
Citation: Jang, S.; Lee, J.; Lee, J.-W.;

Park, C. Design of K-Band Power

Amplifier with 180-Degree Phase-

Shift Function Using Low-Power

CMOS Process. Appl. Sci. 2023, 13,

2501. https://doi.org/10.3390/

app13042501

Academic Editors: Gerard Ghibaudo

and Francis Balestra

Received: 16 January 2023

Revised: 9 February 2023

Accepted: 14 February 2023

Published: 15 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Communication

Design of K-Band Power Amplifier with 180-Degree Phase-
Shift Function Using Low-Power CMOS Process
Seongjin Jang 1, Jaeyong Lee 1, Jeong-Woo Lee 2 and Changkun Park 1,*

1 School of Electric Engineering, Soongsil University, 369, Sangdo-ro, Dongjak-gu,
Seoul 06978, Republic of Korea

2 GCT Semiconductor Inc., Construction Financial Building 10F, 11F, 15, Boramae-ro 5-gil, Dongjak-gu,
Seoul 07071, Republic of Korea

* Correspondence: pck77@ssu.ac.kr; Tel.: +82-828-7166

Abstract: In this study, a K-band complementary metal oxide semiconductor (CMOS) power amplifier
was designed using a low-power (LP) process to improve the integration of the beamforming system.
In order to reduce the overall system size, a 180◦ phase-shift function was mounted. It was designed
in a four-stage structure to secure sufficient gain. In addition, we propose a way to secure wideband
characteristics by utilizing the gains of each of the four stages. The power amplifier was designed
with a 40-nm LP CMOS process to verify the feasibility of the proposed technique. The measured
P1dB for 0◦ and 180◦ phase-shift modes were 15.25 dBm and 14.30 dBm, respectively, at the operating
frequency of 25.0 GHz. The measured phase difference between the two modes was 217◦ at the
25.0 GHz.

Keywords: CMOS; LP process; phase shift; power amplifier; wideband

1. Introduction

Since the introduction of 5G mobile communication technology, various studies have
been actively conducted to apply beamforming technology to various communication
and radar systems [1–4]. Unlike previous technologies, such beamforming technology
requires a plurality of transceivers. Accordingly, the importance of compact size and
low power consumption techniques in transceivers is increasing [5,6]. Therefore, in the
beamforming system, it is common to design transceivers using a complementary metal-
oxide semiconductor (CMOS) process with the highest degree of integration among various
semiconductor process.

In general, in the case of RF transceivers, it is advantageous to use a high current
consumption and a high trans-conductance, gm to ensure a high frequency operation, so
a general-power (GP) CMOS process is more preferred than a low-power (LP) CMOS
process. In particular, transistors with high gm are advantageous in securing high output
power as well as high power gain in the CMOS power amplifier. In addition, if the power
gain increases with the increase in the gm of the transistor, the number of amplification
stages required by the CMOS power amplifier decreases, which helps to improve the
efficiency of the CMOS power amplifier. However, the LP process is more preferred for
reducing power consumption of various digital and analog circuits for controlling RF
transceivers [7]. Particularly, in the beamforming systems, LP processes help minimize
DC power consumption in digital and analog circuits that deal with relatively low power.
Accordingly, the GP process and the LP process may be used at the same time to obtain low
power consumption of the digital and analog ICs, compact size, high performance and low
power consumption of the RF transceiver; however, in this case, the entire transceiver may
not be implemented as an integrated circuit (IC). Therefore, there are often cases in which
RF circuits also use the LP process for integration with digital and analog circuits.
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In terms of high frequency circuits, the LP process has a number of disadvantageous
factors in terms of power gain, output power, efficiency, and noise figure. However, in order
to reduce the weight of the entire transceiver, research on high-frequency circuits, such as
CMOS power amplifiers, variable gain amplifiers, attenuators, phase shifters, switches,
and low-noise amplifiers using a LP process is essential.

In this study, a K-band power amplifier was designed with a multi-stage structure
using the LP CMOS process. In order to overcome the low gm of the LP CMOS process and
secure sufficient gain, the CMOS power amplifier was designed as a four-stage structure. In
addition, to suppress the increase in the area of the entire transceiver due to the increased
area of the CMOS power amplifier with the four-stage structure, we propose a structure
capable of mounting the 180◦ phase-shift function of the phase shifter, which occupies
a large chip area in the beamforming system, to the CMOS power amplifier. Although
the area occupied by the 180◦ bit in the phase shifter varies depending on the structure,
according to previous study, the 180◦ bit accounts for about 40% of the core size, as inferred
from a chip photograph [8,9]. However, the proposed CMOS power amplifier does not
require an additional area for mounting the 180◦ phase-shift function.

2. Design of the CMOS Power Amplifier with LP Process

In this study, a power amplifier was designed using a 40-nm LP CMOS process.
Figure 1 shows the I–V curve of NMOS with the same gate width using the 65-nm GP and
the 40-nm LP processes. As shown in Figure 1, the transistor using the 40-nm LP process
has a relatively high threshold voltage, a low current level, and a low gm value compared
to the transistor using the 65-nm GP process.
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Figure 1. Comparison of current levels of NMOS of low- and general-power CMOS processes.

With the same gate width, comparing the gm values of the transistors using 65-nm GP
and 40-nm LP processes in Figure 1, the 40-nm LP transistor has a gm value of approximately
66% compared to that of the 65-nm GP transistor. Therefore, when the 40-nm LP process is
used to obtain the same gain as the two-stage power amplifier using the 65-nm GP process,
a three-stage structure is required. In a simple calculation, to obtain the same gain from the
power amplifier, in the case of the 40-nm LP process, the required IC area is increased by
approximately 33% compared to the 65-nm GP process. Furthermore, a low current level of
the 40-nm LP process compared to the 65-nm GP process causes a low output power of the
power amplifier. In order to obtain the required output power, sufficient drain current is
required, and, to this end, an LP process-based power amplifier should use an increased
transistor size. However, the increased transistor size also increases parasitic capacitances,
which requires high driving power, resulting in a decrease in gains and an increase in dc
power consumption. Furthermore, the low gm of the LP process-based transistor directly
degrades the gain of the power amplifier. Such characteristics of the LP process act as
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unfavorable factors in terms of power gain, output power, and efficiency of the power
amplifier.

Among them, in particular, due to the low gain characteristics of the LP process, it
is essential to apply a multi-stage structure in the power amplifier using the LP process.
In this study, four stages were used, as shown in Figure 2, to secure sufficient gain of
the power amplifier. As shown in Figure 2, the power amplifier is designed using a
differential structure to obtain virtual AC ground [10–13]. Accordingly, transformers as a
function of input and output baluns were essentially used in the input and output matching
networks [14]. In addition, the transformer was used for the component of the inter-stage
matching networks. The matching networks were completed with the transformers and
additional metal–insulator—metal (MIM) capacitors. Second, third-driver and power
stages were designed as common-source (CS) structures. The structure of the first driver
stage is described in the following section. Additionally, the capacitive neutralization
technique was used to secure stability and power gain [15–17]. The supply voltage of
each amplification stage was entered through the center-tap of the primary winding of the
transformer. To obtain accuracy of the simulation, the electromagnetic (EM) simulation was
conducted in the design of the passive devices, including transformers and inter-connection
lines.
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Figure 2. Schematic of the designed CMOS power amplifier.

In the power stage of the power amplifier, the power-matching technique was used to
improve maximum output power using output transformer and shunt MIM capacitors, as
shown in Figure 2. The used values of the MIM capacitors and transistors of the power
amplifier are also shown in Figure 2.

2.1. 180◦ Phase Shift Function in the First Driver Stage

As described in the previous section, the power amplifier was designed as a four-
stage structure to secure sufficient power gain in the LP CMOS process. However, when
the power amplifier is composed of four stages, the overall IC area inevitably increases.
In particular, compared with the power amplifier based on the GP CMOS process, the LP
CMOS-based power amplifier requires more amplification stage, considering the low gm of
the LP CMOS process. The increase in the area makes the configuration of the beamforming
system difficult. Therefore, in this study, the 180◦ phase-shift function, which occupies a
large area in the beamforming transceiver, was embedded in the power amplifier to reduce
the area of the entire transceiver. The phase-shift function was embedded in the first driver
stage with the lowest power handling. Because each stage has a power gain, the power that
the first stage deals with is the lowest, and the power increases as it goes to the power stage.
Therefore, if the phase-shift function is implemented in the second or third stage rather than
the first stage, the size of the transistor for implementing the phase shift function increases,
thereby increasing the additional power consumption, causing the power amplifier to lose
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efficiency. In addition, in extreme cases, if the phase-shift function is implemented in the
power stage, the power-matching technique should be implemented simultaneously, which
hinders securing the output power of the power amplifier. Accordingly, by embedding
the phase-shift function in the first driver stage, it was possible to minimize the power
amplifier’s output power degradation due to the embedding of the phase-shift function.

Figure 3 shows the typical schematic of the amplification stage for embedding a 180◦

phase-shift function [9]. As shown in Figure 3, in general, to realize the 180◦ phase-shift
function, two identical amplifiers, which are located in parallel to each other, may be used.
In Figure 3, VCG,P and VCG,N were the gate bias of the common-gate (CG) transistors while
VCS was the CS transistor. In the typical structure, one of the two amplifiers is selectively op-
erated by VCG,P and VCG,N, thereby implementing the 180◦ phase-shift function. However,
in this case, due to the two amplifiers, the required chip area could increase.
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Figure 4 shows the schematic of the proposed first driver stage for embedding a 180◦

phase-shift function. In this work, considering the overall chip area of the power amplifier,
instead of using two identical amplifiers, the phase-shift function was implemented by
modifying a single-cascode structure. As shown in Figure 4, from a general cascode
structure, a CG transistor was designed by dividing it into two. MCG,P1, MCG,P2, MCG,N1,
and MCG,N2 were the divided CG transistors. The input signal path was converted to 180◦,
according to the VCG,N and the VCG,P. The VCG,P (or VCG,N) was gate bias voltage of MCG,P1
and MCG,P2 (or MCG,N1 and MCG,N2) As a result, the CS transistor of MCS operated at all
times in the 0◦ and 180◦ phase-shift modes. On the other hand, as can be seen in Figure 4,
MCG,P1 and MCG,N1 (or MCG,P2 and MCG,N2), which are divided-cascode transistors, operate
selectively, according to each mode, and consequently perform a phase shift function.
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2.2. Multi-Stage Structure for Wide Bandwidth

In this study, wideband characteristics were secured by actively utilizing the four-stage
structure. As shown in Figure 5a, superimposed staggered tuning techniques that optimize
each stage to have a different frequency band are typically utilized to secure the wide
bandwidth of the power amplifier [18–21]. The superimposed staggered tuning techniques
have been continuously improving in various ways, such as a superimposed dual-band
structure [22]. In general, the superimposed staggered tuning techniques are mainly
applied to amplifiers consisting of two or three stages. In order to apply the superimposed
staggered tuning technique to the power amplifier of this study, the characteristics of each
stage were first considered. In this study, a power-matching technique was used in the
power stage, while the phase shift function was installed in the first driver stage. Therefore,
the first driver and the power stages were designed to have a high peak gain at different
frequencies rather than to widen the bandwidth. In addition, the first driver and power
stages are designed to be responsible for gain in a relatively low frequency. Instead, for
the second and third stages, it was designed to have wide bandwidth as well as secure the
gains, as it only needs to be faithful to the role of securing the gains. Such wide bandwidth
technique is shown in Figure 5b. The frequency with the highest gain for each stage was
optimized though CS,1, CS,2, and CS,3 of Figure 2.
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For the driver and power stages, it was designed with the conjugate-matching and
the general power-matching techniques, respectively. Figure 6 shows the locations of
impedance of the transistors used in this study. The transformer used for matching for
each stage was interpreted as a simple T-model. In Figure 6a, LP,n, LS,n, and LM,n show the
self- and mutual-inductances of the primary and secondary windings of the transformer,
respectively. Figure 6b shows a part of the Smith chart showing the trajectory of change in
impedance for conjugate matching according to the matching components.
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3. Simulation and Measurement Results

In this study, we designed a power amplifier for 5G communications using the 40-nm
CMOS LP process that provides eight metal layers to verify the feasibility of the proposed
structure. The design parameters of the used device are shown in Figures 2 and 4. Figure 7
shows a photograph of the designed power amplifier with 180◦ phase-shift function in the
first driver stage. In the chip photograph, the first, second, and third driver stages were
sequentially placed from left to right. The power stage is situated on the right-most side in
the chip photograph. The chip size was 1.19 × 0.61 mm2, including all test pads. The core
size was 0.97 × 0.23 mm2, excluding all test pads and decoupling capacitors. To secure AC
ground, the decoupling capacitors were placed near the test pads. However, since the power
amplifier in this study was designed in a differential structure, the decoupling capacitor
played an auxiliary role and the virtual ground of the differential structure was actively
utilized for the AC ground. As can be seen in Figure 7, there is no additionally required chip
area for implementing the 180◦ phase-shift function. The used supply voltage, VDD, of the
designed power amplifier was 1.1 V. In the case of the first stage with the cascode structure
for phase-shift function, the gain could be increased by using a higher supply voltage;
however, the first stage also used a supply voltage of 1.1 V to minimize the additionally
required low-dropout (LDO) regulators.
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As shown in Figure 8, in the frequency range of 22.0 GHz to 26.0 GHz, the simulated
gain was higher than 28.4 dB and the gain flatness was 1.4 dB or less. Originally, the power
amplifier was designed through simulation with a typical corner model. However, in the
worst case, the size of the transistor was determined in preparation for being implemented
as a slow corner. After measuring the DC current of the power amplifier manufactured in
a foundry, it was confirmed that the power amplifier was manufactured as a slow corner.
Since the designed power amplifier was made as a slow corner, the simulation results were
performed under slow corner conditions. As a result of the simulation of the k-factor, we
confirmed that the designed power amplifier was unconditionally stable. In the first stage,
with 180◦ phase-shift function, a difference in measured S-parameters between 0◦ and 180◦

modes occurred due to parasitic components occurring at the cross-over region circled in
Figure 4.

As illustrated in Figure 9, the power amplifier has a saturation power (Psat) of 16 dBm
or more in the frequency range of 22.0 GHz to 26.0 GHz. However, for the same reason of
the parasitic components occurring at the cross-over region of the metal lines, as shown in
Figure 10, the power and PAE were measured to be degraded in the 180◦-mode compared
to the 0◦-mode. The measured P1dB for the 0◦- and 180◦-modes were 15.25 dBm and
14.30 dBm, respectively, in the operating frequency of 25.0 GHz.
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As shown in Figure 11, the measured phase difference between 0◦- and 180◦- modes
was 217◦ at the frequency of 25.0 GHz. The cause of the discrepancy of the phase differences
of simulated and measured results is expected to be the difference in parasitic capacitance
components in the cross-over region of the metal lines circled in Figure 4.
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Figure 12 shows the measured output spectrum and constellation for 64-quadrature
amplitude modulation (QAM) cyclic prefix (CP)—orthogonal frequency division multiplex-
ing (OFDM) signal with 100 MHz channel bandwidth under error vector magnitude (EVM)
−25 dBc condition. When the EVM of −25 dBc was satisfied at 25.0 GHz, the measured
output powers were 8.39 dBm and 8.53 dBm for the 0◦- and 180◦-modes, respectively.
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Table 1 shows a comparison with the previous CMOS PAs for 5G applications. The
core size of the power amplifier of this study excludes the areas of pads and decoupling
capacitors. The PAE was measured somewhat lower due to the power loss in the power
transistor due to the low gm as the power amplifier was fabricated in the slow corner of the
LP process. Due to the low gm of the LP process, the size of the power transistor increased,
and the increased transistor required relatively high driving power. Therefore, when gm
was low, power consumption in the driver stages as well as the power stage increased.
For this reason, the PAE of the power amplifier designed using a low gm power transistor
deteriorated. However, although the designed power amplifier was fabricated under the
slow corner condition of the LP process with a low gm, as shown in Figure 1, it can be seen
that the designed power amplifier had reasonable output power and gain characteristics
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compared to those of previous works. In particular, thanks to the four stages structure, the
designed power amplifier had the highest gain. Even though the LP CMOS process was
used, the linear output power using the modulation signal was similar to that of previous
studies. In addition, even though the -shift function was included, the compact size was
secured thanks to the application of the proposed structure.

Table 1. Comparison with state-of-the-art of CMOS PAs.

Ref. [23] [24] [25] This Work

Tech. (nm) 40 40 28 40
Freq. (GHz) 27 27 28 25
P1dB (dBm) 13.7 16.8 18.5 > 14.3

PAE @P1dB (%) 33.1 37.6 38.4 > 7.5
PAE @Psat (%) 33.7 41.5 39.7 > 10.2

Gain (dB) 22.4 20.5 18.5 > 26.0
Modulation
/Bandwidth

64 QAM
/0.1 GHz

64 QAM
/1.5 Gb/s

64 QAM
/0.1 GHz

64 QAM
/0.1 GHz

PAPR (dB) 9.7 8.3 9.6 9.7
EVM (dBc) −25.0 −25.0 −25.4 −25.0

POUT@EVM (dBm) 6.7 9.65 9.3 > 8.39
PAE @EVM (%) 11.0 11.8 10.3 > 3.0
Core size (mm2) 0.23 0.36 0.31 0.22

Topology 3-stage 2-stage 2-stage 4-stage

4. Conclusions

In this study, a power amplifier was designed using the 40-nm low-power CMOS
process. In order to reduce the overall system size, a 180◦ phase-shift function was mounted
in the first driver stage of the power amplifier. To mount the 180◦ phase-shift function,
instead of using two identical amplifiers, the phase-shift function was implemented by
modifying the single-differential cascode structure. A common-gate transistor of the
cascode structure was divided into two transistors to obtain 180◦ phase-shift paths. In
addition, wide bandwidth characteristics were secured by varying the optimized operating
frequency for each stage. The measured P1dB for 0◦- and 180◦-phase-shift modes were
15.25 dBm and 14.30 dBm, respectively, in the operating frequency of 25.0 GHz. The
measured phase difference between the two modes was 217◦ at 25.0 GHz.
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