
Citation: Seo, G.; Yoon, S.; Song, J.;

Srivastava, E.; Hwang, E. Label-Free

Fault Detection Scheme for Inverters

of PV Systems: Deep Reinforcement

Learning-Based Dynamic Threshold.

Appl. Sci. 2023, 13, 2470. https://

doi.org/10.3390/app13042470

Academic Editor: Xianpeng Wang

Received: 15 December 2022

Revised: 11 February 2023

Accepted: 13 February 2023

Published: 14 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Label-Free Fault Detection Scheme for Inverters of PV Systems:
Deep Reinforcement Learning-Based Dynamic Threshold
Giup Seo , Seungwook Yoon , Junyoung Song , Ekta Srivastava and Euiseok Hwang *

Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu,
Gwangju 61005, Republic of Korea
* Correspondence: euiseokh@gist.ac.kr; Tel.: +82-62-715-3223

Abstract: Generally, photovoltaic (PV) fault detection approaches can be divided into two groups: end-
to-end and threshold methods. The end-to-end method typically uses a deep neural network (DNN)
to learn fault patterns from labeled datasets, which directly detect whether faults occur or not. The
threshold method first estimates power generation and uses thresholds to detect atypical deviations
of measured values from estimated ones. The former method heavily relies on fault-labeled data
and, therefore, requires the collection of abnormal event records, which is usually difficult, due
to the sparseness of these events. The latter method typically uses statistical approaches, such as
3-sigma, to find thresholds, and it can be practically utilized without fault labels. However, setting a
threshold with a proper confidence interval is still challenging, as PV power generation is sensitive to
variations in environmental conditions, such as irradiance, ambient temperature, wind speed and
humidity. In this paper, we propose a novel deep reinforcement learning (DRL)-based label-free fault
detection scheme in which thresholds are dynamically assigned with suitable confidence intervals
under varying environmental conditions. Various weather properties were used as input features
(i.e., states) to a DRL agent, and proper thresholds were estimated in real time from the actions of
the DRL agent. To this end, a reward function was designed for learning proper thresholds without
fault labels under different weather conditions. To evaluate the performance of the proposed scheme,
the PV dataset of the National Institute of Standards and Technology (NIST) was used, as it includes
paired records of local weather and PV generations. The DRL-based scheme was compared with
static and conventional dynamic threshold methods, based on statistical approaches. The results
revealed that the proposed scheme outperformed the existing methods, providing a 5.67% higher
F1-score in the NIST dataset.

Keywords: label-free fault detection; photovoltaic systems; deep reinforcement learning; dynamic
threshold

1. Introduction

The capacity expansion of renewable energy sources is among the sustainable methods
that can mitigate global warming issues [1]. Photovoltaic (PV)-based energy generation
systems are broadly deployed due to their affordability and the growing concerns with
regard to the environment [2]. The PV system, which has a scalability characteristic, can be
installed in various areas, such as households, buildings, and utilities. Various approaches
have been investigated to effectively accept such PV systems, including studies on energy
forecasting [3,4], optimization [5,6], and monitoring [7] approaches. In particular, develop-
ing PV health monitoring systems is essential for the stable management of PV systems,
as PV faults may cause energy losses or fatal accidents. A site in the UK experienced energy
losses of 18.9% in a year due to PV system faults [8]. The faults often cause fires and can
cause fatal problems in power grids [9,10].

Various fault detection approaches for PV systems have been studied based on the
following approaches: modeling [11–15], electrical signal analysis [16–20], and electrical
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circuit simulation [21–24]. Each approach has its pros and cons according to user perspec-
tives. In particular, model-based approaches are often employed because their simplicity,
compared with electrical signal analysis or circuit analysis approaches. The model-based
approaches can be typically divided into end-to-end and threshold methods. First, the end-
to-end methods directly decide whether faults occur or not, which requires a huge amount
of fault-labeled data to train fault detection models, such as deep neural network (DNN).
Recently, to mitigate this issue, semi-supervised learning schemes were studied for PV fault
detection and showed comparable performance with those of fully supervised learning
methods [25,26]. Second, the threshold methods estimate the power generation of PV sys-
tems, and compare the estimations with actually measured power generation. By analyzing
the differences, users detect different abnormalities, such as shading effects [27], snow
accumulation [28], maximum power point tracking error [29], and faulty conditions of
DC–AC converters [15,30,31]. The threshold methods have the advantage of working well
even without fault-labeled data. However, the thresholds are typically predetermined [31],
or determined by monitoring data profiles [30], which has room for improvement.

The accurate detection of faults and the reduction of false alarms are crucial for the
effective operation of PV systems. Therefore, properly setting threshold confidence inter-
vals is among the essential processes of the model-based approaches. However, renewable
energy sources, such as wind or PV systems, are significantly affected by local weather
conditions. Thus, users experience difficulties in manually setting thresholds under var-
ious weather conditions. To deal with this problem, in this paper, we propose a deep
reinforcement learning (DRL)-based dynamic threshold scheme, in which an AI agent
continuously updates thresholds depending on weather changes. We employed a proxi-
mal policy optimization (PPO) agent and used various fields of weather data, including
irradiance, ambient temperature, humidity, and wind speed. The agent consists of continu-
ous state and action spaces. A reward function was designed to learn proper thresholds
without fault labels, which is useful, since fault-labeled data is very limited. To evaluate
the proposed scheme, we used the PV data of the National Institute of Standards and
Technology (NIST) [32], which is publicly accessible. The proposed model was compared
to the existing static and dynamic threshold schemes. To the best of our knowledge, this is
the first study in which a DRL agent with continuous action space was used as a label-free
fault detection scheme to detect inverter faults in PV systems. The contributions of this
paper are summarized as follows:

• A DRL-based dynamic threshold scheme is proposed for fault detection in PV inverters.
The scheme automatically sets proper thresholds for the accurate detection of faults
and the reduction of false alarms under various weather conditions. The scheme can
mitigate the burdens of manually assigning confidence intervals for thresholds.

• A customized reward function was designed for learning proper thresholds for the
detection of inverter faults under various weather conditions without fault labels,
which can be helpful under the scarcity of fault-labeled data.

The rest of this paper is structured as follows: Section 2 describes precedent research.
Section 3 conducts data analysis, and introduces the proposed scheme. Section 4 discusses
the experimental results. Section 5 provides the conclusion of the study.

2. Related Works
2.1. Threshold-Based Fault Detection in PV Systems

Fault detection in PV systems has been investigated from various perspectives to avoid
energy losses and accidents [33]. Image-based fault detection schemes were proposed with
the rapid development of image sensors and AI approaches, such as convolution neural
networks (CNNs) [34–40]. Despite the accurate diagnostic ability of such schemes, their
infrastructural installations are very expensive [41]. On the other hand, model-based
detection schemes using thresholds have the advantages of low cost and rapid detection,
and they are regarded as leading methods in fault detection, due to their simplicity and
decent performance [42].



Appl. Sci. 2023, 13, 2470 3 of 18

However, the model-based approaches using thresholds face many challenges, because
the performance of fault detection significantly depends on threshold settings [43]. Properly
setting thresholds is essential to ensure accurate detection. Thus, many threshold methods
have been proposed to improve accuracy [15,42,44–47]. Despite the efforts, there are still
some issues to cover. First, fixed threshold methods show difficulties in practical situations,
in which volatility and uncertainty exist. For example, Bressan et al. proposed a scheme
for setting thresholds and detecting shading faults, where faults were detected if there
were drops greater than 10% [45]. Rouani et al. introduced a shading fault detection
method in a grid-connected PV system, in which vertices principal component analysis
(VPCA) was compared with a standard PCA [48]. However, a trade-off relation existed
between less missed detection and more false alarms, which is a critical problem of fixed
threshold methods.

To deal with this problem, Platon et al. proposed an online fault detection method,
in which different dynamic thresholds were used according to solar irradiance intervals [15].
Wang et al. improved setting thresholds, based on solar irradiance, by considering more
features, such as current and voltage [49]. Pan et al. introduced a fault diagnosis threshold
method based on non-parametric kernel density estimation (NKDE), which obtained
thresholds by assigning the confidence values of models [42]. The above approaches
require assigning confidence intervals for setting thresholds. Therefore, there is still a
limitation in regard to finding proper confidence intervals for the PV system and situations
where volatility and uncertainty exist.

In this paper, we propose a DRL-based dynamic threshold scheme in which a DRL
agent automatically finds proper thresholds without assigning confidence intervals (e.g., 3-
sigma) for various situations, while considering the various weather conditions, such as
ambient temperature, irradiance, humidity, and wind speed. Using the proposed scheme,
users have no burdens for manually setting thresholds.

2.2. Deep Reinforcement Learning-Based Fault Detection

The Markov decision process (MDP) is a general framework of reinforcement learning
(RL), which comprises an agent and environment where the agent receives reward signals,
such as positive or negative feedback, caused by its action at each state [50]. The agent
continuously learns what an optimal action is for each state through interactions with the
environment. As decision makers, the advantage of RL agents is consideration of long-term
planning while deciding on an optimal action. Therefore, they choose the actions that can
maximize cumulative rewards.

Huang et al. first introduced a value-based DRL anomaly detector, in which a Deep Q-
Function Network (DQN) algorithm was utilized, and two actions for classifying abnormal
and normal states were given [51]. Yu and Sun proposed a policy-based anomaly detector,
in which Asynchronous Advantage Actor-Critic (A3C) algorithm was used, and the action
space had two actions [52]. The policy-based anomaly detector outperformed the value-
based approach. Khanzaeli applied a valued-based anomaly detector with state-space
models to structural health monitoring, where Q-learning was used, and artificial anomalies
were generated for test purposes [53].

Although the existing RL-based approaches had decent performances, they only used
discrete action spaces with fault labels, which was the same problem as classification
problems. Thus, it is difficult to apply these approaches under the scarcity of fault-labeled
data. Moreover, these approaches do not utilize the continuous action space of DRL agents.
In this study, we aimed to mitigate the difficulty of assigning threshold confidence by
using a DRL-based dynamic threshold scheme. This can be applied under the scarcity of
fault-labeled data because this scheme operates in an unsupervised manner (without fault
labels). In the proposed scheme, a setting of continuous state and action spaces is applied,
and the threshold values of each state are outputs of the DRL agent.
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3. Methodology

Model-based approaches for inverter faults distinguish fault conditions by comparing
residuals with thresholds representing normal states [15,54]. In this study, we designed
an estimation model with an input of dominant weather data and proposed a DRL-based
dynamic threshold model that can learn proper thresholds for detecting inverter faults
without fault-labels under varying weather conditions. Figure 1 shows the configuration
of the proposed threshold scheme, and Figure 2 compares the proposed scheme with
conventional approaches. In the proposed scheme, first we performed data preprocessing
to deal with missing data with scaling. For handling the missing data, we used linear
interpolation, while deleting the periods that could not be recovered because of insufficient
information. For data scaling, we utilized the minimum–maximum normalization. Then,
we selected the weather data that affected power generation by analyzing the correlation
coefficients between weather data and power generation. Once weather data was selected,
we trained a DNN estimator to estimate power generation values from weather data.
Afterwards, we trained a DRL agent to set dynamic thresholds for detecting the inverter
faults of PV systems.

Residual < Threshold

Power generation 
estimation model

DNN-based
estimation DRL policy for

dynamic threshold 

DRL-based 
threshold

DRL agent 
model training

Inverter faultNormal
Yes No

Dynamic thresholdResidual

DNN estimation 
model training

Fault detection

NIST dataset
(PV generation and 

weather data)

Data preprocessing & correlation analysis

Figure 1. The proposed DRL-based threshold scheme for detecting the inverter faults of PV systems.

DRL agent
Thresholds

Measurement sensors

Estimation model

Measured values

Estimated values

Residuals
Fault diagnosis

User
Thresholds

Weather 
information

Conventional approaches

The proposed approach

Figure 2. Structure comparison of model-based approaches for detecting inverter faults of PV systems.
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3.1. Dataset
3.1.1. Data Description

The PV datasets of the NIST are publicly accessible, and they provide various mea-
surement data, such as PV power generation and weather data. The measurement data
were collected for four years, from January 2015, to December 2018, obtained at one-minute
intervals. There are three types of PV arrays in the NIST dataset: canopy, ground, and roof.
The specifications of PV arrays are explained in detail in [32].

3.1.2. Data Analysis

First, we analyzed the linear relationship between the PV generation data and weather
data to identify which weather feature dominantly affected the power generation of PV
systems in the NIST dataset, by investigating Pearson’s correlations as follows:

rXY =
∑N

i=1(Xi − X)(Yi −Y)√
∑N

i=1(Xi − X)2
√

∑N
i=1(Yi −Y)2

(1)

where rXY denotes a correlation coefficient between different random variables (irradiance,
humidity, and etc.), X denotes PV generation, Y denotes environment variables, and i
denotes a sample index, where N is the number of samples for each random variable. X
and Y denote sample mean values, respectively.

Irradiance, ambient temperature, relative humidity, wind speed, and snow depth
were considered to be environment variables. Canopy was selected among the three
PV types. The power generation data was measured at the inverter of the PV system.
The heatmap of the correlation matrix for PV generation and the local weather data fields
during 2015 in the NIST dataset are illustrated in Figure 3. We could identify that irradiances
mainly affected the power generation of the PV system, while ambient temperature and
humidity showed weaker correlations with power generation. Even though the ambient
temperature showed positive correlations with the power generation, because irradiance
effects were related to temperature, it was reported that the temperature increase actually
reduced power generation output [55]. To observe this, we empirically divided the data
into different irradiance intervals (e.g., 0–100, 100–200, . . ., 900–1000). We could observe
that power generation decreased, and variation increased, when ambient temperature
increased, as shown in Figure 4. This meant that the ambient temperature had negative
correlations with power generation when it was decoupled from irradiance. Figure 5
also shows that the negative correlation relationship became stronger in high irradiance
intervals. Especially, wind speed and snow depth seemed to have no correlations with
power generation. Nevertheless, we observed that snow depth affected power generation
in some periods, which is illustrated in Figure 6. The weather station, which measured
the snow depth, was somewhat far from the PV systems. We had relatively fewer snow
fall event periods compared to other weather conditions. This might have caused the very
weak correlation between power generation and snow depth. For the implementation of
our proposed scheme and benchmark models, we excluded the few periods when snow
fell. Regarding wind speed, we could not directly observe an impact on power generation.
However, it was reported that wind speed had an extreme effect the temperature of PV
cells, equivalent to a cooling effect of 15–20 °C at wind speeds of 10 m/s [56,57], closely
related to the efficiency of PV panels [55]. Therefore, we considered four environmental
variables: irradiance, ambient temperature, humidity, and wind speed.
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Figure 3. Heatmap of a correlation matrix for PV generation and local weather data fields in the
NIST dataset.
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Figure 6. Profiles of power generation and local weather for 21 days in February 2015.

In addition, we observed some inverter faults in the dataset, and they were labeled by
an expert who was managing the PV systems. It was also observed that AC power, current
and voltage sharply decreased and increased in the PV system within a short time period,
while irradiance showed a normal pattern, as illustrated in Figure 7.
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3.2. Proposed Scheme
3.2.1. Estimation Model

We used a DNN as a estimation model to acquire residuals between the estimated
values and measured values. Moreover, we used three separate models for AC power,
current, and voltage. The weather information (irradiance Dt, temperature Tt, wind speed
Wt, humidity Ht) was input to the estimation models, and the outputs were estimated
values, such as P̂t, Ît and V̂t. Each model consisted of 4 layers, where the input layer
had 4 nodes, two hidden layers had 128 nodes, and the output layer had 1 node, and
the rectified linear unit (ReLU) function was used as an activation function for the hidden
layers. We used Adam optimizer as a learning algorithm and we set a fixed learning rate
at 0.0001.

P̂t = fP(Dt, Tt, Wt, Ht), (2)

Ît = f I(Dt, Tt, Wt, Ht), (3)

V̂t = fC(Dt, Tt, Wt, Ht) (4)

We split the NIST PV canopy dataset into training, validation, and test datasets for
model learning. The canopy PV dataset of 2015 was used for training and validation, where
we selected the last day of every week as a validation set, (i.e., training and validation ratio
was 6:1). The dataset of 2016 was used for testing. When we trained and evaluated the
estimation model, the time period when irradiance somewhat existed was considered, from
9:00 a.m. to 16:00 p.m.

We utilized mean absolute error (MAE) and symmetric mean absolute percentage
error (SMAPE) as metrics for the estimation performance evaluation.

MAE =
1
N

N

∑
t=1
|X̂t − Xt| (5)

SMAPE =
100
N

N

∑
t=1

|X̂t − Xt|
(|Xt|+|X̂t|)/2

(6)

3.2.2. Deep Reinforcement Learning-Based Dynamic Threshold

PPO is one of the DRL agent algorithms that can be utilized for both discrete action
and continuous action spaces. PPO was utilized because it outperformed other policy
gradient methods, such as Advantage Actor–Critic (A2C) and Actor–Critic with Experience
(ACER) [58]. The objective function of the PPO was the following:

LCLIP(θ) = Êt[min(zt(θ)Ât, clip(zt(θ), 1− ε, 1 + ε)Ât)] (7)

In the clip term, ε was a hyperparameter for clipping the probability ratio zt(θ).
The default value of ε was 0.2. The clipping effect prevents an excessively large policy
update. The details of the algorithms are described in [58]. In our proposed scheme, we
used the PPO as a DRL agent for setting dynamic thresholds. For ε, the default value
was used. We utilized each agent for each estimation model and denoted our DRL agent
as DRL-DT.

In RL, an agent chooses an action for maximizing a cumulative reward after observing
information on each state at a given weather condition. Therefore, designing a proper
action space, state space, and reward function for a problem is essential. We designed a
DRL scheme for detecting the inverter faults in the NIST PV dataset. Figure 8 illustrates the
structure of the designed DRL scheme.
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Figure 8. DRL structure for setting dynamic thresholds.

Action

For action, we used a continuous action space setting, in which the Gaussian policy
was utilized. There were two output nodes in the last layer of the policy function of the
DRL-DT: one was µst , and the other was σst . Sigmoid function was utilized to constrain a
range of µst , and Softplus function was utilized for σst . During training, dynamic threshold
values were sampled in the Gaussian distribution with µst and σst .

at ∼ N(µst , σst) (8)

During the test, we used µst as threshold values because sampling thresholds from
distribution caused performance uncertainties.

at = µst (9)

State

The same weather information (irradiance Dt, ambient temperature Tt, wind speed
Wt, humidity Ht) was used as the input of the estimation model. This observation provided
the agent information necessary for properly setting dynamic thresholds under varying
weather conditions. A state vector, representing an observation at a time step, is as follows:

st = (Dt, Tt, Wt, Ht) (10)

Reward

We designed a reward function for setting dynamic thresholds to detect inverter faults
under the condition that there were no fault labels. Feedback signals from the reward
function can play a key role in anomaly or fault detection tasks in systems in which fault
events are sparse. Once an estimation model is trained, residual values can be obtained by
using an estimated value as follows:

et = |Xt − X̂t| (11)

In the fault detection task, if et exceeded a threshold value at(at ≥ 0, ∀at), we consid-
ered that an inverter fault occurred at the used time step. Therefore, if et

at
was larger than,

or equal to, 1, it was considered that a fault had occurred. Otherwise, it was considered
that the PV systems were operating in a normal way.

Our proposed method was for dealing with cases in which fault labels were either
sparse or not. For this reason, we trained our agent with only the normal data of the NIST
canopy dataset. By utilizing the et

at
, we could provide feedback to our agent on whether it
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chose proper thresholds without fault labels or not. Our designed reward function was
as follows:

rt+1 =


β(

et + ε

at + ε
), 0 ≤ et + ε

at + ε
< 1

γ(− et + ε

at + ε
),

et + ε

at + ε
≥ 1

(12)

We assumed that the training data for the agent was normal. If the agent chose a
threshold value, at, larger than a residual value, et, the agent received a positive reward,
such as β( et+ε

at+ε ). Otherwise, the agent received a negative reward, such as γ(− et+ε
at+ε ). Here

ε was used to prevent zero division, where ε was set as 1. As a result, after agent training,
the agent tended to choose a tight, but robust, threshold at each state under varying weather
conditions. By setting the β and γ as below, we could provide more weights on what users
paid attention to more.

β + γ = 1 (13)

The reward function can be illustrated as in Figure 9.

���� ���� ���� ���� ���� ���� ���� ���� ����
et
at

���

���

�

����

����

β=0.5
γ=0.5
β=0.2
γ=0.8

Figure 9. Reward function of the proposed DRL-DT with different β and γ.

For the training process of the DRL agent,

1. We randomly selected a day as an episode among the same training dataset that was
used for the DNN estimator.

(a) The same weather information (irradiance Dt, ambient temperature Tt, wind
speed Wt, and humidity Ht) was used as a state to the DRL agent.

(b) The DRL agent generated an action that was used as a threshold value.
(c) The threshold value was compared with the difference between a measured

value and an estimated value.
(d) The DRL agent received a reward value, based on the designed reward func-

tion.

2. The DRL agent updated its policy to get higher reward values.

The (a)–(d) steps were repeated until an episode was done. The 1–2 steps were
repeated until the DRL agent’s policy converged to an optimal policy.

Even though the agent maximized the cumulative rewards, it was not guaranteed
that the performance of the agent was practically getting better or not. Therefore, we used
metrics, such as recall, precision, and F1 score, to validate the performance of the proposed
dynamic threshold scheme. The formulae of the metrics were as follows:

Recall =
TP

TP + FN
(14)

Precision =
TP

TP + FP
(15)



Appl. Sci. 2023, 13, 2470 11 of 18

F1score =
2× Precision× Recall

Precision+Recall
(16)

True positive, false positive, and false positive are denoted as TP, FP, and FN,
respectively.

4. Results and Discussion
4.1. Performance Evaluation
4.1.1. Estimation Performance

We used the NIST canopy PV dataset as a training and validation set, in 2015. For the
evaluation metrics, we used MAE and SMAPE. Figure 10 shows the training and validation
errors of estimating power generation. We saved an estimation model at each epoch,
and utilized the model that showed the best performance in the validation set. We tested
the model using the NIST canopy PV dataset, in 2016. For the power generation estimation,
the training, validation, and test errors were 4.99, 5.48 and 8.26, in terms of MAE, and they
were 4.34, 6.32 and 8.30, in terms of SMAPE, respectively. Figure 11 shows a comparison
between the measured and estimated profiles, while (a), (b) and (c) show the results of the
AC power, current, and voltage estimations, respectively. Table 1 describes the performance
details of each model.
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Figure 10. Loss curve in power generation estimation.
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Figure 11. Profile comparison between the estimation and measurement values.
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Table 1. Power generation estimation performance of the estimation model based on DNNs.

Training Error Validation Error Test Error

MAE SMAPE MAE SMAPE MAE SMAPE
AC power [kW] 4.99 4.34 5.48 6.32 8.26 8.30

Current [A] 15.75 5.16 16.02 6.88 25.18 7.87
Voltage [V] 6.61 1.95 6.80 2.33 11.38 3.17

4.1.2. Threshold Performance

After training the estimation model, we utilized the model and calculated the residuals
between the measured values and estimated values. By using the same dataset as the
estimation model, we trained the DRL-DT agent. Therefore, we used the dataset of 2015 for
training and the dataset of 2016 for testing. To set β and γ, we searched 0.01 and 0.05 and,
then, formed from 0.1 up to 0.9 by increasing 0.1 of β. We found that the F1 score was best
when β was 0.1. Figure 12 shows the performance of DRL-DT in terms of recall, precision,
and F1 score.

10−2 10−1 100
β

0.6

0.7

0.8

0.9

1.0 DRL-DT F1score
DRL-DT Recall
DRL-DT Precision

Figure 12. PV inverter fault detection performance of the proposed DRL-DT as a function of β.

To compare our proposed method with benchmark methods, we implemented existing
statistical threshold approaches [15,49], a DNN classifier, and a DRL classifier. The classi-
fiers had 7 input nodes for features (irradiance Dt, ambient temperature Tt, wind speed
Wt, humidity Ht, the error of an estimated power eP

t , the error of an estimated current eI
t ,

the error of an estimated voltage eV
t ). Two output nodes were used to represent normal

operation and inverter fault. Softmax function was used as an activation function in the
output layer. In the case of the statistical approaches, fault labels were not required for
the threshold. However, DNN classifier and DRL classifier required fault labels. Thus,
we categorized the label-free groups according to whether fault labels were used or not.
The used statistical approaches, and our proposed scheme, were label-free. We denoted
the statistical approaches using dynamic thresholds of DT-1 [49] and DT-2 [15], and these
approaches only used residuals between the estimated and measured values. In the case
of the DNN and DRL classifiers, fault data and labels were used when they were trained.
Figure 13 shows a comparison between the proposed scheme and benchmark approaches.
The inverter fault data in the NIST canopy dataset had a relatively simple pattern that
sharply decreased in a specific time period. Thus, the supervised manner (with fault labels)
could almost completely classify inverter faults and normal data, showing an F1 score of
0.99. Among the label-free approaches, we observed that our proposed method showed the
best performance, which was closest to the performance of the supervised manner, showing
an F1 score of 0.94. As a result, the proposed scheme provided a 5.67% higher F1-score,
compared with the DT-2. The summary of the model performances are described in Table 2.
The recall and precision curves were compared in Figure 14. We observed that DRL-DT
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had the best performance and that its performance was closest to that of the supervised
manner at two recall standards (0.91, 0.95).

DNN C DRL C DRL-DT
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DT-2
(Wang 2019)

DT-1
(Platon 2015)

ST
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0.5
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e

Figure 13. F1 score comparison between model-based fault detection schemes [15,49].
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Figure 14. Recall and precision curves for proposed and conventional fault detection schemes [15,49].

Table 2. Performance comparison for inverter fault detection schemes.

Recall Precision F1 Score Label-Free

DNN classifier 1.000 0.991 0.995 ×
DRL classifier 1.000 0.991 0.995 ×

DRL-DT
(proposed) 0.911 0.990 0.949 ©

DT-2 [49] 0.875 0.923 0.898 ©
DT-1 [15] 0.886 0.874 0.880 ©
Static T 0.773 0.783 0.778 ©

DT-2 showed the second best performance. Both DT-2 and DT-1 only used irradiance
for setting the thresholds. We shifted the confidence intervals by 1 sigma to search for the
best threshold values at each irradiance interval, and used the best performances observed
by both DT-2 and DT-1. The differences between them were as follows. DT-2 set thresholds
for power, current, and voltage, while DT-1 set thresholds for only power. Our scheme was
also applied to power, current, and voltage when comparing the performances (the number
of threshold types was the same as DT-2). The irradiance interval of DT-2 (0–50, 50–100, . . .,
900–950, 950) was more granular than that of DT-1 (0–50, 50–250, 250–500, 500).

Figure 15 shows the threshold patterns of DT-2 and DRL-DT for eP. We identified
that DT-2 was more sensitive to irradiance interval, and DRL-DT showed more smoothed
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threshold values. eP was almost the same as eI . DT-2 and DT-1 showed decent perfor-
mances by only considering irradiance intervals at cool temperature conditions (lower
than 25 degrees). However, when the ambient temperature was higher than 25 degrees,
the irradiance-based approaches clearly showed their weakness, as shown in Figure 16.
Figure 17 shows false positive alarm occurrences with ambient temperatures for each
label-free approach.
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Figure 15. Power residuals and dynamic threshold profiles in a test day recorded at high ambient tem-
peratures [49].
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Figure 16. Scatter plots of voltage residuals and associated thresholds by the proposed and conven-
tional schemes at high ambient temperatures [49].
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Figure 17. False positive alarm occurrences depending on ambient temperature [15,49].
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As a result, various environmental variables, such as temperature, should also be
considered to set more accurate threshold values. Both DT-1 and DT-2 used the threshold
values of look-up tables, based on irradiance interval, which faces difficulties in considering
various environmental variables. our proposed scheme could mitigate such difficulties and
improve the accuracy of threshold values by using the DRL agent.

5. Conclusions

We presented a deep reinforcement learning (DRL)-based dynamic threshold scheme
that operates in an unsupervised manner (without fault labels), and a reward function was
designed to set appropriate threshold values under various weather conditions. The exper-
imental results showed that the proposed scheme outperformed the existing unsupervised
threshold schemes, based on statistical approaches, under varying weather conditions. Our
scheme showed the closest performance to the performance of the supervised approach
(with fault labels). In addition to PV plants, we expect that our scheme could be utilized
in various fields, including monitoring systems and anomaly and fault detection systems,
in which fault labels are sparse.

We applied the proposed scheme to a specific PV inverter fault. Our scheme should
be considered for different PV faults or fault detection tasks in various fields. A potential
limitation of the proposed method was that normal data was used in the training of the DRL
agent. If the initial label did not exist and a large number of abnormal data was included
for training, performance of the DRL-based approach might be degraded. As a future work,
we are considering extending the proposed scheme for fully unlabeled datasets.
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