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Abstract: With the continuous improvement of people’s living standards, the travel demand for
vehicles increases rapidly during weekends and holidays. This situation leads to a number of negative
impacts on the transport network, such as traffic congestion, carbon emissions, and long queues at
refueling stations. The impact of vehicles requiring energy replenishment on the negative effect is
nonlinear. Therefore, the negative effect data of working days cannot be directly used to evaluate
the cost, and the traffic equilibrium allocation problem also needs to be solved. An equilibrium
allocation model of hybrid vehicles considering the energy replenishment demand in holidays is
established, aiming at minimizing the total time cost and energy consumption cost. The Frank–Wolfe
algorithm is used to solve the traffic allocation problem in advance, and the negative effect of the
urban energy network during holidays is predicted by the Genetic Algorithm—Back Propagation
(GA-BP) algorithm. Then, the energy-replenishing vehicles in the traffic network are induced to
reduce the total cost. Finally, taking the actual road network in Jiulongpo District of Chongqing
City, southwest of China, as an example, the negative effects of multiple stations are predicted. The
results show that the prediction method proposed in this paper is effective during holiday periods. In
addition, as the market share of electric vehicles increases, the negative cost can decrease gradually.
The predicted results can provide a reference for traffic managers.

Keywords: urban transportation; traffic flow equilibrium; refueling station network; negative
effect prediction

1. Introduction

The urban transportation energy supply system is one of the most important trans-
portation infrastructure vehicles in the traffic network. At the same time, periodic vehicle
energy supplement demand leads to vehicle path deviation, idle queuing and lane change
disturbance, resulting in traffic congestion, time delay and other negative effects. This
leads to additional negative effects such as carbon emissions and energy consumption,
increasing the travel cost of drivers, and intensifying the load of the urban transportation
energy supply network, especially during holidays. According to the big data report of
2021 China’s National Day, there are about 2.32 million passengers entering Chongqing
City during the holiday, ranking among the top ten tourist cities in China. Electric vehicles
may be charged for one hour and queued for four hours. The refueling behavior can lead
to additional negative effects such as carbon emissions and other pollutants. However, due
to the long charging time and the insufficient number of charging piles, electric vehicles
will have negative effects, such as long queuing or detour charging, which may aggravate
road congestion.

Analyzing the time-dependent trend of the negative effect can provide a theoretical
basis for relieving the refueling load of supply stations and reducing the negative effect
of the transportation network. A negative effect prediction system of urban traffic energy
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supply network is studied aiming at the refueling behavior of heterogeneous vehicles in
the traffic network. The prediction system is beneficial to provide management insights for
managers and promote the construction of modern energy systems and green intelligent
transportation systems. To date, there is little research on urban vehicle energy supplement
prediction, and most of the traffic flow prediction focuses on long-term traffic flow predic-
tion and short-term daytime traffic flow prediction. This work presents a method to predict
the traffic volume and negative effect cost, especially for the calculation of traffic flow and
negative effect cost during holidays.

The remainder of this paper is organized as follows: Section 2 summarizes the relevant
research; In Section 3, the composition factors and calculation methods of negative effect
cost are analyzed; In Section 4, the prediction model of energy supplement traffic flow in
holidays is described; Section 5 includes an modified mixed network equilibrium model;
The proposed prediction method and models are verified by using real traffic flow data in
Section 6; Finally, the main contributions are concluded and discussed in Section 7.

2. Literature Review

The negative effects of urban transportation energy supply networks during holidays
include the negative effects on vehicle driving paths and station operation. To predict
the negative effect of vehicle paths, it is necessary to calculate the flow of energy supple-
ment vehicles. However, according to our retrieval of the existing results, no scholars
have carried out relevant research on the negative impact of urban transportation energy
supply networks during the holiday period. Because of the large difference between the
characteristics of travel flow on holidays and weekdays, it is impossible to directly use
the weekday travel flow to predict the holiday travel flow. In addition, the use of holiday
travel history data alone is limited by factors such as season, temperature, changes in road
network structure, and the size of historical data sets, which cannot be accurately predicted.
We propose to use the GA-BP algorithm to mine the sequential change of urban traffic trip
flow during holidays and calculate the negative impact of the urban traffic energy supply
network. Through the traffic allocation model, the flow of energy supplement vehicles
under specific demand can be calculated. At present, the research on traffic assignment
models at home and abroad is relatively mature, mainly following the principle of user
equilibrium Wardorp [1]. The relevant mathematical model of the principle was proposed
by Beckmann et al. [2], then, Frank and Wolfe [3] proposed the Frank–Wolfe algorithm to
solve the model. Later, the traffic assignment model was divided into a static traffic as-
signment [4] and dynamic traffic assignment [5–7]. Dynamic traffic assignment was based
on path selection [8]. For example, Javani et al. [9] proposed a dynamic traffic assignment
algorithm based on a fast convergence path. On the basis of route selection, dynamic traffic
allocation considering time dimension has been proposed, such as time series [10,11] and
daily evolution [12,13]. The negative effects mainly considered in traffic allocation come
from environmental pollution [14] and energy consumption [15]; however, the negative
effect prediction of urban transportation energy supply network during holidays not only
evaluate the distribution of network traffic flow in the time dimension but also consider
the negative effects of energy supply stations.

The negative effect on station operation mainly comes from the time delay and car-
bon emission caused by vehicle queuing [16]. Studies on time delay are mostly about
queuing charging delay of electric vehicles [17], while carbon emission models consider
mixed vehicle networks frequently. For instance, Cen et al. [18] proposed a Mixed User
Equilibrium (MUE) model, which considers the energy supplement behavior of electric
vehicles and gasoline vehicles in the urban network. Lucas et al. [19] proposed a method
to evaluate energy demands and carbon dioxide emissions from the entire life cycle of
electric vehicle and fossil fuel vehicle energy supply sites from construction, maintenance
and waste and applied it to a Portuguese case study. It can be seen that although many
scholars evaluate the negative effects of vehicle routes and energy replenishment stations,
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few people integrate the whole transportation energy supply network to study the negative
effects of urban transportation energy supply networks during holidays.

Research focusing on traffic forecasting is mainly divided into two aspects one is traffic
equilibrium and flow prediction. For example, Ma et al. [20] proposed a new daily traffic
flow prediction method and realized it through deep learning, and analyzed the dynamic
traffic assignment (DTA) evolution process of the daily traffic flow by combining the
relationship between environmental factors and traffic flow. Some scholars also predicted
the prediction and correction model of traffic equilibrium after a network interruption
accident [21]. For example, Zhou et al. [22] established detailed models of electric vehicle
chargers, hydrogen pumps with electrolytes, renewable resources and battery energy
storage systems and proposed forecasting methods of renewable energy, electricity price
and traffic flow. Station prediction management mostly charges electric vehicles to predict
the flow of charging vehicles and the allocation of electric energy resources. However,
few scholars consider the flow prediction under time series and the allocation of energy
supplement resources of hybrid vehicles.

To sum up, for the prediction of the negative effects of urban transportation energy
supply network, most of the existing studies focus on the modeling and analysis of the
various parts involved, including the distribution and prediction of traffic network flow
and the evaluation and prediction of energy supply stations, but rarely integrate the energy
supplement vehicle path and the operation of energy supplement stations to form an urban
traffic energy supplement system from the perspective of the whole urban transportation
energy supplement system. Therefore, based on the traffic equilibrium assignment model
of the urban network, the urban traffic energy supply prediction system is constructed.
From the perspective of the negative effect prediction of energy supply stations and energy
supply vehicle paths, the hybrid vehicle energy supply problem in daily peak hours and
holiday peak hours is considered. The negative effect prediction model of daily energy
supply uses the GA-BP learning algorithm. It is difficult to predict the negative effect
of energy supplements on holidays, according to daily travel data. The surge of energy
supplement demand needs to be solved by using the Frank–Wolfe algorithm by establishing
a vehicle equilibrium allocation model to minimize the negative effect of vehicle travel time
cost and path energy consumption cost. The feasibility and effectiveness of the model are
verified by an actual network example.

3. Measurement of Negative Effects of Energy Supply System
3.1. Measurement of Negative Effects of Energy Supply Stations

The negative effect of urban transportation energy supply stations mainly refers to
the negative impact of the station on the surrounding environment during operation,
including the energy supplement behavior of vehicles and the operation and construction
of the station. The vehicles running on urban roads are divided into electric vehicles and
conventional vehicles. Therefore, the transportation energy supply stations can be divided
into two categories: the refueling station and the charging station. Refueling stations can
quickly fill fossil fuels within five minutes [23]. On the contrary, the charging process
needs to take longer time than refueling. The refueling or charging process can cause many
negative effects related to influencing factors. The evaluation model can comprehensively
consider various factors to analyze the periodic change of negative effects of the station
in the time period. Due to the factors involved in the generation of negative effects, an
advanced evaluation model should be employed to analyze the changes in the negative
effects of stations in a time period.

Combined with the relevant impact research on urban transportation energy supply
stations and the negative effect evaluation factors of vehicle energy replenishment behavior,
12 influencing factors are considered as four aspects: traffic efficiency impact, station service
impact, environmental impact and safety risk impact. After normalization operations, the
weight relationship of 12 influencing factors can be obtained by the entropy weight method,
as shown in Table 1.
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Table 1. Weight of each evaluation factor.

Factor Notation Weight Rank

Travel time W1 0.125 1
Average delay time W2 0.122 2

Link load W3 0.121 3
Carbon emissions W4 0.120 4

Queue length W5 0.118 5
Firefighting capacity W6 0.097 6

Pollutant effect W7 0.059 7
Energy consumption W8 0.051 8

Average speed W9 0.050 9
Air quality W10 0.048 10

Noise pollution W11 0.045 11
Oil tank reserves W12 0.044 12

Due to the mutual influence and correlation between various index factors, according
to the principles of comprehensiveness and measurement convenience, some factors are
combined and discarded, and finally, three indexes are selected as representative indexes
to measure the negative effects of urban transportation energy supply, namely link driving
time, average delay duration and carbon emissions.

Link travel time refers to the time required for vehicles to absolutely pass the link on
the front and rear links on the nodes with energy supply stations:

Ti =
la

va
− la+1

va+1
(1)

where Ti is the driving time of energy replenishment vehicles on this path link; la is the
length of the path link before the predicted energy replenishment node; va is the average
driving speed of vehicles on the path link before the predicted energy replenishment node.
Then the cost of path link travel time Cs

t is:

Cs
t = pvTi = pv(

la

va
− la+1

va+1
) (2)

where pv is the unit time cost of vehicle driving.
The average delay duration is the mean of the delay time of all replenishment vehicles

in unit time, including queuing time and refueling time. According to the M/M/S queuing
model, the vehicle replenishment delay time can be obtained:

ρ =
xj.d

κjµ
(3)

P0 =

κj−1

∑
k=0

1
k j!

( xj.d

µ

)k
+

1
κj!

1
1− ρ

( xj.d

µ

)κj

−1

(4)

Lq =
P0ρ
(
κjρ
)κj

κj!(1− ρ)2 (5)

Wκj =
Lq

xj.d
+

1
µ

(6)

In Equation (3) ρ is the system service intensity, xj.d is the energy supply site j flow to
the energy replenishment site per unit of time κj, the number of independent servers of
the site j, and µ is the service rate per unit of time. Meanwhile, P0 denotes the server idle
rate, Lq is the average vehicle waiting time and Wκj is the average delay time of vehicles in
Equations (4)–(6).
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Then the total delay cost Cs
d can be defined as:

Cs
d = pvWκj (7)

Carbon emissions generate by energy refueling vehicles when they run in the station
or idle frequently due to queuing, which is also called cold emission. The emission cost Cs

c
can be expressed as follows:

Cs
c = fc Ai NiDedγi.d, (8)

where fc is the unit cost of carbon equivalent emissions, Ai is the fuel consumption of the
vehicle per hour idle speed, and γi is the carbon price.

According to the weight relation among the three indicators and normalized treatment,
the negative effect coefficient of the site j is calculated as follows:

NEj = WtCs
t + WdCs

d + WcCs
c (9)

By measuring the index data of different stations in each time period, we can get
the change value of the negative effect coefficient of all stations in the region with time
as the original data sample. A cycle is divided into multiple time periods according to
the changing relationship of negative effects. The changing trend of the negative effect of
stations in the region can be predicted by using a neural network algorithm.

3.2. Measurement of Negative Path Effect of Energy-Supplementing Vehicles

The negative effects of vehicle energy replenishment mainly include vehicle energy
consumption, delay time and driver psychological anxiety. The additional driving mileage
is converted into the total driving mileage of the driver, and the driving cost of the driver
is calculated together with the energy consumption to quantify the negative effect of the
driver’s path. Therefore, urban paths are considered as a large transportation network
G(N, A, S), in which N, A and S are the sets of nodes, links, and energy supply stations,
respectively. Any entrance to any exit of the network is set as a starting and ending
point (OD). After vehicles with energy supplement requirements enter this area, they are
divided into the power supplement stations supported by the vehicles according to their
remaining mileage and driving direction. In the network, for all OD pairs w ∈ W of
daily travel vehicles, the traffic flow on the path p ∈ P is mainly composed of three types
of vehicles, namely, vehicles requiring no energy supplement, electric vehicles requiring
energy supplement and fuel vehicles requiring energy supplement. The path that the
vehicle passes between the starting and ending pairs is Pw, and the vehicle returns to its
OD path p′w after generating the energy supplement demand and completing the energy
supplement; when there are no alternative stations on the OD path of the vehicle, path
deviation will occur, and extra mileage ω0 will be generated; then the new driving path
Pw of the vehicle will be updated, where p′w ∈ Pw and the path length is L(pw) ≥ L(pw).
Therefore, the extra mileage generated by path deviation is ω0 = L(pw)− L(pw), where
L(pw) = L(pw), ω0 = 0 means that the vehicle is supported and located on the original OD
path of the vehicle after generating energy supplement demand.

Assuming that vehicles recharge at most once during travel and that the recharge
demand of different types of vehicles is related to their flow, the ratio between electric
vehicles and fuel vehicles is set as r, where the charging ratio of electric vehicles is related
to the remaining mileage ξ0 of vehicles and the psychological anxiety degree ψ of drivers is
set as αw

e , and the formula is:

αw
e =

2Lw
e

ξ0ψ
, (10)

where Lw
e is the weighted average travel distance of electric vehicles between OD pairs, and

the charging distance of daily travel vehicles should be less than the remaining mileage
of vehicles.
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Lw
e =

∑
p∈Pw

f w
p.eL(pw)

∑
p∈Pw

f w
p.e

(11)

According to the change of negative effect in different time periods t ∈ T of energy
supply stations on the path p ∈ P, each time period will be allocated iteratively based on
the previous time period. If the vehicles that need energy replenishment in the previous
time period ∆t fail to arrive at the station for energy replenishment after the end of the time
period, they will be allocated together with the vehicles that need energy replenishment
in the next time period ∆t + 1. The link flow of each time period can be obtained, and the
negative effect of the vehicle driving path can be calculated. The mileage energy consump-
tion needs to be calculated separately according to different vehicle types. According to the
Bureau of Public Road (BPR) function Equations (12) and (13), the link p ∈ P is composed
of links a ∈ A, and the length of each link la is often different in the actual network, and
the traffic capacity is also different according to different link level:

ta.t(x) = t0
a.t

[
1 + 0.15

(
xa.t
ca.t

)4
]

(12)

where ta.t(x) is the travel time within a time range t ∈ T and t0
a.t is the free outflow travel

time of the link a ∈ A in the time period t ∈ T.

Ca.t(x) = C0
a.t

[
1 + 0.15

(
xa.t

ca.t

)4
]

(13)

where ca.t is the segment capacity in the time period t ∈ T, C0
a.t is the free outflow cost of

the link a ∈ A in the time period t ∈ T.

4. The Model of Negative Effect Prediction

GA-BP neural network algorithm uses a genetic algorithm to obtain the optimal
structural parameters of the BP neural network, and then carries out the training of the
neural network, and selects the test set for testing. The algorithm flow is shown in Figure 1.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 19 
 

where .a tc  is the segment capacity in the time period t T∈ , 0
.a tC  is the free outflow 

cost of the link a A∈  in the time period t T∈ . 

4. The Model of Negative Effect Prediction 
GA-BP neural network algorithm uses a genetic algorithm to obtain the optimal 

structural parameters of the BP neural network, and then carries out the training of the neu-
ral network, and selects the test set for testing. The algorithm flow is shown in Figure 1. 

Start

Initialize BP neural network weight and threshold

Encode the weights and thresholds to obtain the
initial population

Get the best neural network weight and threshold

Selection, crossover and mutation

Calculate fitness

Whether the evolution times are met?

Decoding weight and threshold

Neural network training

Test and predict

End

Whether the conditions are met?

N

Y

Y

N

 
Figure 1. GA-BP neural network process. 

A neural network is the core of a feedforward neural network. It simulates the infor-
mation transmission mode of biological neurons and realizes machine learning. However, 
it also has some defects, such as the slow learning convergence speed in the algorithm. In 
addition, due to its initial weight and threshold, it cannot guarantee to converge to the 
global optimum. The GA can imitate the natural selection and genetic mechanism of biol-
ogy and constantly screen and adjust the weight and threshold of the neural network to 
avoid falling into local optimization. 

Three layers of classical networks are used here, namely the input layer, hidden layer 
and output layer. The output of the transfer function using the Tansig function is any 
number in range (–1, 1). According to the error comparison of different hidden layers, five 
hidden layer nodes with the smallest error are selected, and the gradient descent method 
is used to train under the same error target of 0.00001. Input 365 data sets, the first 292 as 
the training set and the last 73 as the test set. This group is the negative effect cost data of 
a single node in a single time period. The GA is the process of selecting the best initial 
weight and threshold. The relevant parameters are shown in Table 2. This method is suit-
able for network prediction with complex internal mechanisms and can provide help for 
the prediction of negative effects of urban transportation energy supply networks. 

Table 2. Ga-BP-related parameters. 

Parameter Value Parameter Value 
Input layer 365 Population size 30 

Output layer 73 Number of iterations 50 
Hidden layer 8 Minimum error 0.00001 

Crossover rate 0.8 Training times 1000 s 
Variation rate 0.001 Learning rate 0.1 

Figure 1. GA-BP neural network process.



Appl. Sci. 2023, 13, 2498 7 of 18

A neural network is the core of a feedforward neural network. It simulates the infor-
mation transmission mode of biological neurons and realizes machine learning. However,
it also has some defects, such as the slow learning convergence speed in the algorithm.
In addition, due to its initial weight and threshold, it cannot guarantee to converge to
the global optimum. The GA can imitate the natural selection and genetic mechanism of
biology and constantly screen and adjust the weight and threshold of the neural network
to avoid falling into local optimization.

Three layers of classical networks are used here, namely the input layer, hidden layer
and output layer. The output of the transfer function using the Tansig function is any
number in range (−1, 1). According to the error comparison of different hidden layers, five
hidden layer nodes with the smallest error are selected, and the gradient descent method is
used to train under the same error target of 0.00001. Input 365 data sets, the first 292 as the
training set and the last 73 as the test set. This group is the negative effect cost data of a
single node in a single time period. The GA is the process of selecting the best initial weight
and threshold. The relevant parameters are shown in Table 2. This method is suitable
for network prediction with complex internal mechanisms and can provide help for the
prediction of negative effects of urban transportation energy supply networks.

Table 2. Ga-BP-related parameters.

Parameter Value Parameter Value

Input layer 365 Population size 30
Output layer 73 Number of iterations 50
Hidden layer 8 Minimum error 0.00001

Crossover rate 0.8 Training times 1000 s
Variation rate 0.001 Learning rate 0.1

Before the forecast, it is necessary to collect the original data of urban transportation
energy supply stations in the peak area of the working day and then obtain the forecast
value for the next day through the forecast. At the same time, it is also possible to observe
the overall trend of traffic flow so as to calculate the negative effect cost. According to the
trend characteristics of traffic flow, it can be inferred that the trend of negative effect should
be consistent with the traffic flow, and the periodic traffic flow will show obvious time
series periodic characteristics. The final prediction result can be obtained by the GA-BP
algorithm (see Table 3).

Table 3. Error comparison of node number in different hidden layers.

Number of Nodes in Hidden Layer 3 4 5 6 7

Absolute mean error 0.318 0.279 0.272 0.298 0.318

5. The Model of Traffic Allocation

The prediction model can predict the negative effect cost of the energy supply network
in the daily traffic network. However, due to the surge in the demand of vehicle energy
supplement users during holidays, it is impossible to predict directly according to the daily
travel flow; consequently, the network traffic flow under special demand can be obtained
through the network traffic allocation model. To facilitate calculation and modeling, the
time range T is divided into a group of discrete time periods t ∈ T to deal with the negative
effects of periodic energy supplements. Different energy supplement stations are located in
different locations, so they have different negative effects. In the actual environment, the
change of negative effect changes with the flow of energy supplement vehicles, and the
flow of energy supplement vehicles is not a continuous and smooth function. According to
the changing trend of the unit time, the negative effect of each time period is the cumulative
mean value of the negative effect of that period.
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5.1. Model Description

In this model, the vehicles with fuel demand qw
∆t in the current time period t ∈ T are

allocated based on time series, and the allocation method is based on the path selection
with the minimum negative effect. Therefore, the negative effect cost of each part is taken
as the edge weight. When the weights are the same, the alternative paths with the same
weight are allocated based on the shortest path principle. Assuming that the side weight of
the path link a ∈ A is the sum of the weight of the path link and the weight of the energy
supply station within the time period t ∈ T, where the path link aj is located before the
station Sj, that is, the energy replenishment vehicle passes through the first aj path link and
arrives at the station Sj, then the side weight of the path link is:

Wa.t = η(Ca.t(xa) + Fla pv) + (1− η)NEa.t
sj

δa, (14)

where η is the weight coefficient, and F is the energy consumption cost per unit link length;
δa is the binary variable, where δa is 1 indicates that there is an energy supply site, and 0
indicates that there is no energy supply site available.

The symbols and descriptions of this model are shown in Table 4:

Table 4. Notations used in the proposed model.

Sets Descriptions

A Set of all links in a network a ∈ A
P Set of all links in a network p ∈ P
N Network node set
S Set of all energy supply sites in a network node s ∈ S, S ∈ N
W Network of vehicle travel OD pairs set w ∈W
D Set of vehicles with complementary energy requirements in the network ∀d ∈ D

Parameters Descriptions

αw
e Ratio of charging demand between OD pairs w ∈W
r Ratio coefficient of electric vehicle to fuel vehicle volume
Fe Electricity cost per link length
Fg Fuel cost per link length
pe

v Unit time value of electric vehicle driver
qw

t Total traffic flow between OD pairs w ∈W in the time period t ∈ T

δw
a.p

In the path p ∈ Pw between OD pairs w ∈W, if there is no energy supplement requirement for the path link
a ∈ A, the value is 1; otherwise, the value is 0

δws
a.p

In the path p ∈ Pw between OD pairs w ∈W, the energy replenishment for the path link a ∈ A is required.
The energy replenishment for the vehicle at the station s ∈ S, the value is 1; otherwise, the value is 0

Variables Descriptions

xa.t The total amount of traffic on a path a ∈ A in a time period t ∈ T
xg

a.t The flow of fuel vehicles on a path a ∈ A in a time period t ∈ T
xe

a.t The flow of electric vehicles on a path a ∈ A in a time period t ∈ T
xd

a.t The traffic flow that needs to be replenished on a path a ∈ A in a time period t ∈ T
xe.d

a.t The electric vehicle flow that needs to be replenished on a path a ∈ A in a time period t ∈ T
xg.d

a.t The fuel vehicle flow that needs to be replenished on a path a ∈ A in a time period t ∈ T
qw

g.t The amount of fuel vehicle traffic in the time period t ∈ T
qw

e.t The volume of electric vehicle traffic in the time period t ∈ T
f w
p.g The flow of fuel vehicles in the path p ∈ Pw between OD pairs w ∈W in the time period t ∈ T

f w
p.e The flow of electric vehicles in the path p ∈ Pw between OD pairs w ∈W in the time period t ∈ T

f wd
p.g

The fuel vehicle flow that needs to be replenished in the path p ∈ Pw between OD pairs w ∈W in the time
period t ∈ T

f wd
p.e

The electric vehicle flow that needs to be replenished in the path p ∈ Pw between OD pairs w ∈W in the time
period t ∈ T
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5.2. Equilibrium Model of Mixed Network

In order to obtain the flow on the urban traffic network under the condition of special
demand flow during holidays, an improved mixed network equilibrium model [18] is
adopted, which is a dynamic vehicle replenishment allocation solution model based on
time series. The objective function is defined as follows:

minZt(x) = ∑
t∈T

(
∑

a∈A

∫ xa.t

0
Ca.t(x)dx + ∑

a∈A
Felaxe

a.t pe
v + ∑

a∈A
Fglaxg

a.t pg
v

)
(15)

∑
w∈W

∑
p∈Pw

f w
p.g = qw

g.t (16)

∑
w∈W

∑
p∈Pw

f w
p.e = qw

e.t (17)

∑
w∈W

∑
p∈Pw

f wd
p.g = rαw

e qw
g.t (18)

∑
w∈W

∑
p∈Pw

f wd
p.e = αw

e qw
e.t (19)

qw
g.t + qw

e.t = qw
t (20)

xg
a.t = ∑

w∈W
∑
s∈S

∑
p∈Pw

f w
p.gδw

a.p, ∀a ∈ A, ∀w ∈W (21)

xe
a.t = ∑

w∈W
∑
s∈S

∑
p∈Pw

f w
p.eδw

a.p, ∀a ∈ A, ∀w ∈W (22)

xe.d
a.t = ∑

w∈W
∑
s∈S

∑
p∈Pw

f wd
p.e δws

a.p, ∀d ∈ D, ∀a ∈ A, ∀w ∈W (23)

xg.d
a.t = ∑

w∈W
∑
s∈S

∑
p∈Pw

f wd
p.gδws

a.p, ∀d ∈ D, ∀a ∈ A, ∀w ∈W (24)

xd
a.t = xe.d

a.t + xg.d
a.t , ∀a ∈ A, ∀d ∈ D (25)

xa.t = xg
a.t + xe

a.t + xd
a.t, ∀a ∈ A, ∀d ∈ D (26)

f w
p.g, f w

p.e, f wd
p.e , f wd

p.g ≥ 0, ∀w ∈W, ∀d ∈ D, ∀a ∈ A, ∀s ∈ S (27)

δw
a.p, δws

a.p ∈ {0, 1}∀w ∈W, ∀a ∈ A, ∀s ∈ S (28)

The objective function (15) is the sum of the cumulative travel time cost and the energy
consumption cost of the travel path on all links. Equations (16)–(19) are flow conservation
constraints between OD pairs. Constraints (21)–(24) means the relationship between path
flow and link flow. Constraints (20), (25) and (26) are quantitative relationship constraints.
Constraints (27) are a nonnegative constraint on path traffic. Constraints (28) are binary
decision variables. The model can be solved by the Frank–Wolfe algorithm, and the link
flow allocation results based on time series are obtained, simultaneously.

6. Case Study

To verify the effectiveness of the proposed model and algorithm, the network of
Jiulongpo district in Chongqing was taken as an example for checking calculation, as shown
in Figure 2. The network consists of 15 nodes and 20 links. There are two refueling and
gas station nodes and two charging station nodes in the node. Nodes 6 and 11 represent
charging station nodes, and nodes 7 and 10 represent refueling and gas station nodes.
Nodes 1 and 4 are the starting points, nodes 2, and 3 are the ending points. Therefore, OD
pairs can be represented as 1→2, 1→3, 4→2, and 4→3. There are significant differences in
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the capacity and flow of different links, which will inevitably have an important impact on
the choice of vehicle route. Path-link are divided into three grades, and different grades are
represented by arrows of different thicknesses. Path-link 1, 2, 5, 6, 7, 10, 12, 13, 14, and 19
are the first level; path-link 3, 9, 11, 12, 15, 17, 18, and 20 are the second level, and path-link
4 and 8 are the third level.
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Figure 2. The real map and the corresponding simplified network.

According to the link level location of each node, the peak data on the actual corre-
sponding grade road is selected for calculation. Figure 3 shows the negative effect changes
of four stations from Monday to Thursday from 6:00 a.m. to 12:00 a.m. It can be seen that
the negative effect cost reaches a high peak in the morning peak period of nodes 6 and
10. In addition, the peak hour of node 11 is not obvious, showing a high level of negative
for a long time, and the time points at which the four nodes lead to the highest peak are
different. In addition, it can be observed that node 7 encounters the peak in a short time,
while node 6 is on the contrary. Node 6 has a transition time before the peak and drops
rapidly after the peak, and node 10 has a transition time before and after the peak hour.
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Figure 3. Change of negative effect in the morning of four days at each node.

To predict the trend of negative effect cost on Friday, it can be obtained by GA-BP
algorithm based on the data of the previous four days. The data is measured with five
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minutes interval. Each station contains 365 data. The front 292 data are used as the training
set and the others are used as the test set. The results obtained by the GA-BP algorithm
are shown in Figure 4. The prediction error and determination coefficient R2 are shown in
Table 5. The average relative error is almost below 0.1 and the R2 coefficient is above 0.98.
The average relative percentage error is shown in Figure 5. The average relative percentage
error of node 6 is 0.50%, the average relative percentage error of node 7 is 10.70%, the
average relative percentage error of node 10 is 3.42%, and the average relative percentage
error of node 11 is 2.00%. In addition, the linear regression fitting r value of each part of the
neural network result is shown in Figure 6, which shows that the fitting result is good.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 19 
 

To predict the trend of negative effect cost on Friday, it can be obtained by GA-BP 
algorithm based on the data of the previous four days. The data is measured with five 
minutes interval. Each station contains 365 data. The front 292 data are used as the training 
set and the others are used as the test set. The results obtained by the GA-BP algorithm are 
shown in Figure 4. The prediction error and determination coefficient R2 are shown in 
Table 5. The average relative error is almost below 0.1 and the R2 coefficient is above 0.98. 
The average relative percentage error is shown in Figure 5. The average relative percent-
age error of node 6 is 0.50%, the average relative percentage error of node 7 is 10.70%, the 
average relative percentage error of node 10 is 3.42%, and the average relative percentage 
error of node 11 is 2.00%. In addition, the linear regression fitting r value of each part of 
the neural network result is shown in Figure 6, which shows that the fitting result is good. 

Table 5. Prediction errors and determination coefficients of each node. 

Node MAE MRE R2 
6 1.257 0.020 0.983 
7 3.791 0.107 0.985 

10 0.625 0.034 0.989 
11 0.272 0.005 0.988 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. Predicted and real GA-BP of negative effect at each node. (a) Predicted and true values of 
node 6. (b) Predicted and true values of node 7. (c) Predicted and true values of node 10. (d) Pre-
dicted and true values of node 11. 
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Table 5. Prediction errors and determination coefficients of each node.

Node MAE MRE R2

6 1.257 0.020 0.983
7 3.791 0.107 0.985
10 0.625 0.034 0.989
11 0.272 0.005 0.988
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After the prediction results of stations are obtained, the negative effect trend of urban
transportation energy supply stations can be observed. The result also shows the changing
trend of energy supplement traffic flow with time. Figure 7 shows the predicted negative
effects of the four transportation energy supply stations. The negative effects of the four
nodes predicted on this day are divided into six time periods according to their incremental
trend. It can be seen that the negative effects of the four stations almost begin to rise at the
t2 time, and the rising speed and magnitude of node 7 are significantly greater than those
of the other three nodes, but the negative effects of node 7 decline rapidly from the t3 time,
while node 6 and node 10 are still in the rising stage and the range is not large. Node 11 is
in the stage of high negative effects for a long time. In addition, it can be clearly observed
that the negative effect of node 11 is slightly greater than that of node 6, much greater than
that of node 7 and node 10, and the negative effect of node 10 is at the minimum position.

To predict the negative effects of holidays, it is not possible to directly predict the
negative effects based on the traffic flow of the previous days. An important reason is that
in addition to the daily surrounding travel vehicles, there are additional travel vehicles in
the region during holidays. In order to predict the negative effect of energy supplement
on holidays, the energy supplement flow in each time period can be obtained through the
allocation model according to the divided time period. After the energy supplement flow is
obtained, the cost of the negative effect of the energy supplement in this time period can be
calculated. Table 6 shows the total demand of each OD for this time period, which is based
on the data from last Saturday. At present, the market share of electric vehicles and fuel



Appl. Sci. 2023, 13, 2498 13 of 18

vehicles in Chongqing is 1:9. The safe driving range of electric vehicles is 170 km, and the
anxiety coefficient of power exhaustion is 0.8 [18]. The calculation of side weight mainly
includes the weight of path-link and the weight of connected nodes. The BPR function of
travel time value adopts classical parameters, and the power cost and fuel cost per unit
link length are 0.15 ¥/km and 1.5 ¥/km, respectively [24]. The length of each link of the
network is shown in Table 7. The unit time value of the bullet train driver is 3.13 ¥/min.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 19 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. Comparison of error between GA-BP predicted value and real value of negative effect at 
each node. (a) Average relative percentage error of node 6. (b) Average relative percentage error of 
node 7. (c) Average relative percentage error of node 10. (d) Average relative percentage error of 
node 11. 

(a) (b) 

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 19 
 

(c) (d) 

Figure 6. Regression fitting of GA-BP prediction results in a negative effect at each node. (a) Lin-
ear regression fitting of results of Node 6. (b) Linear regression fitting of results of node 
7. (c) Linear regression fitting of results of Node 6. (d) Linear regression fitting of results 
of node 7. 

After the prediction results of stations are obtained, the negative effect trend of urban 
transportation energy supply stations can be observed. The result also shows the changing 
trend of energy supplement traffic flow with time. Figure 7 shows the predicted negative 
effects of the four transportation energy supply stations. The negative effects of the four 
nodes predicted on this day are divided into six time periods according to their incremen-
tal trend. It can be seen that the negative effects of the four stations almost begin to rise at 
the 2t  time, and the rising speed and magnitude of node 7 are significantly greater than 
those of the other three nodes, but the negative effects of node 7 decline rapidly from the

3t  time, while node 6 and node 10 are still in the rising stage and the range is not large. 
Node 11 is in the stage of high negative effects for a long time. In addition, it can be clearly 
observed that the negative effect of node 11 is slightly greater than that of node 6, much 
greater than that of node 7 and node 10, and the negative effect of node 10 is at the mini-
mum position. 

 
Figure 7. Temporal relationship between negative effects of different transportation energy supply 
stations in different stages. 

Figure 6. Regression fitting of GA-BP prediction results in a negative effect at each node. (a) Linear
regression fitting of results of Node 6. (b) Linear regression fitting of results of node 7. (c) Linear
regression fitting of results of Node 6. (d) Linear regression fitting of results of node 7.



Appl. Sci. 2023, 13, 2498 14 of 18

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 19 
 

(c) (d) 

Figure 6. Regression fitting of GA-BP prediction results in a negative effect at each node. (a) Lin-
ear regression fitting of results of Node 6. (b) Linear regression fitting of results of node 
7. (c) Linear regression fitting of results of Node 6. (d) Linear regression fitting of results 
of node 7. 

After the prediction results of stations are obtained, the negative effect trend of urban 
transportation energy supply stations can be observed. The result also shows the changing 
trend of energy supplement traffic flow with time. Figure 7 shows the predicted negative 
effects of the four transportation energy supply stations. The negative effects of the four 
nodes predicted on this day are divided into six time periods according to their incremen-
tal trend. It can be seen that the negative effects of the four stations almost begin to rise at 
the 2t  time, and the rising speed and magnitude of node 7 are significantly greater than 
those of the other three nodes, but the negative effects of node 7 decline rapidly from the

3t  time, while node 6 and node 10 are still in the rising stage and the range is not large. 
Node 11 is in the stage of high negative effects for a long time. In addition, it can be clearly 
observed that the negative effect of node 11 is slightly greater than that of node 6, much 
greater than that of node 7 and node 10, and the negative effect of node 10 is at the mini-
mum position. 

 
Figure 7. Temporal relationship between negative effects of different transportation energy supply 
stations in different stages. 
Figure 7. Temporal relationship between negative effects of different transportation energy supply
stations in different stages.

Table 6. Total demand in the corresponding time period.

Periods of Time 1→2 1→3 4→2 4→3

6:00–7:10 1800 4400 2500 800
7:10–7:45 1100 5900 2100 600
7:45–7:55 350 1200 500 150
7:55–8:20 1100 2000 1000 500
8:20–9:15 1700 2300 2600 1200

9:15–12:00 4100 4600 6600 1900

Table 7. Length of each link of a network.

Link Length (m) Link Length (m)

1 362 11 1106
2 778 12 1811
3 548 13 675
4 801 14 1923
5 1612 15 1517
6 1109 16 1825
7 1301 17 385
8 1210 18 408
9 2605 19 388
10 363 20 952

The traffic flow results obtained by using the flow assignment algorithm are shown
in Figure 8. It can be seen that the traffic flow of each link is almost the highest in the
time period of 7:10–7:45, followed by 7:45–7:55. In addition, links 9 and 12 are maintained
in the low traffic flow range. According to the flow and energy supplement of the four
stations, the energy supplement flow of the four nodes in six time periods is summarized
and compared, as shown in Figure 9a. From the perspective of the time dimension, the
number of energy-replenishing vehicles is the largest in the same period of 7:10–7:45, while
there are fewer vehicles in the earliest and noon periods. The comparison trend with the
overall driving traffic flow is roughly the same, and the traffic at node 6 is the smallest,
and the volume of node 7 is similar to that of node 10, which is determined by the vehicle
flow of energy supplement demand. At present, the market share of fuel vehicles still
accounts for the absolute counterpart. The same is true for the charging station. Node 11
has a higher flow than node 6. Node 6 is located on the expressway and in the Yangjiaping
business district; accordingly, the flow is greater. The reason why node 7 has more traffic
than node 10 is determined by the link level and the distance from the end point [25]. In
addition, with the gradual increase of electric vehicle market penetration, the proportion
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of charging demand and energy-replenishing vehicles in the subsequent network will
gradually increase. Therefore, the station traffic with different energy-replenishing vehicle
types and interest rates is compared. As shown in Figure 9b–d, the traffic to the charging
station node is basically the same when the market share is 30%. When the market share
is 50%, the traffic flow at the charging station node begins to exceed that at the gas filling
station node and completely exceeds that at 80%, even greater than the current gap between
the two types of traffic flow.
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Figure 8. Results of balanced distribution of traffic flow in different time periods of each path link.
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Figure 9. Equalization distribution results of energy replenished vehicle flow in each time period.
(a) 10% of the electric vehicle market. (b) 30% of the electric vehicle market. (c) 50% of the electric
vehicle market. (d) 80% of the electric vehicle market.
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After obtaining the flow of energy replenishing vehicles, the negative effect cost of
each energy replenishing station and the corresponding path can be calculated, as shown
in Figure 10a. The cost of the negative effect becomes higher in the two time periods of
7:45–7:55 and 7:55–8:20. The total negative effect cost in the total measurement time is
16,821.52 ¥, including 4,464.75 ¥ for station 67,471.88 ¥ for station 77,659.88 ¥ for station 10
and 5,408.92 ¥ for station 11. As can be seen from Figure 10, with the increase in electric
vehicle market share, the overall negative effect level is also gradually decreasing. When
the market share of electric vehicles is 30%, the negative effect cost is 12,281.23 ¥, a year-
on-year decrease of 26.99%; when the market share of electric vehicles is 50%, the negative
effect cost is 11,197.77 ¥, a year-on-year decrease of 33.43%; when the market share of
electric vehicles was 80%, the negative effect cost was 11,885.71 ¥ a year-on-year decrease
of 29.34%. However, with the increase in the number of electric vehicles, the problem
of queue increases and time delay caused by the long charging time of charging stations
becomes more and more obvious. How to reduce the waiting time and speed up the energy
supplement efficiency of energy replenishment is an interesting problem to be considered
in the future.
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Figure 10. The negative cost of energy replenishment vehicles during holidays. (a) 10% of the electric
vehicle market. (b) 30% of the electric vehicle market. (c) 50% of the electric vehicle market. (d) 80%
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7. Conclusions

On the basis of clarifying the negative effect evaluation method of the energy supply
network, the prediction model of the negative effect is established considering the energy
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replenishing behaviors of electric vehicles and fuel vehicles based on time series data
of holidays.

Due to the rush demand for vehicle energy replenishment during holidays, it is
impossible to predict the daily energy replenishment flow directly. The traffic flow of vehicle
energy replenishment under special demand is obtained through the traffic equilibrium
distribution model of mixed users. The Frank–Wolfe algorithm is used to obtain the
time period balanced distribution results, and the negative effect cost of vehicle energy
replenishment. The results show that the proportion of energy supply resources and travel
flow has a significant relationship with the magnitude of the negative impact of energy
supply, which is caused by the difference between energy supply and demand. With
the continuous tension of energy supply resources, the negative impact increases sharply.
Under the same travel flow, with the increase of the penetration rate of electric vehicles, the
negative impact of energy supply decreased slowly at first and then increased rapidly. This
is due to the excessive number of electric vehicles leading to a long charging queue time,
and the negative impact increased significantly.

The energy replenishment efficiency of electric vehicles in charging stations should
be well planned. Through the prediction model and its findings, it can provide road
traffic optimization ideas for managers and references for the formulation of management
schemes so as to alleviate urban traffic problems caused by energy-supplementing vehicles.
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