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Abstract: With less human involvement, the Industrial Internet of Things (IIoT) connects billions
of heterogeneous and self-organized smart sensors and devices. Recently, IIoT-based technologies
are now widely employed to enhance the user experience across numerous application domains.
However, heterogeneity in the node source poses security concerns affecting the IIoT system, and
due to device vulnerabilities, IIoT has encountered several attacks. Therefore, security features,
such as encryption, authorization control, and verification, have been applied in IIoT networks
to secure network nodes and devices. However, the requisite machine learning models require
some time to detect assaults because of the diverse IIoT network traffic properties. Therefore, this
study proposes ensemble models enabled with a feature selection classifier for Intrusion Detection
in the IIoT network. The Chi-Square Statistical method was used for feature selection, and various
ensemble classifiers, such as eXtreme gradient boosting (XGBoost), Bagging, extra trees (ET), random
forest (RF), and AdaBoost can be used for the detection of intrusion applied to the Telemetry data
of the TON_IoT datasets. The performance of these models is appraised based on accuracy, recall,
precision, F1-score, and confusion matrix. The results indicate that the XGBoost ensemble showed
superior performance with the highest accuracy over other models across the datasets in detecting
and classifying IIoT attacks.

Keywords: cybersecurity; industrial internet of things; feature selection; machine learning; ensemble
learning; intrusion detection systems; ensemble learning; chi-square statistical algorithm

1. Introduction

Automated network systems have globally adopted the idea of modern technologies in
various fields to ease their operations and for the collection of large amounts of big data. The
Internet of Things (IoT) is the next level of information technology (IT) development that can
be used to connect the world, ranging from a straightforward to a unique application to an
IoT-based system. IoT is a collection of integrated devices that are cloud-connected and are
used by customers to receive IT services by fusing internet protocol with electronics-related
properties [1]. The protocols used in IoT systems may include cybersecurity issues [2]
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that could affect the entire system. The devices connected to the Internet Industrial of
Things (IIoT) are open to assault by cybercriminals because they do not have the most basic
security measures. That suggests they are vulnerable to hacking and botnet attacks, which
are used to launch DDoS attacks against industries [3].

However, it is crucial to identify and effectively categorize cyberattacks that cross
these security gaps. Therefore, utilizing an ensemble of ML models, this study attempts
to develop an accurate and effective Intrusion Detection system (IDSs) to recognize and
categorize cyberattacks on an IoT/IIoT network. The learning-based methodology adopted
will use tree-based ensemble classifiers, such as eXtreme gradient boosting (XGBoost), Bag-
ging, extra trees (ET), random forest (RF), and AdaBoost, learned on the seven Telemetry
data of TON IoT datasets: Fridge, Thermostat, GPS Tracker, Modbus, Motion Light, Garage
Door, and Weather devices datasets. For supervised learning issues, tree-based ensemble
models are frequently used [2]. The power of ensemble classifiers depends on their ca-
pacity to combine many models’ predictions to develop an improved model over a single
model. When the foundational learners are distinct from one another, tree-based ensemble
approaches operate at their best, which can be accomplished through randomization [4] or
by employing significantly distinct training procedures for each decision tree.

Greater tree diversity results from randomization in tree growth, which also lowers
correlation, i.e., increasing the independence of the decision trees. However, because each
classifier in an ensemble technique must be trained, it can be computationally expensive.
If there is a huge dataset involved, this cost may increase significantly. As a result, we
concentrate on the widely used ensemble of ML models in the literature, particularly
XGBoost, due to its efficiency and scalability. There are many different traffic aspects in the
IoTs’ noisy collected network traffic. Building models for ML-based models takes more time,
and because IoT network traffic contains a multitude of features, they have an impact on
IDS functionality and performance [5]. Feature selection is required to effectively develop
cost-efficient and time-safe models for intrusion detection in IoT [6,7]. The study used
criteria, including accuracy, recall, precision, F1-score, and confusion matrix, to evaluate
how well the models performed.

Researchers have created and used various machine learning (ML)-based models,
frequently combining them with feature selection methods to perhaps enhance their func-
tionality and performance. Promising outcomes for the identification capabilities of ML
have been produced using a set of performance metrics, but, for actual industrial IoT
networks, these models are not yet trustworthy. This study strategy is to outperform
cutting-edge outcomes for a particular dataset instead of learning more about a ML-based
IDS application [8]. As a result, there has been far more academic study done than there
has been done in other fields where deployments took place. This may result from high
errors generated when compared to other fields [8]. Hence, these are unreliable for use
in a real-world setting. Furthermore, using a single dataset with various features could
be difficult to collect or store in a real-time IoT network connection. Besides, when using
ML-based methods, their hyper-parameters, in most cases, require optimization for a better
result. The optimization of hyper-parameters and feature selection will generally make the
ML-based techniques run more efficiently.

The necessity to minimize risk and potential threats to IIoT systems has recently
attracted academic interest. Effective IDSs specifically designed for IoT applications must be
created. For training and evaluating such IDSs, a current and comprehensive IIoT dataset is
needed. For assessing IDS-enabled IIoT systems, however, there are insufficient benchmark
IIoT datasets that can be easily accessed or obtained from the internet freely [9,10]. This
study uses brand-new, data-driven IoT/IIoT real-world datasets to solve these issues. It
contains a label feature that separates the attack and normal classes and a feature that
categorizes the threat subclasses that attack IoT/IIoT network nodes for issues with several
classifications [11]. In addition, the TON_IoT dataset contains telemetry information for IoT
and IIoT services [12]. With various IIoT-based IDS datasets, this study intends to evaluate
the generalizability of feature selection techniques and ensemble classifier combinations.
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The following summarizes the main contributions of the study:

n To create the best cyberattack multiclass classification model in IIoT systems, a thor-
ough approach is proposed.

n This study suggests a feature selection strategy for IDS in the IIoT, utilizing ranked
features from the Chi-Square Statistical Model and analyzing the link between feature
variance and detection accuracy.

n Seven (7) ToN-IoT-based Telemetry datasets were employed to evaluate how well
the model performed. In addition, extensive investigations have assessed the perfor-
mances of an ensemble of ML-based models using these seven datasets.

n The performance of the ensemble models was verified by comparing them with the
baseline research, which used the datasets and other existing approaches that used
the same datasets.

The remaining sections of this study are structured as follows: Section 2 presents some
related work in IoT/IIoT-based IDSs studies. The materials and methods used for the study
are covered in Section 3 of the study. Section 4 outlines the outcomes of the experiment that
was conducted. Finally, Section 5 concludes the study and provides future perspectives.

2. Related Work

This section describes some state-of-the-art research on ML models and IDSs to classify
attacks on IoT networks. The idea of intelligent devices, ranging from refrigerators, doors,
GPS trackers, etc., is not new. This section recaps some existing works that are related
to smart devices. Many researchers have used the IoT to suggest gadgets that can be
remotely monitored for various activities. This IoT-based system has various attacks,
such as threats at the device, network, or application layers, which can be exploited by
an intruder [11]. Various attacks can be launched against IoT-based networks, such as
malware, SQL injection, scanning, DoS, malware, backdoor, ransomware, eavesdropping,
and DDoS, among others, which are a few common cyberattack categories [12]. These
various attacks can be grouped according to origin and layer.

The processing and analyzing of various methods used for intrusion detection in
networks and IoT-based applications play a key role in society. The evaluation of the
accuracy and effectiveness of IIoT security solutions relies heavily on the related datasets
used, which represent IoT-based operations in the physical realm [12]. However, the major
issue and challenge in evaluating IDSs specifically designed for IoT/IIoT purposes is the
lack of real-world datasets that represent the IoT/IIoT application in the real world. The
creation of IIoT-based IDSs is hampered by the lack of such datasets, considering that such
strategies should perform well when empirically validated and evaluated [13,14]. The
authors of [15] reviewed publications based on ML-based and data mining models for IDS
classification on cybersecurity. They claimed that a large gap in the literature prevents the
development of effective anomaly-based intrusion detection methods since tagged datasets
are not readily available. This is mostly because of privacy concerns, as most IoT statistics
from big businesses are not shared with the academic community [14].

A novel IoT traffic dataset called “Sensor480,” presented by the authors in [16], con-
tains 480 cases with three (3) properties of binary class normal and “Man-In-The-Middle”
attacks. Based on this dataset, an IDS system was created and examined using various
ML-based models. The dataset was split into 80–20% split ratios, and various performance
metrics were used to appraise the proposed models, and DT outperforms other models
with 100% performance accuracy. Additionally, authors in [17] presented an IDS based
on ML-based ensemble models to recognize various forms of IoT cyberattacks. Using the
datasets from IoT-23 [18], IoTDevNet [19], DS2OS [20], IoTID20 [21], and IoT Botnet [22],
these models are evaluated based on a variety of performance indicators. With the highest
accuracy values on the NSLKDD (99.27%), IoTDevNet (99.97%), DS2OS (99.39%), IoTID20
(99.99%), and IoT Botnet (99.991%) datasets, the outcome demonstrates that Bi-LSTM out-
performed other models. However, most of the presented datasets are outdated and do
not contain the recent IIoT-based intrusion attacks. The Windows 10 dataset from the ToN
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IoT [12] was used by authors in [23] to pick the best features. They used the correlation
function and the ReliefF method of feature selection schemes. With accuracy scores of
94.12% for the correlation function dataset and 98.39% for the ReliefF dataset, the Medium
NN model outperformed other models. The results of the proposed model by the authors
show that there is a need for improvement in the areas of IDS accuracy. The model is still
very slow and takes a huge part of the computer processor.

To decrease the characteristics of the Linux, Network, and Windows 7 and 10 multiclass
datasets of the ToN-IoT dataset, the authors in [24] presented the Chi2 approach and bal-
anced the dataset for the best categorization using the synthetic minority oversampling
(SMOTE) approach. They employed various ML-based models, with XGBoost outperform-
ing all others on all datasets according to the numerous performance criteria they used to
assess the suggested models. In [25], the authors applied supervised and unsupervised ML
over the NF-ToN-IoT-v2 dataset to provide a thorough model of a network IDS (NIDS). It
was demonstrated that the technique XGBoost Classifier, which obtained a F-Score of 98.8%,
produced the best results when supervised learning was used, as implemented by Azure
automated ML (AML). The random forest classifier, with a F-Score of 98.6%, produced
the greatest results when a specially designed automated ML (AE2EML) was used. The
suggested ML-based NIDS obtained a Silhouette score of 0.553, a Calinski-Harabasz index
of 1533106, and a Davies-Bouldin index of 0.631 using clustering with PCA (Principal
Component Analysis), performed by PyCaret-automated ML. The proposed model by the
study performed excellently, but it used old datasets that did not contain recent IIoT-based
network attacks.

By examining the applicability of ML-based algorithms in the detection of abnormal-
ities within the data of such networks, the authors of [26] concentrated on the security
element of IoT networks. It investigates ML algorithms that have been effectively applied
in circumstances that are comparable to one another and contrasts them using a variety of
factors and techniques. The RF algorithm produced the best results, with a 99.5% accuracy
rate. The authors of [27] presented an IDS with an ensemble classifier enabled by a feature
selection classifier. The study utilized the Correlation Coefficient (CC) method for feature
selection before classifying the dataset for the detection of various attacks using various
classifiers, such as NB, DT, and ANN. On the UNSW-NB 15 datasets, the system detected
DoS assaults with an accuracy of 98.54% with a classifier ensemble that uses a subset of
the features. The dataset used to test the model is not an IIoT-based network nodes attacks
dataset and does not employ feature selection methods to remove the irrelevant features
from the dataset used, and the issue of imbalance data is not considered, thus reducing the
performance of the model.

The authors in [28] used the top 13 IG characteristics with the C5 classifier to obtain
improved accuracy of 89.76% and a better FAR of 1.68. The study recommended that IG
be used for choosing features for IDS. The top ten ranked IG attributes were used in the
system to create a greater accuracy of 93.23% with 6.77% FAR. The authors obtained six
reduced features in [29] using the multi-objective feature selection method on the CICIDS
2017 dataset. The system delivered an accuracy of 99.90% using an ELM classifier. To detect
cyberattacks, the study authors in [30] suggested using LSTM networks enabled with pa-
rameter optimization, called Stochastic Gradient Descent (SGD), for the creation of IDS. The
study obtained an accuracy of 99.91% for ISCX and 98.22% for AWID datasets, respectively.

The top 10 attributes of the GR technique were used in work by authors in [31], and
their layer design was validated on a generated dataset. In contrast to previous rules and
tree-based learners, the design performed better with the J48 classifier for recognizing
DoS assaults. A decision tree-based multi-layer framework to identify DDoS attacks
was provided in the study of authors in [32]. The system recognized ICMP, TCP, and
UDP flood attacks on a created dataset, with an accuracy of 99.98%, using eight features
that were explicitly picked. The authors in [33] utilized nature-inspired techniques for
feature selection with forecasting and chaos methods. The performance of the model was
evaluated using the NS-3 created model. For the identification of DoS assaults at the
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transport and application layers, the approach obtained a detection rate (DR) of 94.3%. The
authors employed the wrapper feature selection approach in [34] for feature selection in
IDS. The study performance was tested using the honeypot Cowrie dataset, with various
cyberattacks, with an accuracy of 97.4% using the SVM classifier.

The effectiveness of the PCA and the results obtained without it were compared by the
authors in [35]. Prior to being used in various ML-based techniques, the dataset was first
submitted to Principal Component Analysis (PCA) for feature selection. This experimental
investigation demonstrates that utilizing PCA reduces algorithm execution time greatly,
with a smaller number of features, while producing the same results as not using PCA. In
addition, when compared to SVM, the DT and RF algorithms accurately classified DDoS
packets. Matplotlib was used to create a graph to display the results. The IoT-23 dataset was
used for our experimental analysis. The authors in [36] developed an IDS model based on a
hybrid AI model for the classification of attacks for an IoT-based system. The CIC-IDS2017
and UNSW-NB15 datasets were used to evaluate the performance of the suggested model.
The model fared better, with a detection rate of 99.75% and an accuracy of 99.45%.

The authors of [6] presented a hybrid rule-based feature selection DL-based IDS
paradigm for IIoT to train and validate data extracted from TCP/IP packets. A hybrid
rule-based feature selection and deep feedforward neural network model were used to
implement the training procedure. NSL-KDD and UNSW-NB15, two well-known network
datasets, were used to test the suggested approach. According to the findings of the
performance comparison, the suggested strategy outperforms other pertinent methods
in terms of accuracy, detection rate, and FPR by 99.0%, 99.0%, and 1.0%, respectively, for
the NSL-KDD dataset, and by 98.9%, 99.9%, and 1.1%, for the UNSW-NB15 dataset. The
recommended method is suitable for IIOT intrusion network attack classification, according
to simulated trials utilizing a variety of assessment metrics.

The authors of [37] proposed the RDTIDS intrusion detection system (IDS) for IoT
networks. The RDTIDS integrates multiple classifier methodologies, such as REP Tree, JRip
algorithm, and Forest PA, which are based on decision tree and rules-based principles. The
first and second methods specifically classify the network traffic as attack/benign by using
features from the data set as inputs. The outputs of the first and second classifiers are used
as inputs for the third classifier, together with characteristics from the initial data set. The
extensive experiments demonstrate the proposed IDS’ effectiveness over existing state-of-
the-art schemes in terms of accuracy, detection rate, false alarm rate, and time overhead.
These findings were made using the CICIDS2017 dataset and the BoT-IoT dataset.

Authors in [38] suggested a novel ensemble of Hybrid IDSs for IoT device security
by fusing a C5 classifier and a One-Class Support Vector Machine classifier. The benefits
of Signature IDS and Anomaly-based IDS are combined in HIDS. With high detection
accuracy and low false-alarm rates, this system seeks to identify both known intrusions
and zero-day threats. The Bot-IoT dataset, which includes legal IoT network traffic and
various assaults, is used to assess the proposed HIDS. Studies reveal that, compared to
SIDS and AIDS approaches, the proposed hybrid IDS offers a higher detection rate and a
reduced percentage of false positives.

To identify out-of-norm actions for cyber threat hunting in the IIoT, the authors of [39]
presented an ensemble DL-based model that combines LSTM with the Auto-Encoder (AE)
architecture. Additionally, most of the prior literature did not consider the uneven nature
of IIoT datasets, which led to low accuracy and performance. The suggested approach
takes fresh, balanced data from the unbalanced datasets and feeds these new balanced
data into the deep LSTM AE anomaly detection model to resolve this issue. In addition,
the advanced related models Stacked Auto-Encoders (SAE), Naive Bayes (NB), Projective
Adaptive Resonance Theory (PART), Convolutional Auto-Encoder (C-AE), and Package
Signatures (PS) based LSTM (PS-LSTM), are compared to the proposed ensemble model.

In the reviewed literature, it was observed that almost all the studies used ISCX,
CICIDS, UNSW-NB15, and KDD Cup 199, which are non-IoT/IIoT-based datasets. They
are datasets for network intrusions that contain HTTP DoS assaults. The IEEE 802.11-related
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Madiun Access Control (MAC) Layer attacks are part of the AWID dataset. This study
acquired datasets containing network traffic, operating system traces, and IoT telemetry
data from diverse IoT/IIoT source materials. Additionally, the suggested dataset includes
various valid and malicious IoT-related events, incorporating the reality of attacks and
legal occurrences.

This study proposes a feature selection-based IDS enabled with various ensemble
classifiers for detecting several attacks in an IIoT-based network. Very little research using
the TON-IoT dataset is shown in this review. When the ML-based ensemble model was
compared with the baseline findings, it was discovered that the frequently misclassified
assaults are not discussed. The proposed ensemble classifiers enabled with feature selection
will be applied to the IoT telemetry datasets, and the results of the proposed models will be
compared with the baseline analysis.

3. Materials and Methods

This section describes a robust framework to detect and classify cyberattacks on IoT
network trails. The ensemble classifier process in various successive steps is displayed in
Figure 1, and preprocessing is the first step. At this stage, the dataset is explored for the
number of instances, the number of features, the relationship between the features, the
correlation between the features, etc. The details of the dataset used for the performance
evaluation were discussed, followed by the details of the performance metrics used for
evaluation purposes. Finally, a training and testing dataset was created from the cleaned
dataset. The ensemble models use the training set to learn, while the test set is used to
assess the performance of the model.
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3.1. Data Preprocessing

Data preprocessing is a serious first step in streamlining the training of ML models.
For the purpose of research, all datasets are openly accessible for download. To minimize
storage space requirements and to prevent redundancy, duplicate samples (flows) are
eliminated. The flow identifiers, IP addresses, ports, and timestamps are eliminated to
eliminate forecast bias against the attackers within end network nodes. Then, using a
categorical encoding approach, numerical values are assigned to the strings and non-
numeric characteristics. The features in these datasets include protocols and services,
which have been compiled as their native string values, as well as ensemble classifiers.
However, these are built to function effectively with numerical data.

Hot encoding and label encoding are the two primary methods for encoding the
features. The former adds X features to a feature to convert it into X categories, utilizing
0 to indicate that a category is not present and 1 to indicate it is. Nevertheless, this enhances
the dataset’s dimensionality, which could impact the ML models’ effectiveness and perfor-
mance. Hence, each category is converted to an integer using the label encoding technique.

Categorical features were converted to numerical values for straightforward ML
technique application. For instance, the categorical values “open” and “closed” for the door
state feature from the GarageDoor dataset were converted into “0” and “1”. Furthermore,
duplicate, incompatible, and missing values were effectively handled. Additionally, this
process permits the equal weighting of all features because network traffic properties
are complex, and there are higher numbers than others. This could cause the ensemble
model to weigh them more heavily, so it will pay attention to them. The min-max scaler
uses Equation (1) to calculate all values for each feature, where X∗ is a new feature value
between 0 and 1, and X represents the unique feature value, where the feature maximum
and minimum values are Xmax and Xmin, respectively. Segments for training and testing are
separated from the dataset, and these components are categorized according to the label
features, which are crucial given the class imbalances of the datasets.

x̃i =
xi −min(x)

max(x)−min(x)
, (1)

3.2. The Chi-Square Statistical Feature Selection Model

This method was used in this study to select the most relevant features. The two
most prominent variables are usually involved in using this model for feature selection.
Typically, they relate to the likelihood of occurrence of category C based on the likelihood of
occurrence of feature t. In IDS classification, it is considered whether attributes t and C are
independent in the proposed approach. Unless features t and C contradict, characteristic
t cannot be used to determine if a label falls under category C. It might be difficult to
determine the degree of t and C in training, especially if they are not linked. Therefore,
their relevance can be evaluated using the Chi-square test. Using a statistical method called
Chi-square, it is possible to quantify the connection between feature t and category C. A
bidirectional queue was used to express a label feature called t and a category called C.

Assuming feature t and type C, then the first-order degree of freedom chi-square
distribution matches. The higher the category C chi-square score, the more category labels
the feature holds. Therefore, t and Cj have a lot in common. The feature t category C
chi-square score is then defined as follows:

X2 = (t, c)
N(AD− BC)2

(A + C)(A + B)(B + BD)(C + D)
(2)

The solution to Equation (2) demonstrated the relationship between feature t and
category Cj. The more autonomous members of the class category, Cj, will be the feature t
that matters. When CHI(t, Ci), then the label class, Cj, and feature, t, are independent. You
can calculate the value for one class, symbolized by X2(t, c), using Equation (3). However,
by combining all of the classes of the value in feature label t in X2(t, c), then, for each
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characteristic of instance t across all classes, we first determine the X2(t, c). The number of
m classes is then determined by testing feature t for each unique X2(t, c) score:

XAVG2(t) =
m

∑
i−1

p(c)X2(t, c) (3)

Equation (3) is used to calculate the mean X2(t, c), the score for the feature label t
across all classes.

ℵMAX2(t) = max
1≤i≤m

{
X2(t, c)

}
(4)

For all classes, the maximum X2 (t, c) of a feature, the label, is determined using
Equation (4). The threshold value is used to determine the appropriate number of feature
labels after the feature label has been sorted by the X scores.

3.3. Machine Learning Model

This sub-section discusses the ensemble ML-based models used for detecting attacks
in IIoT-based networks.

(1) Extreme Gradient Boosting (XGBoost)

XGBoost is a modified gradient tree-boosting algorithm that is efficient and scalable.
The optimization problem in ensemble algorithms can be solved using the boosting classi-
fiers, where one weaker learner is added in succession to create a new model to lower the
classifier loss function and to progressively reduce the mistakes of earlier models [40]. The
exemplary features of the algorithm proposed by the authors in [41] are the regularized
model, split-seeking algorithm, column block structure, and cache-aware prefetching al-
gorithm. Some current applications of XGBoost include genre classification of Nigerian
songs [42], predicting stock price [43], and forecast gene expression value [44].

(2) Bagging Classifier

A group meta-learner is the Bagging classification algorithm. The approach creates
a large number of learners by training each unique base learner on a random subset of
the actual dataset. The classifier then estimates the final prediction by averaging the
results of all the models [45]. This algorithm averages the probability values of base
learners for regression tasks and applies the majority voting scheme to classify labels
for the classification tasks. This algorithm starts by resampling the training data with
replacements. This means that some instances may be selected again and again, while
others may not. The strength of this meta-estimator is the reduction in the variance of the
base learner by introducing randomness into the ensemble construction and generation
method. Concurrent training is conducted on the randomly selected subset of the training
set with the base learners using substitution using the initial dataset. Each base classifier’s
training dataset is distinct from the datasets of the others.

(3) Random Forest (RF)

RF is a group of weak base learners that functions by building various collections of
decision trees to enhance the DTs’ effectiveness and resilience [46]. This technique combines
the bagging approach of instance sampling with the random selection method for features
in creating a collection of DTs with a controlled variation. To complete the classification task
of an unlabeled instance, each DT in a set acts as a base learner. The algorithm uses majority
voting for the classification task and probability averaging of instance values from the
regression task. The RF algorithm is immune to noise and over-fitting and has been applied
to several domains, including heart disease classification [47] and label ranking [48].

(4) Extremely Randomized Trees (Extra Trees)

Extra Tree is a collection of ML-based models that combine the classifications from
several unpruned DTs on different sub-samples of the target to enhance generalization
accuracy, being computationally efficient and preventing over-fitting [49]. The entire
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training instance is used to grow trees, and the nodes at each tree are split by selecting the
cut points fully at random. These predictions are made by using a majority voting scheme
for classification tasks or averaging prediction values for regression tasks.

(5) Adaptive Boosting (AdaBoost)

AdaBoost is an ensemble of ML models adopting the boosting method by joining
many weak learners to create a new model using the weighted linear combination method
iteratively. To reweight examples of the real train data, it progressively uses a learning
algorithm [50]. Firstly, all instances are assigned the same weight. Weights are increased for
cases that were incorrectly classified, while they are raised for instances that were correctly
classified. This procedure is iterated continually by new weights of the training data on the
base model. Finally, a linear combination of all the models generated through the various
iterations is used to create the final classification model [51]. This algorithm’s weakness is
that it is sensitive to anomalies and noisy data.

3.4. Dataset

The study datasets include seven (7) ToN-IoT (https://cloudstor.aarnet.edu.au/plus/s/
ds5zW91vdgjEj9i?path=%2FProcessed_datasets%2FProcessed_Network_dataset (accessed
on 5 June 2022)) datasets obtained from Telemetry. The IoT/IIoT-based network testbed
was used to generate various operating systems and Network data. These 7 datasets were
generated from various IIoT-based devices, such as GPS_Tracker, Weather, Garage_Door,
Modbus, Fridge, Thermostat, and Motion_Light. Table 1 presents all features of the seven
(7) datasets, such as the smart fridge device, which measures the temperature and its
adjustments below the on-demand. Based on a probabilistic input, the features of a remotely
activated garage door when opened or closed. The components and features are based on
the Global Positioning System (GPS) device, which tracks the geographical coordinates of a
remote object. The features obtained are from the smart sense motion device. This uses a
pseudo-randomly generated signal to either “on” or “off” the light. The features generated
from the register in the Modbus service device are majorly used for industrial applications.
These devices communicate via a master–slave arrangement. The characteristics of a smart
thermostat regulate a system’s temperature by controlling the heating/cooling system,
such as the air conditioner. The dataset of a weather monitoring system creates features,
such as temperature, air pressure, and humidity in the data.

Table 1. The IoT Telemetry dataset feature descriptions.

Features Data Type Description

Fridge dataset feature description

Fridge_temparature float Temperature estimate of a fridge sensor connected to the network

Temp_condition categorical Temperature situations of a fridge sensor connected to the network. The temperature could
either be high or low when grounded on a precomputed threshold value

Garage_door dataset description

door_state Boolean State of a door sensor connected to the network, where the door could either be closed or open
sphone_signal Boolean Door status signal received on a phone, where the signal could either be true or false

GPS_Tracker dataset description

latitude Float GPS tracker sensor latitude connected to the network
longitude Float longitudinal value of the GPS tracker sensor connected to the network

Motion_Light dataset description

motion_status Integer The status of the motion sensor device, which could either be on (1) or off (0)
light_status Boolean The status of the light sensor device, which could either be ‘on’ or ‘off’

Modbus dataset description

FC1_Read_Input_Register Integer The Modbus modular code is accountable for accepting an input value from a register.
FC2_Read_Discrete_Value Integer The Modbus modular code is accountable for reading in a discrete value.
FC3_Read_Holding_Register Integer The Modbus modular code is accountable for accepting a holding register value.
FC4_Read_Coil Integer The Modbus modular code is accountable for recording the coil value.

https://cloudstor.aarnet.edu.au/plus/s/ds5zW91vdgjEj9i?path=%2FProcessed_datasets%2FProcessed_Network_dataset
https://cloudstor.aarnet.edu.au/plus/s/ds5zW91vdgjEj9i?path=%2FProcessed_datasets%2FProcessed_Network_dataset
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Table 1. Cont.

Features Data Type Description

Thermostat dataset description

current_temperature Float The present temperature value recorded by the network-connected thermostat sensor gadget
thermostat_status Boolean The thermostat sensor device’s condition could either be ‘on’ or ‘off’.

Weather dataset description

temperature Float The temperature values recorded based on the weather sensor apparatus attached to the network
pressure Float The pressure values recorded by the network-connected weather sensor device
humidity Float The humidity values recorded, as determined by the network-connected weather sensor device

These ToN-IoT datasets were commonly labeled into binary categories of ‘normal’ or
under ‘attack’. The ‘attack’ class is also further divided into seven (7) subclasses—Scanning,
password, DDoS, injection, ransomware, Cross-site Scripting (XSS), and backdoor. The
scanning class occurs at the initial stage, where the information about the target system is
obtained by the attackers [8,52] using a scanning tool, such as Nmap [53] or Nessus [54].
The DoS attack [8,52] adopts the flooding strategy, where the attacker blasts off successive
malicious attacks against a genuine user to disrupt their right to access service, while DDoS
blasts off enormous successive connections to deplete the resources of the device memory,
CPU, etc. These two similar attacks are usually blasted off by a vast network of hacked
computers known as bots or botnets [8,55]. The Ransomware attack [56] is a classical kind
of malware that holds the access right of an authentic user to a system or service to ransom
by encrypting their access and attempting to transfer the decryption key to restore the
original user’s access to the service or system.

The Backdoor attack [57] is a passive attack that uses backdoor software to give an
opponent unauthorized remote access. The competitor utilizes this backdoor to manage
the infected IIoT devices and to incorporate them into botnets to launch a DDoS attack [57].
The Injection attack [57,58] often attempts to execute vindictive codes or implant vindictive
data into the IIoT network to disrupt normal operation. Cross-Site Scripting (XSS) [58]
often tries to run vindictive commands on a seb server in the IIoT applications. The XSS
lets the attacker insert random web scripts remotely into the IIoT system. The information
and the authentication procedure between IIoT devices and the remote web server may
be compromised by this attack. A typical Password Cracking Attack [59] occurs when a
rival applies password-cracking techniques to figure out an IIoT device’s passcode. The
attacker will bypass the authentication system and compromise the IIoT devices [57]. A
common network attack that might disrupt the communication link between two devices
is the MiTM attack [13], which could alter their data. Examples of MiTM attacks include
ICMP redirect, ARP Cache poisoning, and port theft [12]. The datasets and their detailed
descriptions are presented in Tables 1–7. The seven (7) datasets have login dates for the IoT
Telemetry data, login times for the IoT Telemetry data, and the record of the binary label of
normal and attacks, where ‘0′ represents normal and ‘1′ represents attacks.

Table 2. Record of the multi-class label of various actual attacks and normal.

Dataset Backdoor Injection DDoS Password Ransomware Scanning XSS Normal Total

Fridge 35,568 7079 10,233 28,425 2902 2042 - 500,827 587,076
Garage_door 35,568 6331 10,230 19,287 2902 529 1156 515,443 591,446
GPS_Tracker 35,571 6904 10,226 25,176 2833 550 577 513,849 595,686
Motion-Light 28,209 5595 8121 17,521 2264 1775 449 388,328 452,262

Moldbul 40,036 7079 - 24,269 - 529 577 405,904 454,124
Thermostat 35,568 9498 - 8435 2264 61 449 385,953 442,228

Weather 35,641 9726 15,182 25,715 2865 529 866 539,718 630,242
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Table 3. The Confusion Matrix.

Real Positive
(‘Normal’)

Real Negative
(‘Attack’)

Predicted Positive (‘normal’) TP FP
Predicted Negative (‘attack’) FN TN

Where true positive (TP) is the proportion of instances of “attack” that are actually and correctly identified. True
negative (TN) is the proportion of legitimately designated “normal” instances that occur. False positive (FP) refers
to the percentage of actual “normal” samples that are mistakenly identified as “attack,” while a false negative
(FN) refers to the percentage of actual “attack” samples that are mistakenly classed as “normal”.

Table 4. The classification report for the IIoT Fridge sensor device dataset.

Dataset Models Accuracy Precision Recall F1_Score

Fr
id

ge

Bagging 0.9856 0.9795 0.9908 0.9850
XGBoost 0.9873 0.9801 0.9942 0.9869

RF 0.9843 0.9777 0.9912 0.9843
ET 0.9801 0.9754 0.9861 0.9806

Ada 0.4809 0.1299 0.2589 0.1728

Table 5. The classification report for the IIoT Thermostat dataset.

Dataset Models Accuracy Precision Recall F1_Score

Th
er

m
os

ta
t Bagging 0.9858 0.9875 0.9918 0.9896

XGBoost 0.9883 0.9882 0.9950 0.9915
RF 0.9865 0.9874 0.9940 0.9907
ET 0.9838 0.9854 0.9730 0.9787

Ada 0.5305 0.3557 0.3130 0.2837

Table 6. The classification report for the IIoT GPS_Tracker dataset.

Dataset Models Accuracy Precision Recall F1_Score

G
PS

_T
ra

ck
er Bagging 0.9832 0.9779 0.9829 0.9804

XGBoost 0.9869 0.9780 0.9895 0.9836
RF 0.9813 0.9771 0.9838 0.9804
ET 0.9766 0.9756 0.9753 0.9754

Ada 0.4738 0.0592 0.1250 0.0804

Table 7. The classification report for the Modbus dataset.

Dataset Models Accuracy Precision Recall F1_Score

M
od

bu
s

Bagging 0.9890 0.9870 0.9878 0.9874
XGBoost 0.9913 0.9864 0.9895 0.9879

RF 0.9878 0.9861 0.9793 0.9827
ET 0.9870 0.9843 0.9730 0.9785

Ada 0.6292 0.1049 0.1667 0.1287

Table 2 gives details of each attack and the normal of the multi-class label of the
entire dataset. The datasets are referred to as “ToN IoT”, since they comprise a variety
of data sources, including Windows 7 and 10 operating system datasets, Ubuntu 14 and
18 TLS, and network traffic datasets, as well as telemetry datasets of IoT and IIoT sensors.
The datasets were gathered from a large-scale, realistic network created at the UNSW
Canberra @ Australian Defence Force Academy (ADFA) of Cyber Range and IoT Labs,
School of Engineering and Information Technology (SEIT). The industrial 4.0 network,
which consists of the IoT and IIoT networks, has a new testbed network. To manage the
connection between the three levels of IoT, Cloud, and Edge/Fog systems, the testbed
was deployed, utilizing several virtual machines and hosts of Windows, Linux, and Kali
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operating systems. On the IoT/IIoT network, several hacking methods, including DoS,
DDoS, and ransomware, are used against web apps, IoT gateways, and computer systems.
Network traffic, Windows audit traces, Linux audit traces, and telemetry data from IoT
services were among the datasets collected in parallel processing to capture various regular
and cyberattack events.

3.5. Performance Indicators

Many different performance indicators were used to assess the performance and
effectiveness of ML models on the different datasets. Some commonly used indicators,
which will also be adopted for this study, are confusion matrix, ROC_AUC, F1_score, recall,
precision, and accuracy [60]. The confusion matrix is a table shown in Table 3, representing
the detection rate of classes of dataset, thereby measuring the performance of an ML model
on the test data.

The ROC_AUC indicates the tradeoff between True Positive Rate (TPR), or recall, and
FPR, as shown by Equation (5). False Positive Rate is the percentage of ‘normal’ class
instances wrongly classified as an ‘attack’ class, as shown by Equation (6). The accuracy
assessment calculates a model’s overall effectiveness as a percentage of all “normal” data
and the various “attack” incidents that were correctly classified, as shown by Equation (7).
The recall assessor indicates the percentage of ‘attacks’ instances that were properly de-
tected in the test dataset, as indicated by Equation (8). In contrast, the precision assessor
indicates the percentage of properly detected ‘attack’ instances of all the detected ‘attacks’,
as indicated by Equation (9). Finally, the f1_score estimates the harmonic mean of precision
and recall, as indicated by Equation (10).

Accuracy =
tp + tn

tp + tn + f p + f n
(5)

Recall/ TPR =
tp

tp + f n
(6)

Precision =
tp

tp + f p
(7)

f 1_score =
2× Precision× Recall

Precision + Recall
(8)

FPR =
f p

f p + tn
(9)

ROC =
1 + (TPR− FPR)

2
(10)

4. Experimental Results and Discussions

This section presents the experimental result performed on five (5) different machine
learning models: Bagging, XGBoost, Random Forest, ExtraTrees, and AdaBoost on seven
(7) IoT/IIoT-based datasets. The candidate assessment methods on the models are accuracy,
F1-score, precision, and recall assessor.

4.1. Experimental Results Based on the Proposed Model

The experimental findings for per-device datasets are presented in this section. The
70–30 train-test data split ratio was applied to all five ensemble models used in the study.
The final result was calculated and displayed as the mean value of all evaluation methods.

Table 4 presents the mean values of the accuracy, F1-score, precision, and recall metrics
for the proposed ensemble models applied to the IIoT_Fridge sensor device dataset. For
this dataset, the XGBoost classifier outperforms all other models, with 0.9873 for accuracy,
0.9801 for precision, 0.9942 for recall, and 0.9869 for F1_Score, respectively. Conversely,
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the worst classifier is the AdaBoost ‘Ada’, with 0.4909 for accuracy, 0.1299 for precision,
0.2589 for recall, and 0.1728 for F1-Score, respectively.

Table 5 demonstrates the mean values of the accuracy, F1-score, precision, and recall
metrics for the proposed ML-based ensemble models applied to the IIoT_ Thermostat
sensor device dataset. For this dataset, the XGBoost classifier outperforms all other models,
with 0.9883 for accuracy, 0.9882 for precision, 0.9950 for recall, and 0.9915 for F1_Score,
respectively. Conversely, the worst classifier is the Ada, with 0.5305 for accuracy, 0.3557 for
precision, 0.3130 for recall, and 0.2837 for F1-Score, respectively.

Table 6 presents the mean values of the accuracy, F1-score, precision, and recall metrics
for the candidate ML models applied to the IIoT_GPS_Tracker sensor device dataset. For
this dataset, the XGBoost classifier outperforms all other models, with 0.9869 accuracies,
0.9780 precision, 0.9895 recall, and 0.9836 of F1_Score metrics. Conversely, the Ada classifier
is the worst of all the models, with 0.4738 accuracy, 0.0592 precision, 0.1250 recall, and
0.0804 of F1_Score, respectively.

Table 7 illustrates the mean values of the performance metrics evaluation for the ML-
based ensemble models applied to the IIoT_Modbus sensor device dataset. For this dataset,
the XGBoost classifier still performs excellently when compared with other classifiers, with
an accuracy of 0.9913, precision of 0.9864, recall of 0.9895, and F1_Score of 0.9879, respectively,
for all the performance metrics used in the study. The worst classifier is the Ada, with an
accuracy of 0.6292, precision of 0.1049, recall of 0.1667, and F1_Score of 0.1287, respectively.

Table 8 presents the mean values of the performance metrics evaluation for the ML-
based ensemble models applied to the Motion_Light device dataset. For this dataset, the
XGBoost classifier still performs excellently when compared with other classifiers, with an
accuracy of 0.9719, precision of 0.9531, recall of 0.8957, and F1_Score of 0.9030, respectively.
The worst classifier is the Ada, with an accuracy of 0.4695, precision of 0.1144, recall of
0.2241, and F1_Score of 0.1515.

Table 8. The classification report for the Motion_Light dataset.

Dataset Models Accuracy Precision Recall F1_Score

M
ot

io
n_

Li
gh

t Bagging 0.9601 0.8875 0.8872 0.8869
XGBoost 0.9719 0.9531 0.8957 0.9030

RF 0.9541 0.8831 0.8818 0.8823
ET 0.9537 0.8824 0.8808 0.8815

Ada 0.4695 0.1144 0.2241 0.1515

Table 9 shows the results of the performance evaluation metrics in terms of mean
values for the ML-based ensemble models applied to the IIoT Garage_Door sensor device
dataset. For this dataset, the XGBoost classifier outperforms all other models, with an
accuracy of 0.9846, precision of 0.9796, recall of 0.9902, and F1_Score of 0.9847, respectively.
The worst classifier is the Ada, with an accuracy of 0.4715, precision of 0.0589, recall of
0.1250, and F1_Score of 0.0801, respectively.

Table 9. The classification report for the IIoT Garage_Door dataset.

Dataset Models Accuracy Precision Recall F1_Score

G
ar

ag
e_

D
oo

r Bagging 0.9804 0.9789 0.9828 0.9808
XGBoost 0.9846 0.9796 0.9902 0.9847

RF 0.9773 0.9774 0.9792 0.9783
ET 0.9772 0.9771 0.9794 0.9783

Ada 0.4715 0.0589 0.1250 0.0801

Table 10 presents the mean values of the accuracy, F1-score, precision, and recall
assessor for the candidate ML models applied to the Weather device dataset. The XGBoost
classifier outperforms all other models for this dataset, with an accuracy of 0.9878, precision
of 0.9788, recall of 0.9896, and F1_Score of 0.9840, respectively. The Ada classifier is the
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worst among all the classifiers, with an accuracy of 0.5311, precision of 0.0664, recall of
0.1250, and F1_Score of 0.0867 metrics, respectively.

Table 10. The classification report for the Weather dataset.

Dataset Models Accuracy Precision Recall F1_Score

W
ea

th
er

Bagging 0.9850 0.9780 0.9868 0.9823
XGBoost 0.9878 0.9788 0.9896 0.9840

RF 0.9842 0.9780 0.9876 0.9827
ET 0.9807 0.9763 0.9834 0.9798

Ada 0.5311 0.0664 0.1250 0.0867

Summarily, it is observed from the outcomes presented in Sections 4.2 and 4.3 that the
XGBoost classifier gave a superior performance score for all assessment indicators across
all the datasets. In contrast, the Adaboost ensemble classifier performed worst based on
the assessment indicators across all datasets. Based on the recall rate of all models across
all datasets, the XGBoost classifier performed the least on the ‘Motion_Light” dataset, with
the least value of 0.8957.

Based on the baseline study, the proposed study also evaluates IoT/IIoT-based dataset
by combining all of the individual datasets for each device into the collective IoT dataset.
Since most real-time apps save their data in a single location, this may represent some real
situations. The combined IoT dataset assessed the proposed ensemble classifiers for binary
and multi-class classification issues. It is worth mentioning that most studies that use the
datasets combine the whole datasets to become one before applying classifiers to them.
Table 11 shows the results of the binary classification of the ensemble classifiers enabled
with feature selection mothed.

Table 11. Combined_IoT_Dataset Evaluation of Binary Classification Models.

Models Accuracy Precision Recall F1_Score

Bagging 0.9980 0.9935 0.9931 0.9948
XGBoost 1.000 0.9995 0.9979 0.9975

RF 0.9899 0.9916 0.9904 0.9898
ET 0.9899 0.9883 0.9868 0.9802

Ada 0.6954 0.6912 0.6615 0.5969

Both the overall IoT dataset and the per-device IoT dataset were used to test the
ensemble classifiers. The proposed ensemble classifiers, enabled with the feature selection
model, were also evaluated using the performance measures. The findings are summarized
in Table 11: XGBoost receives the maximum accuracy rating of 1.0 and scores about
98% across the other performance metrics. From the results obtained, it was noted that
all the classifiers scored about 97% across all the performance metrics except Adaboost,
which scored less than 70% across all the performance metrics. The performance can be
attributed to the application of feature selection to remove the irrelevant features before the
classification of the dataset using the ensemble classifiers.

4.2. Results Based on Confusion Matrix

The confusion matrix of the XGBoost algorithm for all datasets was considered in this
study. This is the only model considered because of its superior performance. This further
analysis is desired to show the commonly misclassified attacks. Only 20% were used as test
sets for each of the datasets. It could be observed from Figure 2a–g that the ‘normal’ class is
often misclassified from all classes, and major misclassification occurs between the ‘normal’
class and the ‘backdoor’ attack class for all the datasets. For Figure 2a, the misclassification
of the ‘normal’ class also occurs with ‘DDoS’, ‘ransomware’, ‘password’, and ‘injection’ attack
classes, respectively. Incorrect classification also occurs between ‘password’ and ‘ransom’
attacks. This pattern could be observed through all the confusion matrices for all datasets.
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corner and strong separability. The probability value of this assessor ranges between 0 
and 1. A good value for this assessor will be closer to 1. Hence, the ROC curve of the 
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Figure 2. (a–g) XGBoost confusion matrix for all datasets considered in this study.

4.3. Results Based on ROC Curve

Figure 3a–g show the ROC curve for the XGBoost ensemble ML on the ToN-IoT
datasets, respectively. This displays a model ensemble with a ROC curve near the upper
left corner and strong separability. The probability value of this assessor ranges between
0 and 1. A good value for this assessor will be closer to 1. Hence, the ROC curve of
the XGBoost algorithm for all datasets considered in this study is displayed in Figure 3,
respectively. This is the only model considered because of its superior performance. This
further analysis is desired to show the commonly misclassified attacks. For each of the
datasets, only 20% were used as a test set.
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4.4. Comparative Study with the Baseline Model

To assess how the proposed model performs with the baseline models, the proposed
model and baseline models are placed side by side. Table 8 shows the comparison of the
proposed model with the baseline model. In [3], CART performs better when compared
with other ML models used for the classification of the dataset with 88.0%, and LR and SVM
models have the least accuracy, with 61.0% each. CART has the overall best performance
across all the performance metrics used to evaluate the datasets. Therefore, it can be said
that the proposed model, using feature selection with ensemble classifiers, performs better
than the baseline models. In addition, the computational time of the proposed models is very
fast, since the number of parameters used is reasonably reduced compared with the baseline
model. Table 12 shows the comparison of the proposed model with the baseline model.

Table 12. The proposed model is compared with the baseline model.

Models Accuracy Precision Recall F1_Score

Baseline Model [12]

LR 0.61 0.37 0.61 0.46
LDA 0.68 0.74 0.68 0/62
KNN 0.84 0.85 0.84 0.84

RF 0.85 0.87 0.85 0.85
CART 0.88 0.90 0.88 0.88

NB 0.66 0.63 0.62 0.51
SVM 0.61 0.37 0.61 0.46

LSTM 0.81 0.83 0.81 0.80

Proposed Model

Bagging 0.99 0.99 0.99 0.99
XGBoost 1.0 1.0 1.0 1.0

RF 0.99 0.99 0.99 0.99
ET 0.99 0.99 0.99 0.98

Ada 0.70 0.69 0.66 0.60
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4.5. Comparison with other Existing Models Using the Same Dataset

To emphasize how crucial, it is to use feature selection on the dataset before applying
classification models, the baseline and other existing techniques were utilized to compare
the proposed model to them. Table 13 compares the outcomes obtained from IDS models
proposed with other existing state-of-the-art models based on ToN-IoT datasets. Each row
of Table 13 shows a group of various ML-based models from some other notable studies.
The use of the ToN-IoT dataset is quite recent in the study of IDSs. Hence, the number
of studies associated with network security is very few in this dataset. Worthy of being
mentioned is the work of [3], which is the baseline study, where eight (8) ML models were
considered. Still, LSTM performed better on four (4) of the datasets. CART performed
best on two (2) datasets, and k-NN performed best on one (1) dataset based on accuracy
metrics. In [36], the authors used six different ML-based models to classify the dataset, and
the study results revealed that the RF classifier performed better on five (5) datasets.

Table 13. Accuracy comparison of existing results based on ToN-IoT datasets.

References Model Fridge Garage_Door GPS_Tracker Modbus Motion_Light Thermostat Weather

[61]
DT, RF, Ada,

XGBoost,
ANN, MLP

RF = 99.56 DT = 99.6 RF = 99.55% RF = 99.27 DT = 99.54 RF = 99.67 RF = 99.55

[62] VC, RF, ANN,
1D CNN – VC = 99.7 VC = 99.7 VC = 99.7 RF = 99.3 VC = 99.7 RF = 99.3

[63] CB, RF, Gboost,
HBboost CB = 94.4 CB = 94.5 CB = 94.4 CB = 93.8 CB = 95.4 CB = 93.8 CB = 95.7

[12]

LR, LDA,
k-NN, RF,
CART, NB,

SVM, LSTM

LSTM = 1.00 LSTM = 1.00 k-NN = 0.88 CART = 0.98 LSTM = 0.59 LSTM = 0.66 CART = 0.87

This Study XGBoost, Bag,
RF, ET, Ada 99.73 98.46 98.69 99.13 97.19 98.83 98.78

In contrast, DT performed best on two (2) datasets. The authors in [37] make use of
two ML-based models for the classification of the datasets, and the results show that the VC
classifier performed better in four (4) datasets, while RF did very well in two (2) datasets.
In a similar work by authors in [38], they used six (6) ensemble classifiers for IDS detection.
The CB classifier has the best accuracy across all the types of datasets in the TON_IoT
Telemetry Dataset used to test the performance of the classifiers used.

Therefore, the comparison in Table 13 revealed that the proposed model performs
reasonably better in terms of accuracy when compared with other existing classifiers and
the baseline model. As a result, the model performs best when applied to a real-world IIoT
ecosystem that contains vast amounts of unstructured and unlabeled datasets. Furthermore,
feature selection considerably reduces the computational time needed to process the dataset
compared to the baseline. Consequently, data dimensionality is automatically reduced, and
high-level functioning is examined efficiently and precisely. Although Table 13 shows that
our results appear to be comparable to other research in the field, our suggested approach
has been examined on a more pertinent dataset using feature selection to see how the
dataset will respond to the model. So, compared to other relevant research, our results
would be more trustworthy.

5. Conclusions

In order to protect the IIoT environment from outside attackers and intruders, several
IDSs techniques, linked with IIoT-based network traffic, have been proposed and have
emerged as essential parts of the technology for proper protection from outsiders. When
used, in conjunction with ML-based classifiers, big data as a potent tool for studying
massive amounts of data to safeguard IIoT equipment. The technologies have shown to be
beneficial for IioT-based systems security measures. Industrial Automation and Control
Systems and conventional IT systems are fundamentally different in how they counter
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cyberattacks, yet these differences are distinct. Security for the IioT must, therefore, be
given specific consideration. Therefore, this study attempts to build an efficient multiclass
IDS system based on ML-based ensemble models: XGBoost, Bagging, Random Forest, Extra
Trees, and AdaBoost, based on seven (7) paremeters, were used for the Telemetry dataset
of ToN_IoT datasets. An empirical experiment is performed on the dataset. The outcome,
based on a comparative study, indicates that the proposed model performs excellently, and
XGBoost performed superior to other models. The outcomes from the analysis showed that
the proposed system could effectively and accurately classify different attacks. One of the
major limitations of the proposed model is the inability to deal with the class imbalance
that arises from the datasets used to test the performance of the proposed model. Therefore,
future work will make use of imbalanced algorithms to balance the dataset. This will enable
us to know if the imbalance will affect the performance of the proposed model. Future work
will further focus on applying deep learning models to optimize their hyper-parameters to
improve the dataset classification performance for the IDS. The proposed model will be
applied to other IIoT-based datasets.
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