to hover on these CHs. Cluster members submit their tasks to their own CHs
which are received by the UAVs that execute those tasks by hovering over the CHs. This
hovering costs a huge amount of energy, especially if the CHs are traversed in a zigzag
manner [10,26]. Therefore, for energy-efficient operation of the system, the trajectories of
the UAVs should be planned properly [4,16]. Additionally, in multi-UAV systems, there
may be the intersection of trajectories of different UAVs, leaving a nonzero probability of
collision. This collision must be avoided at any cost for which proper trajectory planning is
extremely necessary [27–29].

A deep reinforcement learning best trajectory design is presented in [16] where energy
efficiency is ensured through minimizing residual energy, safe distance between multiple
UAVs, and minimizing the application of age information in the current context. This
technique is especially applicable for a multi-UAV system where the authors have given
special attention to reducing dependencies of testing data on the training data.

The comprehensive energy consumption (CEC) model is studied in [18,19] where
energy consumed by a UAV consists of two components: propulsion energy and communi-
cation energy. Communication energy is due to the transmission of tasks from network
nodes to UAV and returning back the results from UAV to nodes. Propulsion energy is
because of the hovering of UAVs on nodes. However, a lot of propulsion energy is wasted if
the task queue is not full (or approximately full) when the UAV arrives over one particular
network node for task execution of a collection of nodes under it. The minimization of
propulsion energy(PEM) of fixed-wing UAVs is considered by authors in [19] where the
communication energy part of UAV’s energy consumption is ignored.

These days, gradually, applications of UAV-assisted systems have started to become
processing intensive; additionally, the number of real-time tasks has increased for which
delay has become an important performance metric along with energy, as proposed in [30].
In order to finish all the tasks within a specific time duration, hovering decisions of UAVs
have to be based on recent information; therefore, age-of-information needed to be consid-
ered these days as an important criterion [31]. The recency of information is considered
by authors of [4] where trajectory planning(AoI-IP) is based on dynamic programming.
However, the communication energy part is ignored in this paper as well.

Various learning algorithms have been presented in the literature some of which are
limited to only trajectory optimization of single or multiple UAVs [32–34] whereas some
others consider trajectory optimization along with scheduling [10,35]. In this article, IoT
devices are not clustered, but rather all these devices apply Time Division Multiple Access
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(TDMA) to get served on the UAV. However, interference is a big problem in this case,
and the time quantum will be small if a huge number of IoT devices are grouped together.
Hence, TDMA-based task execution will not be efficient in this scenario.

3. Proposed Method EETO-GA
3.1. Model Architecture

In the proposed EETO-GA, the set of IoT devices is divided into certain clusters and
each cluster has a CH as shown in Figure 1. The IoT devices send their tasks to their CH
where they get stored in a task queue in descending order of priority. The task with the
highest priority gets placed in the front end of the queue whereas the one with the least
priority is placed in the rear end. Whenever the queue is full, no further tasks are accepted
and inserted in the task queue until the UAV arrives on the CH and executes all those.

Figure 1. Model Architecture of an UAV–IoT Collaborative System.

3.2. Selection of Clusterhead (CH)

Suppose in cluster C, IoT devices are denoted as dev(1), dev(2), ..., dev(num(C)) where
num(C) is the number of devices in cluster C. Assuming that (hi, ki) be location of dev(i),
where i ≤ i ≤ num(c) then centroid of the cluster will be denoted as (X_cen, Y_cen) as
formulated in (1) and (2).

X_cen = {
num(c)

∑
i=1

hi}/num(c) (1)

Y_cen = {
num(c)

∑
i=1

ki}/num(c) (2)

Eligibility of a device dev(i) as a CH is governed by the function cls_elg(i) as in (3), where
(R− Ei) is residual energy of the ith device.

cls_elg(i) =
R− Ei√

{(hi − X_cen)2 + (ki −Y_cen)2}
(3)
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The above mathematical expression is based on the fact that if a node has high residual
energy and geographical closeness to the centroid of the cluster then its eligibility increases
to become a CH.

3.3. Assigning Priority to Tasks

Each CH maintains a history of task propagation from its member IoT devices to it.
The attributes of this information are as follows:

i. tsk_id — Unique identification number of the task.
ii. tsk_gen_id— Unique identification number of the cluster member that has generated

the task.
iii. tm_gen— Timestamp of generation of the task.
iv. tm_exec— Timestamp of completing execution of the task. If the task is not executed

so far this field is set to −1. That is, for ongoing tasks, tm-exec is set to −1.
v. pr_tsk— Priority assigned by the task.
vi. len_tsk— Length of the task.
vii. starv_tsk—Starvation status of the task. An IoT device is termed as starving pro-

vided it was inserted at least three times in the task queue and subsequently got
retrieved from it to give place to higher priority tasks.

At least thirty tasks are required in the history of computing priority of subsequent
tasks and participation of all IoT devices, and cluster members, within the history, is con-
sidered mandatory in this article to arrive at a close-to-accurate task priority computation
priority of a new task τ(j) submitted by the device dev(i) of cluster C, is formulated in (4).

pr(τ(j), dev(i)) =



Min(comp_priority(τ(j), dev(i)), Max_pr),
if ø(j) is predicted not to starve

Min( f ′(comp_priority(τ(j), dev(i))), Max_pr),
otherwise

(4)

where,

comp_priority(τ(j), dev(i)) =multi_regress
(

tm_gen(j), len_tsk(j),

( ∑
∀τ(k)∈Γj(i)

(tm_exec(k)− tm_gen(k))/|Γj(i)|), |Sj(i)|
)

f ′(prty) = prty× Max_pr−Min_pr(t′)
prty−Min_pr(t′)

(5)

Max_pr is the maximum possible priority in the system. Through the decision tree,
it is predicted whether the new task τ(j) generated by the IoT device dev(i) is expected
to starve or not. It is predicted not to starve, then it is assigned the priority which is the
minimum of its normally computed priority using comp_priority function and Max_pr.
comp_priority applies multiple regression function mult_regress where priority of the cur-
rent task τ(j) is computed based upon timestamp of its generation (tm_gen(j)), length
of the task(len_tsk(j)), waiting time of predecessors of τ(j) who served. By predeces-
sors of τ(j) we mean a set of all tasks τ(k) generated by the same device dev(i), s.t.,
tm_exec(k) 6= −1, i.e., the task τ(k) has already been completed before the current time t.
For a task τ(k) ∈ Γ(i), (tm_exec(k)− tm_gen(k)) is the sum of its waiting time in the task
queue and processing time by the UAV. Therefore,

{ ∑
∀τ(k)∈Γj(i)

(tm_exec(k)− tm_gen(k))}/|Γj(i)|
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is the average time required for completion of all predecessors of τ(i). If this computed
priority of dev(i) is higher than Max_pr, then it is set to Max_pr otherwise the computed
priority requires. On the other hand, if the decision tree predicts starvation of the task,
then its priority is ignored a bit from computed priority within the state of Max_pr which
is the maximum possible priority in the system and, Min_pr( f ‘) which is the minimum
priority of a task present in the task queue at current time t. Please note that irrespective
of the currently computed priority prty, Max_pr − Min_pr( f ‘) is always greater than
prty or equal to (prty − Min_pr( f ′)) and therefore multiplying prty with the fraction
(Max_pr−Min_pr( f ′))/(prty−Min_pr( f ‘)) using f‘ function will increase the priority
value. However, this increased value cannot cross Max_pr because we are taking the
minimum of the output priority generated by f ‘ and Max_pr.

Implementation Details of the Decision Tree

A decision tree is a powerful supervised learning algorithm that we have used in our
research article for predicting the starvation status of the task. Available data is sliced as
80% and 20%, where 80% is training data and 20% is testing data. “Information Gain (IG)”
in (6) is applied to select that particular attribute that will be placed at the top or as a root
node, computation of information gain is based on the concept of entropy or “measure of
uncertainty” as shown in (7). Certain accuracy, precision, and recall are used to calculate
the efficiency of the trained classifier as shown in (8)–(10). The parameters of the decision
tree appear in Table 2.

IG = Entropy(parent)− Entropy(children) (6)

Here IG specifies information gain, and as the name specifies, Entropy(parent) and
Entropy(children) denote the entropy of the parent node and the average of entropies of all
its children. The formula for entropy appears in (7).

Entropy = −
N

∑
i=1

p. log2 pi (7)

where pi is the probability of the random selection of an element in class i.

Table 2. Parameters of Decision Tree and Its Values.

Name of the Parameter Value

max_depth
(maximum number of levels permitted)

8
(Selection based on all attributes is permitted)

min_samples_leap
(minimum number if samples

stable in a leap node)

1
(least number of sample is 1)

min_sample_split
(minimum number of samples

a node must have before splitting)

2
( this is the minimum requirement

in line with least number
of samples per leaf is 1)

Like any other prediction, for the prediction of task starvation also, there are provisions
for true positive, true negative, false positive, and false negative. Based on this accuracy,
precision and recall are calculated below using (8)–(10).

accuracy =
truepositive + truenegative

truepositive + truenegative + f alsepositive + f alsenegative
(8)

precision =
truepositive

truepositive + f alsepositive
(9)
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recall =
truepositive

truepositive + f alsenegative
(10)

The values of these metrics should be high enough (at least 80%) in order to increase
the efficiency of the prediction.

3.4. Prediction Next Timestamp of Task Submission

From the history of task propagation, a CH can predict the timestamp of the next
intended submission for a device dev(i). Suppose, a set of task submission sessions of
dev(i) till current time t’ is denoted as ST(i, t’). From this set, some sessions starved where
as others did not starve. Let ST ∼ starve(i, t′) be the subset of ST(i, t’), which consists
of only the nonstarving tasks. For each task τ′′ ∈ ST ∼ starve(i) let tm_gen(τ′′) be the
time of generation of τ′′, we apply the ARMA model to predict the next suitable value
of generation of the next task in tm_gen_next(i, t′) of device i at current time t’, as shown
in (11).

tm_gen_next(i, t′) = ARMA_prednext
(
∀tm_gen(τ′′) τ′′ ∈ ST ∼ starve(i, t′)

)
(11)

ARMA_prednext is the function that applies the ARMA model for predicting the next task
that is expected not to starve.

3.5. Traversal of UAV- on the Set of Clusterhead (CH)

Let the set of CHs under one UAV, is denoted as cls(1), cls(2), ...., cls(α). For any CH
cls(α) s.t. 1 ≤ u ≤ α. Let, (lat(u), long(u)) denote the geographical position of the CHs in
terms of latitude and longitude. Initially, the UAV starts traversal with cls(v) provided, and
the following two conditions are satisfied.

1 ≤ v ≤ α, and

√
(x_UAV − lat(v))2 + (y_UAV − long(v))2 ≤

√
(x_UAV − lat(u))2 + (y_UAV − long(u))2

f or all u s.t. 1 ≤ u ≤ α

The conditions are self-explanatory. Here, cls(u) specifies the CH closest to the UAV.
As soon as the UAV arrives on the first CH, it executes all of its tasks in the task queue and
insets the information in a table TASK-EXEC, where the attributes are as bellow:

i. CLS_ID — This specifies the unique identification number of the CH whose task in
the task queue has recently been executed by the UAV.

ii. LATTITUDE—Geographical latitude of the current CH is located by the UAV.
iii. LONGITUDE— Geographical longitude of the current CH is located by the UAV.
iv. TSK_DISTINCT_DEV— Number of distinct IoT devices whose tasks have been

executed by the UAV.
v. TSK_NUM— This specifies the number of tasks that were submitted.
vi. TSK_NUM— This specifies the number of tasks successfully completed.
vii. ENRG_CONSUMED— The amount of energy spent by the UAV in the execution

of these tasks, is given by this attribute.

For the second CH, the entire TASK_EXEC of the first CH is carried by the UAV to
the second cluster and is ultimately inserted in TASK_EXEC table of the second one. Then
all tasks in the task queue of the second CH will be executed and the corresponding entry
is also inserted in TASK_EXEC of the second CH. Please note that the task of the first
CH contains only task execution information of its own whereas the same table of the
second CH contains task execution information of both the first and second CH. Like this,
TASK_EXEC of the third CH will contain task execution information of all three of the first,



Appl. Sci. 2023, 13, 2535 9 of 16

second, and third CHs. In general, we can say that TASK_EXEC table of u-th CH where
1 ≤ u ≤ α will contain information about executed tasks in all CHs 1 to (u-1 ). This will
continue for m number of rounds, where m is the minimum number such that every CH
has every other CHs task execution information and at least thirty observations exist in
TASK_EXEC of every CH. At this point, the UAV changes its strategy of traversing always
the nearest CH unvisited in the current round. Rather it asks the current CH to know the
identification number of the next CH to visit and the current CH applies a GA to answer
that question. This GA applied for task execution (GATE) is illustrated in Section 3.5.

Details of Genetic Algorithm for Task Execution (GATE)

Flowchart of GA for Task Execution (GATE) appears in Figure 2. In this example,
the identification numbers of CHs are in binary to form individual solutions which are
called chromosomes. So, chromosomes are binary numbers whose values between 1 and
α, therefore the number of bits present in each chromosome is log2 α. The fitness function
of chromosome CS depends on the factors like the average number of tasks that could
be successfully computed, the average number of IoT devices that could be served, the
energy consumed in each task execution session, and the physical distance of CS from the
immediate previously visited CH. The mathematical expression of fitness function f n(CS)
of chromosome CS, appears in (12).

f n(CS) =
f 1(CS) f 2(CS)
| task_ses(CS) |2

f 3(CS)
√

f 4(CS)
| task_ses(CS) |

(12)

where,

f 1(CS) = ∑
ρ∈task_ses(CS)

num_o f _tasks(ρ)

f 2(CS) = ∑
ρ∈task_ses(CS)

num_o f _dev(ρ))

f 3(CS) = ∑
ρ∈task_ses(CS)

energy_consumed(ρ)

f 4(CS) =
{
(lat(CS)− lat(curCS))2 + (long(CS)− long(curCS))2}

Here num_o f _tasks(ρ) and num_o f _dev(ρ) specify the number of tasks successfully
completed in ρ-th task execution session and the number of different IoT devices served
in the same ρ-th session. task_ses(CS) is the set of all task execution sessions in the TASK-

EXEC table of CS. The average number of tasks served is
∑ρ∈task_ses(CS) num_o f _tasks(ρ)

| task_ses(CS) | .

Similarly average number of IoT device is
∑ρ∈task_ses(CS) num_o f _dev(ρ))

| task_ses(CS) | .

Average energy consumed in each session is
∑ρ∈task_ses(CS) energy_consumed(ρ)

| task_ses(CS) | .
curCS is the current CH and CS is a probable next solution i.e., CS ∈ [(∪α

i=1CLS(i))−
{curCS}].

Therefore Cartesian distance from current CH is given by√
(lat(CS)− lat(curCS))2 + (long(CS)− long(curCS))2.

Selection of the next generation suitable chromosome for crossover and mutation is
performed using Roulette Wheel Selection. Based on the efficiency of individual chromo-
somes as a percentage of contribution to the fitness of the overall population, chromosomes
are propagated to the next generation after mating.
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Figure 2. Flowchart of the GATE.

4. Simulation Experiments, Results, and Discussion

The simulation environment is discussed in Section 4.1, whereas results are appeared
in Section 4.2.

4.1. Simulation Environment

Table 3 summarize values of all simulation parameters. The number of UAVs is 1, 3, 5,
7 and 9 in five different simulation runs and here we have not considered the possibility
of the intersection of multiple-UAV except in the first simulation run where the number
of UAVs is 1. As our system transmits from single UAV to multiple-UAV systems and the
number of UAVs also increases in various simulation runs, they are able to serve more and
more IoT devices improving the scalability of the entire system. That is why the number
of IoT devices has also increased in different simulation runs. Our proposed technique
EETO-GA is compared with other state-of-art trajectory optimization protocols, such as
“comprehensive energy consumption (CEC)”, “propulsive energy minimization (PEM)”
and “Age of information based tragedy planning (AoI-IP)”. Metrics of performance are
UAV-Energy-Consumed(UAVE), IoT Device-Energy-Consumed(IoTDEC), Average Delay
(AD), and Percentage of Successfully Completed Tasks (PSTK).
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Table 3. Names and Values of Various Simulation Parameters.

Name of the Parameter Value

Coverage Area 300 × 300 m2

Number of IoT devices 100, 300, 500, 700, 900

Number of UAVs 1, 3, 5, 7, 9

Min no. of devices in a cluster 3

Max no. of devices in a cluster 20

Hovering altitude of UAV 6m

No. of CPU cycles/s in an UAV 0.5G cycles/s

Channel gain −20 dB

UAV speed 20 m/s

Noise power −50 dBm

Transmission bandwidth 150 khz

4.2. Formulation of Metrics and Results

We have formulated four metrics for the measurement of results that are briefly
mentioned below:

UAV-Energy Consumption(UAVE): UAVE is the summation of the energy consump-
tion of all UAVs throughout the simulation period. Consumed energy is the difference
between the initial energy of a UAV and its residual energy after the simulation period. So,

UAVE = ΣCur_UAV∈UAV_Set(init_energy(cur_UAV)− f inal_energy(cur_UAV)) (13)

here Cur_UAV denotes the current UAV that is being considered. UAV_Set is the set
of all UAVs applied in the current simulation scenario. init_energy(cur_UAV) and fi-
nal_energy(curUAV) specify initial and final powers of the UAV named cur_UAV, after
the end of the simulation process. Using the formula in (13), UEC has been measured in
other state-of-the-art related to EETO-GA. However, in EETO-GA, we maintain a table
TASK_EXEC in each UAV where the last column is mentioned as ENRG_CONSUMED
which specifies the amount of energy spent by the current UAV in the execution of these
tasks (it is also specified in Section 3.5). So, big summing this column, we get the total
energy consumption of the current UAV throughout the simulation period summing over
all UAVs, we get UEC as shown in (14).

UAVE = ΣCur_UAV∈UAV_SetΣ(ENRGCONSUMEDinTASKEXEC(curU AV)) (14)

IoT Device Energy Consumed (IoTDEC):
In state-of-the-art related to EETO-GA, energy consumption in IoT devices was not

separately considered, So, for those algorithms, we have measured energy consumption as
the difference between initial energy and residual energy, as shown in (15).

IoTDevice = Σcurdev∈IoTDeviceset(init_energy(curdev)− f inal_energy(cur_dev)) (15)

Here, init_energy(cur_dev and final energy cur_dev denote the initial and final power of
the current IoT device cur_dev. IoTDevice_set is the total number of IoT devices in the
network. On the other hand, in EETO-GA, each IoT device maintains energy consumption
information C-Ei where C-Ei is the energy consumed so far by the ith device which was
discussed in Section 3.2, so, it can be formulated as in (16).

IoTDevice = Σcur_dev∈IoTDevice_set(C− Ecur_dev) (16)

Average Delay in Execution of the Task (ADET):



Appl. Sci. 2023, 13, 2535 12 of 16

Average delay, for all the algorithms calculated as in (17). This is nothing but the
difference between timestamps of initiation of a task and its execution, averaged over all
the tasks for all CHs.

ADET = Σcur_cs∈∪i=1to∞CLS(i)Σρ∈task_ses(cur_cs)(tm_exec(ρ)− tm_gen(ρ)) (17)

Here, cur_CS is current CH, p is a task submitted to it tm_exec(p) and tm_gen(p) are
execution completion time and task generation time for the task ρ.

Percentage of tasks that could be completed (PTSK): As per Section 3.5, it can be
formulated in (18).

We experimented with proposed EETO-GA, and other state-of-the-art, namely CEC,
PEM, and AoI-IP in the summation setup mentioned in Table 3. Comparative results
are presented in graph formats in Figures 3–6. In this simulation scenario, if we consid-
ered highest results of CEC, PEM, and AoI-IP in each setup as standard system perfor-
mance indicator, then proposed EETO-GA improved average UAVE: 43%, IoTDEC: 56%,
PTSK: 7.5%, and ADET: 38%. The performance improvements are explained in the
next Subsection.

PSTK =
ΣCur_UAV∈UAV_Set(cur_UAV)

ΣCur_UAV∈UAV_SetTSK_SUB(CUR_UAV)
× 100% (18)

4.3. Explanation

In CEC and PEM, only the propulsion energy consumption in UAVs is considered,
whereas in EETO-GA, propulsion energy in UAVs as well as energy spent in task prop-
agation (submission and series of subsequent resubmission in case of starvation) is con-
sidered. In the fitness function of the GA in our proposed scheme, we have included a
number of tasks that could be successfully completed, and an increased number of tasks
means, the opportunity of arrival of UAV has been utilized close to the fullest. Other-
wise, another arrival from UAE would have been required to complete those pending
tasks and those tasks would have to be resubmitted from member IoT devices to the
respective CHs requiring more energy consumption in those devices. This would not
only lead to an increased amount of energy consumption in UAVs, as well as IoT devices.
Therefore, energy consumption in both UAV and IoT devices in our proposed scheme
EETO-GA, is far lesser than than state of the art, namely, CEC, PEM, and AoI-TP, as
shown in Figures 3 and 4.

High energy consumption means a lesser lifetime for devices and exhausted IoT
devices would not be able to submit all the jobs they intended to submit to the CH for
possible execution by the UAV. Hence lesser the number of tasks that will be submitted
in CEC, PEM, and AoI-TP compare to proposed EETO-GA. That is, more tasks will be
executed by the EETO-GA than its competitors as shown in Figure 5. Another reason for
the improvement of our proposed scheme EETO-GA is that it considers the criteria of
starvation of tasks. Based on timestamps of generation of nonstarved tasks, an ARMA-
model-based prediction of timestamps of generating a new task is prescribed by CH to
its members in EETO-GA, so that the probability of starving is reduced. Reduction in
starvation also contributes to energy saving in IoT devices otherwise tasks would have to
be resubmitted again and again, especially when the number of IoT devices is as high as 700
or 900. For this reason, as the number of IoT devices increase, the improvement of EETO-
GA in terms of energy consumption, over its competitors, become bigger and bigger as
shown in Figures 3 and 4.
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Figure 3. UAV -Energy-Consumed (UAV-E) in Proposed EETO-GA and Other State-of-the-art.

Figure 4. IoT Device Energy Consumed (IoTDEC) in EETO-GA and Other State-of-the-art.

The average delay in the execution of a task is also an important performance parame-
ter. As the number of starving tasks and their serving times has been consciously reduced
in EETO-GA, by increasing their priorities (maximum up to Max_pr), so the average time
required for the execution of each of these tasks, is reduced as shown in Figure 6. Tasks are
submitted at suitable times prescribed by autoregressive moving average on the ARMA
model, for which chances of their starvation get reduced, decreasing their average delay.
Although the proposed technique is not real-time, but it tried to minimize the average delay
as much as possible, however, for this particular simulation study maximum acceptable
delay was set to 20 s.

Combining together all the Figures 3–6, we can emphatically say that EETO-GA
outperforms all its above-mentioned competitors as far as the matrices like energy and
delay concerned.
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Figure 5. Percentage of successfully completed tasks (PTSK) in proposed EETO-GA and other
state-of-the-art.

Figure 6. Average delay in execution of task (ADET) in proposed EETO-GA and other state-of-the-art.

5. Conclusions and Future Scopes

This article concentrates on two things energy efficient trajectory planning and proper
scheduling of tasks generated by IoT devices so that amount of starvation can be reduced
and the average time required for the execution of a task can be decreased. This makes
the system efficient both from an energy and delay perspective although energy has been
specifically highlighted because propulsion energy in UAVs as well as energy consumed
by IoT devices have both been considered in this scheme. In order to predict the possi-
bility of starvation have implemented a decision tree and the priority of starving task are
increased so that delay is reduced in our system. However, the limitation of our proposed
work is that it has been implemented in the simulator and therefore, in the future, should
be implemented in real-life physical situations so that performance metrics can be com-
puted and evaluated in a more reliable manner in alignment with the standard system
performance indicator.

In this research work, we have implemented EETO-GA and the state of the art in a
simulator. In the future, we would like to implement all these using real-life infrastructure.
In that case, practical issues like rate, time of use, etc. will be considered. Obtaining
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good results during the current simulation work encourages us to proceed further toward
procuring a real-life experimental setup, which is justified by performance enhancement
produced by EETO-GA in the simulated environment.
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