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Abstract: A novel technique to enhance the phase shifting range of a liquid crystal (LC)-based,
substrate-integrated waveguide (SIW) phase shifter by inserting inductive posts (IPs) is presented for
the first time. The IPs inserted in the LC-based SIW phase shifter produce a phase advance based on
the relative permittivity of the LC, resulting in an additional differential phase shift. At 28 GHz, the
proposed structure with IPs achieves a ratio of maximum differential phase shift (∆φmax) to maximum
insertion loss (IL max) (FoM1) = 52.82 ◦/dB and ratio of maximum differential phase shift to length
(FoM2) = 2.62 ◦/mm. Compared with conventional LC-based SIW phase shifters that lack an IP and
use the same amount of LC, the FoM1 increased by 16% and the FoM2 increased by 55%. In addition,
compared to the typical structure that uses additional LCs instead of IPs, the FoM1 decreased by 7%,
and FoM2 increased by 21%. Therefore, inserting IPs into the LC-based SIW phase shifter can reduce
the dimensions of the phase shifter and the amount of LCs required to achieve the desired differential
phase shift. We believe this work can contribute to the design of compact and efficient SIW phase
shifters for future telecommunication systems.

Keywords: SIW; LCs; mmWave; tunable phase shifter; phase tuning; cylindrical inductive post

1. Introduction

Liquid crystals (LCs) are well-known materials in the liquid crystal display (LCD)
industry because of their dielectric anisotropic and birefringence nature that permits the
tunability of their optical properties. This anisotropic characteristic also can be a promising
candidate for use in microwave engineering because of its versatility at high frequency
ranges. The tunability of LCs is not only favorable in photonics applications but also for
radio frequency band (RF; 3 kHz–300 GHz) applications, especially for reconfigurable
millimeter-wave systems (mmWave; 30 GHz–300 GHz). By changing the dielectric charac-
teristic of the LC layer from which a wave is propagating, we can change the propagation
constant (specifically, the phase constant β) of that wave. Because of this tunability of LCs,
we can implement various microwave devices. The phase shifter is a key component of
phased array antennae that are used to implement beam steering in communication systems
such as mobile devices [1] and automotive radar [2]. For the implementation of beam-
forming networks that operate in the millimeter-wave (mmWave) range, phase shifters
with high tuning efficiency, low-loss, small size, and low cost have been studied [3,4]. For
example, variable phase shifters that use CMOS [5] or micro-electromechanical systems
(MEMS) [6] have been proposed, but they suffer from significant losses and inadequate
operational stability in the mmWave range [7].

LCs offer an alternative approach for implementing tunable phase shifters [8,9]. LCs
have dielectric anisotropy controlled by static electric or magnetic fields. In addition, they
have relatively low loss characteristics at high frequencies, especially above 10 GHz [10],
so they have been usefully used to implement a variable phase shifter at the mmWave
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range. Tunable phase shifters using LCs can be implemented using planar transmission
lines such as microstrip lines (MS line) and coplanar waveguides (CPW) [11,12], metallic
waveguides, and substrate-integrated waveguides (SIW) [13]. MS lines and CPW phase
shifters are commonly used to implement liquid crystal phase shifters in microwave and
millimeter-wave applications. However, this configuration suffers from some drawbacks
for using high-frequency range applications. The first drawback is the severe dispersion of
these planar transmission line topologies, which can cause the phase shift of the transmitted
signal to vary with frequency. This can make it difficult to achieve a uniform phase shift
over a wide frequency range. The second drawback is the fabricating difficulty at high
frequency ranges. Fabricating CPW and MS lines can be challenging, particularly at high
frequencies where the dimensions of the components become very small. This can increase
the cost and complexity of manufacturing liquid crystal phase shifters using these types of
transmission lines. In addition, the limited cell gap range for implementation, caused by
impedance matching issues, and unwanted coupling with other components that negatively
impact the performance of the phase shifter are key drawbacks of the planar transmission
line topology [12].

SIW can be a promising alternative structure for these drawbacks. SIW combines the
advantages of planar technologies and conventional metallic waveguides to demonstrate
compactness, high-quality factors, wide bandwidth, lower loss, and high-power handling
capabilities. The most important advantage of SIW technology is the ability to integrate
multiple devices on a single substrate, reducing losses and parasitics [14]. Therefore, LC-
based SIW phase shifters are a good candidate for mmWave phase shifters [15,16]. Research
on the existing LC-based SIW phase shifter has been focused on designing to change the
effective relative permittivity of the LC εr sealed in the cavity. In this case, the phase shifter
length should be extended to increase the differential phase shift. However, phase shifters
are subject to strict size constraints in arrays where individual antenna elements must be
integrated with phase shifters. [17,18].

Therefore, we propose a novel approach to improve the phase shifting range of LC-
based SIW phase shifters by incorporating inductive posts (IPs) without expanding the
device’s dimensions. The IPs induce a phase advance that is proportional to the relative
permittivity of the substrate (εr,sub) [19], resulting in an enhanced differential phase shift
(∆φ). To validate this concept, we designed and compared structures with and without
IPs, and our simulation results demonstrate that the insertion of IPs leads to a greater
differential phase shift compared to LC-based SIW phase shifters that rely on additional
LCs. Hence, we believe that the integration of IPs can enhance the phase shifting range
while maintaining a compact and cost-effective design, making it a promising solution for
future telecommunication systems.

2. Fundamentals of Liquid Crystals for Microwave Applications

An LC is a mesophase between isotropic liquids and crystalline solids. LC molecules
are shaped like rods or disks, which tend to align in a certain direction, which is described
by the time-averaged direction

→
n along the long axis of the LC molecule (Figure 1a) [20].

LCs are dielectric materials with anisotropic characteristics such as the relative dielectric
anisotropy ∆εr and dielectric loss tangent tan δ. The relative dielectric anisotropy can be
defined as:

∆εr = εr,‖ − εr,⊥, (1)

where εr,‖ is the LC’s effective parallel relative permittivity and εr,⊥ is LC’s effective
perpendicular relative permittivity.
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The relative permittivity of LC depends on the angle between the director
→
n and the

radio frequency (RF) field
→

ERF [10,21]. By regulating the LC directors by external bias, we
can change the effective dielectric constant of the structure continuously. When the RF field
is perpendicular to the LC director, the RF field experiences a complex εr,⊥ that corresponds
to the short axis of the LC (Figure 1b). In contrast, when the RF field is parallel to the LC
director, the RF field experiences the complex εr,‖ that corresponds to the long axis of the
LC (Figure 1c). Between these, relative LC permittivities can be obtained continuously by
changing

→
n using the external field. This external field-controlled tuning of the relative

permittivity with a maximum effective anisotropy can be used directly for continuous
phase shifting [22]. The maximum differential phase shift of the LC phase shifter can be
written as:

∆φphase shi f ter =
2π f
c0

lphysical

(√
εr,e f f ,‖ −

√
εr,e f f ,⊥

)
=

2π f
c0

lphysical∆ne f f , (2)

where εr,e f f ,‖ is effective εr,‖ value of the whole RF device, εr,e f f ,⊥ is the effective εr,⊥ value
of the whole RF device, ∆ne f f is the effective anisotropy of the refraction index, f is the
frequency of operation, L is the physical length of the phase shifter, and c0 is the speed of
the light. The LC used in this study is ZOC-A001XX from the JNC corporation; at 28 GHz,
it has εr,⊥ = 2.47, εr,‖ = 3.09, tan δ⊥ = 0.015, and tan δ‖ = 0.004.

3. Inductive Posts in the LC-Based SIW Phase Shifter

The cylindrical IP inserted into the SIW (Figure 2) is equivalent to a T-network high-
pass filter [23]. The high-pass filter produces a phase advance when used in a phase shifter
and is widely used in SIW phase shifters [24,25]. The phase advance φ can be calculated
as [19]:

φ = −tan−1
(

2Xb
Z0

+
Xa

Z0

)
− tan−1

(
Xa

Z0

)
(3)

where Xa is the reactance, Xb is the susceptance, and Z0 is the line’s characteristic impedance.
To gain a deeper understanding of parameters related to phase modulation, we need the
following detailed equations [19]:

Xa

Z0
− Xb

Z0
=

a
2λg

csc2 πp
a

[
S0 −

(
π2r
2λg

)2
−
(

π2r
2a

)2(
S0cot

πp
a
− S1

)2
]

, (4)

Xb
Z0

=
a
λg

(
π2r

a

)2
sin2 πp

a
, (5)

S0 = ln
(

4a
πd

sin
πp
a

)
− 2sin2 πp

a
+ 2∑∞

n=2 sin2 nπp
a

 1√
n2 −

(
2a
λg

)2
− 1

n

, (6)
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S1 =
1
2

cot
πp
a
− sin

2πp
a

+ ∑∞
n=2 sin

2nπp
a

 n√
n2 −

(
2a
λg

)2
− 1

, (7)

where a is the width of the waveguide, λg is the guide wavelength, r is the radius, and p is
the offset of the inductive posts in the waveguide (Figure 2). Xa and Xb are functions of
radius r and offset p of the IP (Figure 2). λg is the relative dielectric constant of the substrate
εr,sub [14]. From the equations, the phase advance caused by the insertion of inductive
posts depends on their r and p and the substrate’s permittivity εr,sub. φ increases as r and
p increase, but decreases as εr,sub increases [23]. We inserted an IP into the LC-based SIW
phase shifter that makes a phase advance depending on εr,sub. The LC-based SIW phase
shifter with IPs produces the following phase shift as

φphase shi f ter = Re
(

φl,phase shi f ter

)
= βlphysical ≈

2π

c0
f lphysical

√
εr,e f f − φ, (8)

where φphase shi f ter is the resultant phase shift of phase shifter, φl,phase shi f ter is the electrical
length of the phase shift, and β is the propagation constants. Therefore, the differential
phase shift of the LC-based SIW phase shifter with inductive posts inserted can be written as

∆φphase shi f ter = Re
(

φl,‖

)
− Re(φl,⊥)

= ( 2π
c0

f lphysical
√

εr,e f f ,‖ − φ‖)− ( 2π
c0

f lphysical
√

εr,e f f ,⊥ − φ⊥).
(9)

φ‖ is the phase advance produced by the IP when the LCs are perpendicular to the RF
field, and φ⊥ is produced by the IP when the LCs are parallel to the RF field. The inserted
IP produces a greater φ when the LCs are perpendicular to the RF field than when they are
parallel. This phenomenon results in a difference in φ and, thereby, an increased ∆φ. In
this work, we propose the effectiveness of inserting IPs for phase advance at LC-based SIW
phase shifter.
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4. LC-Based SIW Phase Shifter Design
4.1. Structure

We designed the LC-based SIW phase shifter with IPs that operate at 28 GHz. Inserting
the IPs increases the cut-off frequency by reducing the effective width of the SIW, so the
SIW before the insertion of the IPs was designed to have a cut-off frequency of 15 GHz with
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a large enough margin. The 15 GHz cut-off frequency means that we can send our signal to
another port entirely with phase changing while propagating.

The proposed LC-based SIW phase shifter consists of five layers (Figure 3). Layers
1 and 5 are respectively the upper and lower metal planes of the SIW and are electrically
connected through the metalized holes. The metal planes are copper and are 7 µm thick.
Layers 2, 3 and 4 are composed of Roger 4003C (εr = 3.38, tanδ = 0.0021) as dielectric
substrates. Designed thicknesses were 0.1 mm for layers 2 and 4 and 0.5 mm for layer 3.
The LC was set inside a cavity (3.5 mm × 10 mm, 0.5 mm high) in layer 3. The transition
from grounded coplanar waveguide (GCPW) to SIW occurs at the end of the phase shifter
for the integration applications of SIW [26,27]. The GCPW was designed to have an
impedance of 50 Ω [28,29]. Then, IPs with a radius r = 0.1 mm were placed with offset
p = 0.9 mm to increase ∆φ. The dimensions of r and p were chosen to optimize the trade-off
between the insertion loss and the ∆φ that the posts induce. The IPs were located in the
middle of the metalized holes of the SIW and continuously arranged at intervals s, as
shown in Figure 4.
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4.2. Biasing System

Various biasing systems have been proposed to change the relative permittivity of an
SIW structure with LC driving [16,30]. We used microstrip lines [31] as the biasing structure
for verifying the LC director’s driving in the proposed SIW structure. The microstrip
conductors were set in copper that was 0.5 mm wide and 1 µm thick.

We checked the changes in the LC state by using an LC simulator (TechWiz LCD) [32,33].
Simulations were conducted using ANSYS HFSS for RF simulation, and TechWiz for LC
director alignment. Before voltage was applied to the biasing structure, LCs were in a
perpendicular state (Figure 5a), and after a bias voltage Vb = 70 V was applied, the LCs were
in a parallel state (Figure 5b). This change demonstrates that this biasing process drove
the LC molecules between its extreme states. Furthermore, the RF field that propagated in
TE10 mode was verified. Therefore, in simulations, we can assume that the LC layer is an
isotropic material with relative permittivities εr,⊥ and εr,‖ [34,35]. The SIW phase shifter
using LC with a microstrip biasing line is depicted in Figure 6.
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Figure 6. Proposed LC-based SIW phase shifter. The following dimensions are used: s = 0.7 mm,
h = 0.7 mm, lLC = 10 mm, wLC = 3.5 mm, lcpw = 3 mm, wcpw = 2.6 mm, ltran = 1.4 mm, wtran = 1.2 mm.
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5. Results and Discussion
5.1. Phase Advance by IP

We verified the phase-advance tendency of IPs as a function of εr,sub by using a 3-D
electromagnetic (EM) simulation tool (HFSS). The simulation was run using SIW structures
by regulating the number of IPs, 1 (Figure 4a) and 2 (Figure 4b), at 28 GHz; εr,sub was
varied from 1.5 to 3.5, with r = 0.1 mm and p = 0.5 mm, respectively. The phase advance
decreased as εr,sub increased, as depicted in Figure 7. As we showed with Equations (3)–(9),
it is remarkable that even though the permittivity increased, the phase advance term rather
showed a tendency to decrease, which showed a tendency to coincide with the formula.
The slight discrepancy between theoretical calculations and simulation results could be due
to the use of equivalent circuit assumptions for the T-network high-pass filter. Nonetheless,
we have confirmed that the trend of our simulation results is consistent with the calculated
results, demonstrating the effectiveness of the LC-based SIW concept of utilizing inductive
posts for phase shifting.
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Figure 7. Simulated phase advances of the SIW structure with additional inserted posts, as a function
of substrate permittivity: (a) loaded with one post, (b) loaded with two posts.

5.2. Enhanced Phase Shifting Range by Inserting IPs

We used the designed structure (Figure 4a) to verify the increase in ∆φ by the IPs at
28 GHz. The ∆φ was obtained by using the perpendicular and parallel relative permittivity
of ZOC-A001XX by considering the angle between the RF field and LC directors. As a
result, we found that inserting the IPs effectively increased ∆φ, as we discussed in the
Section 3. To evaluate the tendency among parameters, we regulated the parameters of
r and p. When r is fixed, ∆φ increased as p increased (Figure 8a). In addition, when p was
fixed, the ∆φ increased as r increased (Figure 8b). Therefore, inserting an IP can increase
∆φ, and the desired ∆φ can be obtained by changing the r or p, or both, of the IP.

5.3. LC-Based SIW Phase Shifter

The proposed LC-based SIW phase shifter was simulated with HFSS at the operating
frequency of 28 GHz. The addition of IPs increased the cut-off frequency from 15 GHz
to 20 GHz (Figure 9a). Because our target operating frequency is 28 GHz, our design has
a large enough margin. S-parameters of the proposed structure showed insertion loss
IL = 1.1 dB, and ∆φ = 58.1◦ (Figure 9b). The comparison of the proposed structure, Case1,
and Case 2 are presented to evaluate the effectiveness of our proposed structure in Table 1.
The proposed structure had FoM1, which was 55.68% higher than in Case 1 and 21.85%
higher than in Case 2, and an IL about 35% higher than in both Case 1 and 2.
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Figure 8. Simulation results of SIW structure with one inserted post: increase in differential phase
shift as a function of offset and radius: (a) function of radius r and (b) function of offset p.
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Table 1. Comparison of proposed structure performance with Cases 1 and 2 at 28 GHz.

Topology Amount of LC
(mm3)

Maximum
Insertion Loss

(dB)

Maximum
Differential Phase Shift

(◦)

FoM1
(◦/dB)

FoM2
(◦/mm)

Proposed
structure 17.5 1.1 58.1 52.82 2.62

Case 1 17.5 0.82 37.32 45.51 1.69
Case 2 25 0.8 47.68 56.76 2.16

To verify the effect of ∆φ caused by the additional IPs, we designed two conventional
structures: Case 1, which uses the same amount of LC as the suggested structure, and
Case2, which uses additional LCs instead of IPs (Figure 10). Their electrical characteristics
were compared using two figures of merit (FoM). The figure of merit 1 (FoM1; ◦/dB) for a
passive phase shifter is defined as

FoM1 =
∆φmax

ILmax
. (10)
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This factor is important because it is related to the price competitiveness of LC devices.
In order to secure price competitiveness in an array structure with numerous unit cells, the
amount of LC used for driving in a single cell must be minimized. The proposed LC-based
phase shifter’s FoM1 was 52.82 ◦/dB, which is 16.06% larger than Case 1 and 6.94% lower
than Case 2. These changes are caused by the additional IP that simultaneously increases
∆φ and IL. FoM2 (◦/mm) is ∆φmax per length, which is important when determining the
required dimension of the phase shifter to achieve the desired ∆φ [36,37]:

FoM2 =
∆φmax

Total Length
. (11)

By this parameter, we can evaluate the footprint of the LC devices. Research related
to the miniaturization of RF structures has been a subject of much interest. The suggested
LC-based SIW phase shifter has FoM2 = 2.62 ◦/mm, which is 55.03% higher than Case 1 and
21.3% higher than Case 2. The proposed IP-inserted LC-based SIW phase shifter increased
FoM2 with fewer LCs than the existing structure. The phase shift results in Case 1 and Case
2 differ due to the varying LC volumes in their design. The RF signal passes through the
space between the posts, and the volume of LCs it travels through determines the tunability
of the LC-based SIW design. Case 2 has a larger LC area, leading to a larger tunable range
of the effective dielectric constant of the entire SIW phase shifter compared to Case 1. As
a result, the Figure of Merit (FoM2) in Case 2 is better than in Case 1. In conclusion, we
confirmed that inserting Ips into the LC-based SIW phase shifter can enhance phase shifting
effectively, even using a smaller amount of LCs or smaller dimensions of the phase shifter
(Tables 2 and 3).

Table 2. Phase shifter length required to achieve 180◦ degree phase shift.

Topology Proposed Structure Case 1

Length required to achieve 180◦

differential phase shift (mm) 68.7 106.5

Table 3. Amount of liquid crystal required to obtain 180◦ differential phase shift.

Topology Proposed Structure Case 2

Amount of LC required achieve 180◦

differential phase shift (mm3) 54.2 94.4
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6. Conclusions

This paper has presented a novel method to increase ∆φ by inserting IPs into an
LC-based SIW phase for the first time. Inserted IPs increase ∆φ by generating different
phase advances based on the εr of the LC. Furthermore, the amount of ∆φ increase can be
adjusted by manipulating the r and p of the IPs.

Simulation results at an operating frequency of 28 GHz showed ∆φ = 58.1◦ and
IL = 1.1 dB, with FoM1 (ratio of maximum ∆φmax and the insertion loss) = 52.82 ◦/dB
and FoM2 (∆φmax per length) = 2.62 ◦/mm. Compared with the conventional LC-based
SIW phase shifter that uses the same amount of LC, FoM1 increased by 16.06% and FoM2
increased by 55.03%. In addition, compared to the conventional, LC-based SIW phase
shifter, which uses additional LC instead of IP insertion, FoM1 was reduced by 6.94%,
and FoM2 was increased by 21.3%. The proposed design with additional IPs has a higher
∆φ per length than the conventional structure that uses additional LCs instead of IPs.

Inserting inductive posts can enhance the phase shifting range without increasing the
dimension or the amount of LCs of the LC-based SIW phase shifter. Therefore, the proposed
design can reduce the size of the phase shifter or the amount of LCs required to achieve the
desired differential phase shift. We believe this work will contribute to developing a com-
pact and cost-effective LC-based SIW phase shifter for building future telecommunication
systems. However, further studies, including parameter studies and investigations into
dispersion characterization and implementation with regards to the LC filling process, are
necessary to reach the commercialization level of LC-based SIW structures.
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