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Abstract: Early detection of glaucoma is critically important for the prevention of irreversible blind-
ness. We developed a predictive analytic framework through temporal data carpentry and appli-
cations of a suite of machine learning and logistic regression methods for the early prediction of
glaucoma using electronic health records (EHR) from over 650 hospitals and clinics across the USA.
Four different machine-learning classification methods were applied using the whole dataset for
predictive analysis. The accuracy, sensitivity, specificity, and f1 score were calculated using five-fold
cross-validation to train and refine the models. The XGBoost, multi-layer perceptron (MLP), and
random forest (RF) performed comparably well based on the area under the receiver operating
characteristics curve (AUC) score of 0.81 for predicting glaucoma one year before the onset of the
disease compared to the logistic regression (LR) score of 0.73. This study suggests that the ML
methods can capture potential pre-glaucoma patients in advance before the occurrence of clinical
symptoms from their history of EHR encounters, thus possibly leading to earlier intervention and
preventive treatment.
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1. Introduction

Glaucoma is the second-leading cause of irreversible blindness worldwide [1]. About
70 million people worldwide have glaucoma, and about 4.4 million are blind from optic
nerve damage due to undiagnosed glaucoma globally [1,2]. In the USA, the American
Glaucoma Society has reported that 2.7 million Americans have glaucoma, but only half of
these people know that they have it [3]. In many cases, the patient’s intraocular pressure
and glaucoma development are undetectable due to the painless and diabolical progression
of the disease [4]. Furthermore, glaucoma negatively impacts the quality of life and creates
a substantial economic burden overall [1]. In the United States, glaucoma treatment and
healthcare costs have been estimated at $2.5 billion per year [5].

Consequently, vision scientists have reported that early detection is key to reducing
the burden of glaucoma on the healthcare system [6]. Early detection of glaucoma allows
for earlier treatment, possibly avoiding expensive surgical procedures or irreversible blind-
ness. Glaucoma is a heterogeneous condition; patients may have different symptoms and
different progression rates. In addition, the current glaucoma growth rate and its economic
burdens are unsustainable [7]. As a result, it warrants a systematic evaluation for glaucoma
risk assessment and early prediction for better management of glaucoma.

Several risk factors have been reported for the development of glaucoma, including
elevated intraocular pressure (IOP) [8], the use of certain medications, older age, a greater
optic nerve cup-to-disc ratio, and family history [9,10]. Though it has been demonstrated
that lowering IOP reduces the rate of glaucomatous damage and consequent vision loss,
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current glaucoma predictions are targeted at lowering IOP as a modifiable risk factor. How-
ever, in many cases, higher-than-average IOP does not cause neurodegenerative damage
or vision loss [11]. IOP alone cannot predict glaucoma development, but comorbidity
analysis can be an effective ancillary tool for glaucoma detection in the early stages of the
disease [12]. Further, Joanne et al. have reported that systemic disease conditions such
as diabetes are associated with a 2.8-fold increased incidence of glaucoma development
compared to non-diabetic cohorts [13]. Furthermore, Deokule et al. have reported that
vascular conditions, such as coronary artery diseases, indicate glaucoma development and
can serve as a prognostic marker [14]. In addition, several population-based cross-sectional
studies, such as the Egna-Neumarkt Glaucoma Study, the Rotterdam Eye Study, and the
Blue Mountain Eye Studies, have demonstrated an association between elevated blood
pressure and glaucoma [14–16].

Conversely, medical treatment of systemic diseases—diabetes and hypertension—may
have a multifactorial effect on glaucoma onset that has not always been examined in
prospective or cross-sectional studies. It is noteworthy to mention that most of these studies
were knowledge-based or hypothesis-driven, which suggests that a modest number of
pre-set variables were included in their predictive analysis. With the extensive adaptation
of electronic health records (EHR) and their supporting secondary use in research [17],
we now have the opportunity to apply data-driven retrospective approaches to develop
predictive models through understanding comorbidities that impact the onset of glaucoma
and their related medications. Moreover, EHR data contains valuable information that can
be used for many purposes, including decision-making support [18], prognosis markers
for medical concepts [19], and risk assessment [20].

In recent years, machine learning (ML) methods have been successfully applied in
many data analytics areas, including clinical data analysis, image classification, diagnosis,
and decision support [21]. Bertsimas et al. combined unsupervised and supervised ML
methods and predicted near-future healthcare costs for patients [22]. Furthermore, using
EHR records, ML methods have been applied to augment risk prediction for glaucoma
risk factors, cataract surgery complications, and diabetic retinopathy [23–26]. Studies have
examined the relationship between risk factors and postoperative visual acuity [27,28].
Almazroa et al. have reported automated glaucoma detection using fundus images [29].

Additionally, a systematic review article has reported various ML methods used
for risk assessment, progression prediction, and the diagnosis of glaucoma using image
techniques [26]. Image processing methods can report lesions that have already occurred at
the molecular level. In a recent study, Braganca et al. applied deep learning methods and
demonstrated about 90% accuracy in detecting glaucoma from fundus images captured
using a smartphone and handheld ophthalmoscope [30]. In contrast, the use of EHR
records predicts the onset of glaucoma based on the history of comorbidities. More recently,
Baxter et al. reported machine learning-based predictive modeling of glaucoma surgical
intervention using EHR records and demonstrated that the prediction of the need for
surgical intervention for glaucoma management six months in advance has a certain degree
of success [31].

Very few studies have been conducted to investigate the early predictive model for
glaucoma onset using EHR data obtained from multiple clinical centers. In the future, a pre-
dictive model must focus on a large cohort of a study population representing heterogeneity
and diversity, thus bringing clinical value to ophthalmologists.

2. Materials and Methods
2.1. Data Source and Sample

This data was extracted from an extensive EMR database (Cerner Health Facts®),
which is comprised of deidentified EHR data from over 650 hospitals and clinics across
the USA and represents more than 80 million unique patients. For this study, we retrieved
deidentified patient clinical data from 2001–2015, as described earlier [32]. Though the
EMR database contains many attributes, we used systemic diseases, medication, and
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demographic information. Furthermore, the timestamped record of each event provides a
temporal relationship between clinical encounters and patterns. The institutional review
board (IRB #2006793) approved this study protocol at the University of Missouri. The
methods reported in this research can be applied to other registry data collected from other
EHR vendors.

2.2. Data Extraction and Feature Representation

The next step in the process included checking the EMR database for the availability
of glaucoma patient records using the International Classification of Disease (ICD), ICD9
365, from 2001 to 2015. The inclusion and exclusion criteria for the glaucoma cohort are
that patients should have at least two eye-related visits before the diagnosis of glaucoma.
We then collected non-glaucoma patient cohorts as a control dataset. Non-glaucoma
patients were determined based on eye clinic visits, excluding those not diagnosed with
glaucoma code 365. Finally, we used glaucoma and non-glaucoma patient cohorts and
retrieved all EHR records associated with those patients’ records, including demographic
information, systemic diseases, and laboratory results. All these ICD9 codes related to
various diagnoses were aggregated into the superclass three-digit level as one attribute.
Similarly, the medication codes were grouped into generic names.

2.3. Data Preprocessing and Temporal Data Modeling

Preprocessing the data involved various filtering, transformation, binarization, and
joining techniques to create a data table for the study. We then applied further filtering to
exclude patients with no attributes. The final dataset has a total of 830,125 unique patient
records, with 135,045 glaucoma patients (labeled as a glaucoma dataset) and 695,080 non-
glaucoma patients (marked as a non-glaucoma dataset). These data were organized into
temporal order using timestamp information. Each patient record should have at least two
variables in a 15-year-wide longitudinal dataset as an inclusion criterion. We subsampled a
balanced dataset containing 33,611 unique patient records (16,805 glaucoma patients and
16,806 non-glaucoma patients) as input data for early prediction analysis. All 16,805 glau-
coma patients were first diagnosed with the disease during a yearlong period from 2014
to 2015. For early predictive analysis, the input glaucoma dataset contains records up to
one year before the diagnosis of glaucoma. There were 32 attributes in the final dataset
from demographics, systemic diseases, and medications for analysis (Appendix A). Finally,
one-hot encoding converted the categorical variables (race, gender) of n possible values
into n binary variables, as shown in Figure 1.
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2.4. Machine Learning Models

The data was analyzed using a machine learning library in the Python programming
language. First, we randomly split the data into 80% training and 20% testing data for
analysis. ML analysis performance was assessed using 5-fold cross-validation, which
provides a robust and reliable measurement of model performance [31]. We used the
listed parameters for each ML model, as shown in Table 1, for the entire dataset. We
trained a series of four algorithms, including logistic regression (LR), random forest (RF),
XGBoost (XGB), and multi-layer perceptron (MLP). The functionality of logistic regression,
a parametric-based model, and the other models, such as RF and XGB, is non-parametric.
We used a loss function, parameter estimation, and complexity reduction for each ML
parameter listed in Table 1. These ML methods have been used in several predictive
analyses [33–35] with a large dataset.

Table 1. Parameters used in different machine learning methods.

Learning Model Loss Function Parameter
Estimation

Complexity
Reduction

Logistic Regression Log loss Gradient descent L2 regularization
XGBoost classifier Squared error Booster parameters Regression

Random Forest Square loss:
(Y-Y) 2 CART Move down tree based on x predict

value at the leaf
MLP Classifier Activation: relu Solver: adam Learning rate init = 0.001

2.5. Model Performance and Hyperparameter Tuning

There are many hyperparameter tuning methods available. We used GridSearchCV
from the Scikit-Learn library and selected the best-tuned parameter for model prediction
(for MLP: “activation”: “relu”, “alpha”: 0.05), “hidden_layer_sizes”: (10, 30, 10), “learn-
ing_rate”: “adaptive”, “solver”: “Adam”) based on the accuracy score and maximizing
the overall AUC using 5-fold cross-validation. We also used standard metrics such as the
sensitivity, specificity, and F1 score of each model for performance interpretation. The
confusion matrix plot was analyzed based on true positive (TP), false positive (FP), true
negative (TN), and false-negative (FN) outcomes. For accuracy, the percentage of samples
correctly classified as positive is divided by the number of positive examples. We measured
the area under the receiver operating characteristic curve and model calibration using the
training and testing datasets. We trained several models and tested them with the entire
dataset. Each ML model was separately trained with the same set of input data.

3. Results

The overall prevalence of glaucoma estimated from the dataset was about 16%. Among
the different race groups, the incidence of glaucoma was higher in African Americans
(23.2%), Asians (16.8%), and East Indians (16.2%) compared to other races (i.e., Hispanics
(11.0%). When comparing gender, a higher prevalence of glaucoma (16.6%) was observed
among the female population than the male population (15.7%) in this dataset. The four
machine learning models’ power of prediction is shown in Table 2. The sensitivity for
different classifiers of the data showed the highest with MLP (81%), XGBoost (81%), and
random forest (81%), followed by logistic regression (73%). We further computed the
precision of different models. The MLP has the highest precision (82%), followed by
the random forest (83%) and XGBoost (83%). The recall (glaucoma cases) was highest for
logistic regression (82%), and XGBoost (83%). Similarly, the actual positive prediction rate is
also higher with MLP, Random Forest, and XGBoost than with other models’ performances.
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Table 2. Accuracy metric for evaluating classification models. The highest accuracies (in bold) are
from XGBoost and MLP.

Model Prediction Precision Recall F1 Accuracy

LR
0 0.7830 0.6341 0.7007

0.72811 0.6904 0.8228 0.7508

RF
0 0.7911 0.8427 0.8161

0.81051 0.8308 0.7763 0.8024

XGB
0 0.8033 0.8386 0.8026

0.81611 0.8302 0.7936 0.8115

MLP
0 0.8086 0.8259 0.8171

0.81461 0.8210 0.8033 0.8121

The accuracy of model prediction was plotted on the AUC plot, which showed a similar
trend. We also performed the ROC of all these models built by different ML algorithms
(Figure 2), and the performance of these models was evaluated by examining the true
value (the actual glaucoma label) versus the predicted value (the predicted glaucoma label).
The plot of TPF (sensitivity) versus FPF (1-specificity) across varying cut-offs generates a
curve in the unit square, which shows the tradeoff between the true positive fraction (TPF)
and a false-positive fraction (FPF). The ROC curve lying on the diagonal line (black dots)
reflects a diagnostic test performance that is no better than the chance level. The ROC curve
slope is equal to the ratio of the two density functions describing the separator variable’s
distribution at a given point in glaucoma versus the non-glaucoma likelihood ratio. The
ROC curve also shows the models’ discriminatory ability and displays how useful the
classification model is at distinguishing between glaucoma and non-glaucoma. Further, the
error rate (unpredicting the actual label by these models) may be due to the EHR data’s
inherent ambiguity or the fact that the heterogeneity of all variability is not saturated in the
present dataset. Further, the type 1 error rate is high in LR, and the type II error rate is high
in the RF model compared to all other models (Table 3).

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 13 
 

 

 
Figure 2. Area under the curve (AUC) for five machine learning methods. AUC measures the entire 
two-dimensional area underneath the entire ROC curve. 

Table 3. Elements of the confusion metric for evaluating classification models’ performance assess-
ments for four machine learning models. 

Model TP FP FN TN Accuracy 
LR 2140 1235 593 2754 0.7281 
RF 2840 530 750 2602 0.8096 

XGB 2826 544 692 2660 0.8161 
MLP 2784 587 659 2692 0.8146 

We performed a crude and adjusted odds ratio analysis to understand which features 
could serve as keys for the prediction models. We compared it with the top 5 important 
variables used for model classification. 

Odds ratio analysis has been widely used in clinical research and can directly make 
inferences from the results. For example, the crude odds ratio between glaucoma and cat-
aract was 1.19, with a 95% confidence interval of 1.13–1.25. The adjusted odds ratio be-
tween glaucoma and cataract was 1.36, with a 95% confidence interval of 1.28–1.43. Fur-
ther, the estimated adjusted odds ratio between glaucoma and obesity was 1.14, with a 
95% confidence interval of 1.07–1.21. Similarly, the adjusted odds ratios between glau-
coma and atherosclerosis were 1.2 (95% CI: 1.07, 1.34), suggesting that atherosclerosis is 
also associated with glaucoma compared to non-glaucoma groups (Table 4). 

  

Figure 2. Area under the curve (AUC) for five machine learning methods. AUC measures the entire
two-dimensional area underneath the entire ROC curve.



Appl. Sci. 2023, 13, 2445 6 of 12

Table 3. Elements of the confusion metric for evaluating classification models’ performance assess-
ments for four machine learning models.

Model TP FP FN TN Accuracy

LR 2140 1235 593 2754 0.7281
RF 2840 530 750 2602 0.8096

XGB 2826 544 692 2660 0.8161
MLP 2784 587 659 2692 0.8146

We performed a crude and adjusted odds ratio analysis to understand which features
could serve as keys for the prediction models. We compared it with the top 5 important
variables used for model classification.

Odds ratio analysis has been widely used in clinical research and can directly make
inferences from the results. For example, the crude odds ratio between glaucoma and
cataract was 1.19, with a 95% confidence interval of 1.13–1.25. The adjusted odds ratio
between glaucoma and cataract was 1.36, with a 95% confidence interval of 1.28–1.43.
Further, the estimated adjusted odds ratio between glaucoma and obesity was 1.14, with a
95% confidence interval of 1.07–1.21. Similarly, the adjusted odds ratios between glaucoma
and atherosclerosis were 1.2 (95% CI: 1.07, 1.34), suggesting that atherosclerosis is also
associated with glaucoma compared to non-glaucoma groups (Table 4).

Table 4. Adjusted odds ratio analysis—1-year data presented only with OR 1.14 and above.

Crude OR (95%CI) Adj. OR (95%CI) P (Wald’s Test) P (LR-Test)

Cataract 1.19 (1.13,1.25) 1.36 (1.28,1.43) <0.001 <0.001
Atherosclerosis 0.73 (0.66,0.81) 1.2 (1.07,1.34) 0.001 0.001
Type 2 diabetics 0.8 (0.77,0.84) 1.14 (1.08,1.21) <0.001 <0.001
Obesity 0.89 (0.84,0.94) 1.14 (1.07,1.21) <0.001 <0.001
Lacrimal disorder 1.28 (1.17,1.4) 1.14 (1.03,1.26) 0.008 0.008

Relevant attributes from RF and LR suggest that many variables are associated with
the glaucoma dataset. Notably, the collection of all the results from different methods
indicates that cataracts, obesity, and atherosclerosis are associated with an increased risk
of developing glaucoma compared to non-glaucoma patient groups. As reported in the
literature, hypertension, obesity, type 2 diabetes, and African American races are known
risk factors for the onset of glaucoma. Studies have reported many risk factors for the
onset of glaucoma [36–38]. We identified a new connection between atherosclerosis and
glaucoma onset in the present study. The present study shows an association between
atherosclerosis and glaucoma. Further study is needed to understand the underlining effect
of atherosclerosis on the onset of glaucoma.

4. Discussion

We compared the performance of predictive models, such as RF, LR, XGB, and MLP,
using a real-world, large-scale EHR dataset. We observed that the performance of the
predicted variables varies from model to model, as it has been reported that no unique
algorithm or model works best for every problem. Sramka et al. used a support-vector
machine model for the clinical intraocular lens calculator [39], while Lin et al. used
the random forest method to predict myopia onset [40]. Further, the logistic regression
prediction model has been widely used for decision-making and feature selection [41,42].
Baxter et al. have focused on using deep learning methods to improve the selection of
patients for the glaucoma surgical intervention [30]. The present study evaluated the
performance of four ML models and found that the RF, XGB, and MLP models produced
higher prediction accuracy.
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We know that machine learning generally requires a large amount of data, which
is a strength of our study. When an outcome depends on a few variables, it is possible
to correlate/associate the variables with the disease’s phenotype. However, when the
result depends on multiple factors with different temporal and spatial weights, it becomes
difficult to pinpoint the variables and their dependencies on the prediction. In addition,
some ML algorithms perform better than other algorithms with the same set of variables
in a dataset41. Within the same input dataset, the current study also shows that XGBoost,
random forest, and MLP prediction accuracy outperform the LR model.

The classification results are shown in Table 2, and the highest accuracy rate was
reported in the RF and XGBoost models at 81% compared to the logistic regression classifi-
cation. We believe that the reason for the higher accuracy in XGBoost and RF is that they
use an ensemble learning approach to discover more predictable variables from the medical
dataset. The advantage of using ensemble methods in these algorithms is that they allow
for a training model with quantitative and qualitative inputs. Furthermore, without prior
domain knowledge, the MLP network model predicts well for generalized data. Addition-
ally, when making predictions, the Random Forest and XGBoost had the majority votes in
the terminal vote. On the other hand, it has been reported that logistic regression models
perform poorly with binary responses because they estimate whether there is an increase
or decrease in the predicted log odds of the response variables while holding all other
variables constant. That could be a reason for the lower prediction accuracy rate of 73%
with LR in the present study. In the early prediction of glaucoma or any other medical or
health-related monitoring, false positive diagnoses can be more beneficial for a patient than
false negative predictions. For example, telling a patient that they have a higher chance of
developing glaucoma and recommending biannual checkups or close monitoring would be
more beneficial for the individual than a false negative report where the patient would miss
an early warning of glaucoma onset that would develop into glaucoma in the near future.

Overall, the research suggests that the higher accuracy rates obtained from the RF, XGB,
and MLP models using the balanced dataset can be considered for predicting glaucoma
in a real-world setting. With the present dataset, the prediction accuracy for glaucoma
onset was about 81%, which is reasonably significant for glaucoma detection using only
EHR data and without observing/analyzing traditional fundus images or optical coherence
tomography (OCT) results. Though early diagnosis of glaucoma using ocular coherence
tomography (OCT) has been considered significant, it also comes with an inherent error
rate of ~20%. Hampton et al. have reported that, in general, only up to 82% of glaucoma
diagnoses can be determined using the information provided by medical history and OCT
image data [43].

Studies have reported many risk factors for the development and progression of
glaucoma. Though age has been reported as a well-known common risk factor for glau-
coma [36], understanding exactly how other preventable risk factors increase the risk of
glaucoma is necessary to tackle this growing problem. Because several risk factors are
implicit with aging, it becomes challenging to draw a line between the aging process
and disease progression [37]. Since the present study used age-matched glaucoma and
non-glaucoma groups, we did not incur any inferences based on age. Consistent with the
existing literature, the present study identified significant risk factors or comorbidities for
the development of glaucoma, including cataracts. This analysis also revealed additional
risk factors, such as lacrimal disorders, with an OR of about 1.14. While cataracts have
long been associated with glaucoma formation, other factors such as primary and chronic
angle closure, lacrimal disorders, and obesity are unknown risk factors associated with
the development of glaucoma. These findings suggest that this information can be used to
inform risk stratification to mitigate glaucoma onset as needed. Further, an independent
study is needed to understand the role of lacrimal disorders and obesity in the development
of glaucoma onset.
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4.1. Interpretation and Clinical Relevance

Only a few common variables were observed between the top three models, suggesting
that different algorithms predict different variables as predictors for the model. In the RF
model, high BMI, cataracts, lipid metabolism, and abnormal glucose levels are significant
predominant predictors of glaucoma, whereas in the LR model, gender, gentamicin, and
obesity have higher coefficients with glaucoma (Appendix B). The OR analysis shows
that cataracts, atherosclerosis, and Type 2 diabetes led to a higher risk of developing
glaucoma. Many studies have reported that African-American race is a significant risk
factor for glaucoma. Analysis of the risk factors in the underlying genetic makeup of
African Americans, as Blachon et al. have reported, shows that genetic polymorphisms
in the mitochondrial cytochrome c oxidase subunit 1, which plays a role in trabecular
meshwork function, are higher among African Americans, which may have a role in
the increased prevalence of primary open angle glaucoma [44]. Furthermore, obesity,
hypertension, cataracts, atherosclerosis, and Type 2 diabetes could be good predictors for
the development of glaucoma before its clinical onset. Zhao et al. previously conducted
a meta-analysis to better understand the relationship between hypertension and POAG,
using IOP as endpoints. They identified 60 studies, including seven longitudinal cohort
analyses, from various parts of the world. Virtually all studies showed a positive association
between hypertension and POAG. However, when the RF model was compared to the
logistic regression model in the current study, hypertension was found to be the most
significant risk factor for glaucoma. The RF model predicted hypertension as a top-five
critical glaucoma risk factor with the highest accuracy (Appendix B).

Observing only a few common variables between the models suggests that each
model uses a different set of variables for prediction. It is critical to understand the
clinical relevance of the variables and their uses in the clinical application as an evolution
measure of ML-predicted features. Integrating the clinically relevant predictive model
into the EHR data would enable healthcare providers to target suitable patients for proper
early intervention. The application of an evidence-driven ML predictive model in the
clinical setting could be a significant step forward in preventing glaucoma-related vision
loss by identifying patients’ susceptibility to the onset of glaucoma and allowing for
early intervention.

4.2. Limitations of Predictive Analysis

There are many advantages to using EHR data, as it can contain a longitudinal medical
history of patients, including symptoms, laboratory findings, procedures, prescriptions,
and test results that can be easily used on a computerized platform [45,46]. The secondary
use of EHR data is faster and can collect more measurements from a larger population.
However, the longitudinal dataset has significant advantages over the aggregated dataset
for the early predictive model. Adapting any ML model in the health care system without
further clinical trial examination, on the other hand, can be difficult. We must understand
the combined effect of different variables, such as the confounding effect of risk variables,
and how long it may take to develop glaucoma after exposure to such variables.

Further, many challenges are associated with leveraging EHR data for predictive
analysis because of its complex nature. Extracting information from these heterogeneous
datasets requires correct data collection techniques, proper data preprocessing, reasonable
dimension reduction, and suitable machine learning algorithms. In addition, building a
longitudinal dataset to capture a patient’s history’s temporal events is challenging.

Further, implementing data-driven analysis into the day-to-day workflow is challeng-
ing because of the different regulatory systems in various institutions, including insurance,
hospital managers, security, and IT teams. In addition, longitudinal data collection requires
many patients’ records to capture all possible heterogeneity in the population. Though the
ethics and regulations may improve over time, the EHR data also has inherent limitations,
including missing, incomplete, and incorrect data. With the sparse and natural missing
data of electronic health records, a longitudinal dataset analysis approach works well and
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yields significantly better predictions than traditional methods. However, more work needs
to be done for further validation, and improvements to these methods must be made before
implementation in a clinical setting.

5. Conclusions

We have adopted longitudinal data for early prediction of glaucoma using an ex-
tensive EHR database. Patients can be screened based on the comorbidities encountered
in their electronic health records by ML methods to prevent irreversible blindness from
glaucoma. This EHR dataset used in the present study contains real-world heterogeneous
data collected from patients’ medical records and demonstrates the prediction of early
detection of glaucoma. Furthermore, the ML performance, including random forest, XGB,
and MLP, can predict glaucoma versus non-glaucoma conditions with nearly 81% accu-
racy. The use of real-world data and ML methods can benefit glaucoma specialists and
ophthalmologists in identifying glaucoma-susceptible patients far in advance compared
to current modalities. With further investigation, we hope that this temporal data mining
approach could be employed to provide a powerful tool for delivering early predictive
value for glaucoma onset.

Author Contributions: M.R. collected EHR data, developed a temporal model, analyzed data, and
wrote the manuscript. K.P.S., a glaucoma fellowship-trained ophthalmologist, surgeon, and clinical
researcher, edited the manuscript and provided clinical relevance to the findings. C.-R.S. supervised
the project and manuscript writing. All authors have read and agreed to the published version of
the manuscript.

Funding: This work’s funding sources include the National Institutes of Health (5T32LM012410
(MR)), the Shumaker Endowment for Biomedical Informatics (CRS), and the National Science Founda-
tion (CNS-1429294) for high-performance computing. The content is solely the authors’ responsibility
and does not necessarily represent the funding agencies’ official views.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board (IRB #2006793) of the University of
Missouri, Columbia, MO, USA.

Informed Consent Statement: Informed consent was not required because it was a de-identified,
secondary use of the dataset, and all the data were available before the initiation of the study.

Data Availability Statement: This present study used the dataset from Cerner Health Facts®, a
deidentified electronic health records database. Researchers can request to access EHR data from
Cerner for research purposes.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. List of variables used in this study.

Variables Name Description

Gender Male: 0, Female: 1
Cataract Yes: 1, No: 0
Type_one Yes: 1, No: 0
Type_two Yes: 1, No: 0
Hypertension Yes: 1, No: 0
Hypotension Yes: 1, No: 0
Atherosclerosis Yes: 1, No: 0
Lipoid_metabolism_disorder Yes: 1, No: 0
Ischemic_heart_disease Yes: 1, No: 0
Obesity Yes: 1, No: 0
Lacrimal_disorder Yes: 1, No: 0
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Table A1. Cont.

Variables Name Description

Multivitamins Yes: 1, No: 0
Steroids Yes: 1, No: 0
Aspirin Yes: 1, No: 0
Allopurinol Yes: 1, No: 0
Atropine Yes: 1, No: 0
Bacitracin Yes: 1, No: 0
Chloramphenicol Yes: 1, No: 0
Gentamicin Yes: 1, No: 0
Gramicidin Yes: 1, No: 0
Phenylephrine Yes: 1, No: 0
Polymyxin Yes: 1, No: 0
Sulfacetamide Yes: 1, No: 0
Abnormal_glucose > 150 Yes: 1, No: 0
Bmi_high > 25 Yes: 1, No: 0
Glaucoma Yes: 1, No: 0
African_american Yes: 1, No: 0
Asian Yes: 1, No: 0
Caucasian Yes: 1, No: 0
Hispanic Yes: 1, No: 0
Native_american Yes: 1, No: 0
Others Yes: 1, No: 0

Appendix B

Table A2. Different futures were identified as an important variable by two different methods random
forecast vs Logistic regression.

Random Forest Logistic Regression
Variable Importance Variable Coef

0 bmi_high 0.133672 0 gender 0.540924
1 abnormal_glucose 0.093242 1 gentamicin 0.489303
2 cataract 0.068141 2 obesity 0.329181
3 caucasian 0.057031 3 atherosclerosis 0.295286
4 hypertension 0.056665 4 multivitamins 0.234677
5 lipoid_metabolism_disorder 0.047942 5 cataract 0.20598
6 steroids 0.047653 6 hypotension 0.091375
7 phenylephrine 0.04337 7 lacrimal_disorder 0.014897
8 gender 0.041951 8 lipoid_metabolism_disorder −0.034049
9 type_two 0.041583 9 steroids −0.048018

10 obesity 0.035984 10 allopurinol −0.071397
11 aspirin 0.035866 11 ischemic_heart_disease −0.11569
12 ischemic_heart_disease 0.030035 12 aspirin −0.119863
13 gentamicin 0.028629 13 bacitracin −0.122621
14 lacrimal_disorder 0.027897 14 type_two −0.149788
15 asian 0.027581 15 type_one −0.197948
16 atropine 0.026235 16 polymyxin −0.425122
17 multivitamins 0.023966 17 hypertension −0.539789
18 african_american 0.022628 18 abnormal_glucose −0.865936
19 bacitracin 0.022618 19 atropine −0.971731
20 hypotension 0.018316 20 phenylephrine −1.107889
21 polymyxin 0.018084 21 asian −1.163533
22 atherosclerosis 0.014749 22 bmi_high −1.692346
23 type_one 0.012155 23 hispanic −2.216769
24 hispanic 0.010955 24 african_american −2.672737
25 allopurinol 0.008204 25 others −2.794777
26 others 0.00485 26 caucasian −3.364577
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