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Abstract: Image interpolation is used in many areas of image processing. It is seen that many
techniques developed to date have been successful in both protecting edges and increasing image
quality. However, these techniques generally detect edges with gradient-based linear calculations. In
this study, spiking neural networks (SNNs), which are known to successfully simulate the human
visual system (HVS), are used to detect edge pixels instead of the gradient. With the help of the
proposed SNN-based model, the pixels marked as edges are interpolated with a 1D directional
filter. For the remaining pixels, the standard bicubic interpolation technique is used. Additionally,
the success of the proposed method is compared to known methods using various metrics. The
experimental results show that the proposed method is more successful than the other methods.
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1. Introduction

Image interpolation is still used today to improve image quality in many fields of
image processing (such as medical sciences, natural sciences, or satellite images), and new
techniques continue to be developed [1–3]. Generally, interpolation techniques are exam-
ined in two groups: super-resolution techniques [4–7] and sample-free techniques [8–14].
Super-resolution-based approaches require a training phase based on learning the rela-
tionships between low- and high-resolution samples of many images. On the other hand,
sample-free methods perform the interpolation process through mathematical formulae
without any training steps. Therefore, their most important advantage is that they are fast.
The most known sample-free approaches are the nearest, bilinear, and bicubic interpolation
methods [15]. Although the most successful results are generally obtained with bicubic
interpolation, the most significant disadvantage of this method is edge loss [16].

Recently, many interpolation techniques based on the detection of edge pixels have
been developed [8–14]. The general purpose of these studies is to reduce edge loss and
increase image quality by performing different interpolation operations on edge pixels
and non-edge pixels. The CGI method [9], proposed in 2013, is one of the first and most
well-known techniques to detect edge and non-edge pixels in the interpolation process. The
CGI method performs interpolation using a 1D cubic filter for edge pixels and a 2D bicubic
filter for non-edge pixels. In 2016, with the development of the CGI method, the CED [10]
interpolation technique was proposed. The CED technique also uses different filters
according to the edge status of the pixels. A similar approach, the PCI [11] interpolation
technique, uses the Canny edge detector in the edge detection phase. The IEDI [8] technique
applies different interpolation approaches on the edge and non-edge pixels with the help
of the Canny edge detector. On the other hand, the WTCGI [12] technique includes very
similar steps to the CGI technique and uses wavelet transform for edge detection. In one
of the latest studies, the GEI [14] technique uses gradient-based edge detection, marks
the pixels as edge and non-edge, and then applies different interpolation approaches to
these pixels.

The common feature of edge-based interpolation studies in the literature is that they
have used edge detection approaches, such as gradients or wavelets, in which the gray-level
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differences of neighboring pixels are calculated. Gradient approaches, which are based on
the linear difference between the gray-level values of the pixels, have been used for many
years for edge detection in many different areas due to their easy calculations [17,18]. The
gradient is usually calculated with the help of small-size filters (e.g., 2 × 2 or 3 × 3) [15].
Moreover, the most important disadvantage of the gradient is that it has high noise sen-
sitivity and detects false edges [19]. However, the way the human visual system (HVS)
detects edges is quite different from the way gradient-based techniques detect edges. The
detection of the gray-level change between pixels of a ganglion cell in HVS [20] is shown
in Figure 1. Even if the change in the gradient value is linear, the ganglion cells detect the
change at only two points. Therefore, it is clear that different approaches should be used
instead of gradients to develop an interpolation technique compatible with HVS.
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Especially in the last decade, edge detection techniques inspired by HVS have achieved
significant success. In the 2000s, bioinspired edge detection techniques that simulate HVS
have begun to be developed as an alternative to gradient-based linear edge detection
techniques. In one of the first image processing studies on HVS, a double-layer network
design for edge detection was developed in 1993 [21]. It is seen that this double-layer
network structure has been used in almost all HVS-based studies carried out to date. In 1998,
an approach to pattern analysis that calculates synaptic potentials in a network of neurons
was developed [22]. An approach based on the leaky integrate-and-fire (LIF) neuron model
for the segmentation of gray-level images was presented in 2005 [23]. It has been observed
that SNNs, which process information with the help of spikes generated by connected
neurons, are quite successful in HVS-based image processing [24]. For edge detection, the
first SNN-based approach was proposed by Wu et al. [25]. The researchers developed a
network model in which the gray-level values of pixels are transmitted to neurons in the
intermediate layer with the help of excitatory and inhibitory synaptic connections from the
receptor layer. The spikes generated in the neurons in the intermediate layer are transmitted
to the corresponding neuron in the output layer by excitatory synaptic connections. Similar
to the network model in the approach of Wu et al., different receptor and intermediate
layers with different matrices and window sizes have been used in many studies [26–32]. In
2017 [33], an SNN model for edge detection was designed using the Hodgkin and Huxley
(HH) [34] neuron model. The HH model, which is much more complex and has a high
computational cost was also used by Vemuru [35] for edge detection in 2020. However, in
Vemuru’s study, the values of some parameters in the HH neuron model were assumed as
0 and it was seen that the conductance-based integrate and fire (CIF) neuron model was
used. An SNN design based on the CIF neuron model for edge detection was also used to
calculate the diffusion function of the anisotropic diffusion filter (ADF) in 2022 [36].

Spiking neural network (SNN)-based approaches developed to simulate HVS detect
edges more successfully than gradient-based techniques [25,33,35]. The most important
reason for this success is that SNN-based approaches detect edges in the image by mod-
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eling neurons in HVS instead of linear differences between the gray-level values of the
pixels. Additionally, thanks to models and analytical solutions that have been developed,
calculations with SNNs can be performed very quickly [35,36].

This study mainly focuses on increasing image interpolation success. Therefore, to in-
crease the success of interpolation, a new SNN-based edge detection approach is proposed
instead of gradient, which is highly sensitive to noise. Additionally, a new SNN model
is developed for edge detection. Edge detection approaches based on conductance-based
integrate and fire neuron models generally use 5 × 5 receptor fields [25,28,35]. Further-
more, the use of the HH neuron model increases the computational cost considerably [33].
It is seen that the edge directions can also be determined as different angles (30 and
60 degrees) [26,27,29,33]. Apart from these, additional filters such as the Gabor filter are
also used in the model [35]. The proposed SNN model reduces the computational cost
by using 3 × 3 neighborhoods. It also does not include additional filters or additional
parameters of the HH model. For these reasons, a new model, which is faster and simpler
than other existing SNN models, is proposed. Moreover, instead of calculating the differ-
ences between the center pixel and each of its neighbors individually in the 3 × 3 receptor
area [36], the proposed model tries to identify edges in 4 different directions.

The success of the proposed method is tested by using the 12 images that are most
frequently used in interpolation studies. After the edge detection process with the proposed
SNN model, all pixels are first divided into two groups as edge and non-edge pixels. For
pixels detected as edges, the 1D interpolation method is used according to the directions of
the edges, whereas the bicubic interpolation technique, which is one of the most known
methods, is used for non-edge pixels. The proposed method is compared to various edge-
based interpolation techniques. The results that are obtained show that the proposed
approach is quite successful. Another important aspect of the study is that SNNs are
introduced to interpolation for the first time.

The rest of this paper is organized as follows: Chapter 2 introduces the basis of image
interpolation. In Chapter 3, the conductance-based integrate-and-fire (CIF) neuron model
is described. The proposed SNN model and its integration with the interpolation approach
are presented in Chapter 4. Chapter 5 includes the interpolation results of the proposed
SNN-based edge detection method and performance comparisons.

2. Image Interpolation

Image interpolation can be expressed as the calculation of unknown pixels with the
help of the known pixels. When the M × N-sized IL (low resolution) image is interpolated
to the 2× 2 size as in Figure 2a, a 2M× 2N-sized IH (high resolution) image will be obtained.
While creating the IH image, the image in Figure 2b is first created by the process shown in
Equation (1).

IH(2i− 1, 2j− 1) = IL(i, j) (1)
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In general, in edge-based techniques [12,14], after detecting the edges and their direc-
tions, the values of the pixels located in the IH(2i, 2j) position indicated by the diagonal
arrows in Figure 2c are calculated first. This calculation generally depends on whether the
IL(i, j) pixel is an edge pixel with a diagonal angle. The value of the IH(2i, 2j) pixel (if IL(i, j)
is an edge pixel with a diagonal angle) is calculated with the help of the known blue-colored
pixels adjacent to it. After calculating the diagonally angled pixels, in the second step,
calculations are performed for the pixels indicated by the horizontal and vertical arrows in
Figure 2d. If a pixel is in the position IH(2i, 2j + 1) and IL(i, j) has a horizontally oriented
edge, this pixel is assigned a value using its neighbors on the horizontal plane. Similarly, if
a pixel is at the position IH(2i + 1, 2j) and IL(i, j) has a vertically oriented edge, the value of
the pixel IH(2i + 1, 2j) is calculated using its neighbors on the vertical plane. Finally, pixels
that are not marked as edges are generally assigned using bicubic interpolation. Thus, the
values of all pixels in the IH image are determined.

In almost all interpolation studies examined, it is seen that the interpolation process
has been carried out to increase the image to a 2 × 2 size. In these studies, experimental
results have been obtained by comparing Iorg (original image) to the IH image constructed
by first downsampling the Iorg by 1

2 ×
1
2 and then upsampling it to a 2 × 2 size again.

To compare the success of the proposed method in this study, the images used in recent
studies are first made 1/2 × 1/2 by downsampling. Although the nearest, bilinear, and
bicubic techniques can be used for downsampling, in this study, the direct extraction
method is used because it is known to both preserve the original pixels of the image and
increase success [14]. When shrinking an image by direct extraction, double-index rows
and double-index columns in the image are deleted. Thus, the M × N-sized IL image is
obtained directly from the 2M × 2N-sized Iorg image. Then, the methods to be tested are
applied to the IL image, and an IH image of a 2M × 2N size is obtained. Finally, the success
of the tested method is measured by comparing the Iorg and IH images.

3. Conductance-Based Integrate-and-Fire Neuron Model

In 1952, Hodgkin and Huxley [34] introduced a model for simulating actions in
neurons with the help of differential equations. However, the HH neuron model has a high
computational cost since it has many differential equations and parameters. Therefore,
different neuron models such as integrate-and-fire (IF), FitzHugh–Nagumo (FHN), and
Izhikevich have been presented [37–39]. Among these models, the CIF neuron model [40]
stands out with its lower computational cost advantage in large-scale networks [41]. In the
CIF model, the membrane potential is calculated by Equation (2).

cm
dv(t)

dt
= gl(El − v(t)) +

wexgex(t)
Aex

(Eex − v(t)) +
wihgih(t)

Aih
(Eih − v(t)) (2)

where cm is the membrane capacitance. gl is the membrane conductance and El is the
reverse potential of the membrane. Eex and Eih are the reverse potentials of excitatory and
inhibitory synapses, respectively. wex and wih are the weights of the synapses, and Aex and
Aih are the membrane surface areas. gex and gih represent the time-varying conductance of
excitatory and inhibitory synapses. If a neuron’s excitatory connections send a higher signal
than its inhibitory connections, the neuron’s membrane potential exceeds the threshold
voltage νth at time t, and the neuron generates a spike. Immediately after this, from the
moment t + 1, the membrane potential of the neuron remains constant at its initial value
νreset for a time τref, called the refractory time. For the simplicity of the model and ease of
calculation, the τref value was accepted as 0 in this study as in similar studies [27,31,32].
Figure 3 illustrates the spike sequence produced by a neuron (Neuron i) according to signals
from synaptically connected neurons.
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4. Proposed Method

In this section, the SNN model proposed for image interpolation using edge detection
is explained. Then, the image interpolation process is given in detail.

4.1. Proposed SNN Model for Edge Detection

In this study, a new SNN model shown in Figure 4 is proposed for edge detection
to be used in the interpolation process. The proposed model consists of three layers. The
first layer is the receptor layer, which transmits the gray-level values from the pixels to the
neurons. The network model detects the edges in four different directions (0◦, 45◦, 90◦, and
135◦) for an image. Although the structure of the proposed SNN model is based on the
model developed for ADFs [36], the interlayer structure is modified for line detection [29]
purposes to detect edges. Thus, the edges in four different directions are obtained as four
different output values instead of a single output value.
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In the first layer, the receptor layer, each pixel in the SNN model corresponds to a
receptor. Data from the receptor layer are transmitted to the intermediate layer via synaptic
connections. Each of all eight neurons in the intermediate layer is connected to the receptor
layer by different synaptic connections. The connections of the neurons in the intermediate
layer are structured with the help of synaptic matrices. X and ∆ symbols in synaptic
matrices indicate excitatory and inhibitory synapses, respectively. The neurons in the
intermediate layer are connected to four separate output neurons in pairs according to their
edge directions. The firing number of each neuron in the output layer in a time interval
corresponds to the gray-level value of the edge image specified by the output neuron. Thus,
each output neuron creates a gray-level edge image.

In the receptor layer, there is a 3 × 3 receptor field (RF) that centers each pixel in the
image. Each RF is connected to eight neurons in the intermediate layer (MA1, MA2, MB1,
MB2, MC1, MC2, MD1, and MD2) with eight individual synaptic matrices (mA1, mA2, mB1,
mB2, mC1, mC2, mD1, and mD2). Each pair of neurons in the intermediate layer determines
the edges located at the angles 90◦, 0◦, 45◦, and 135◦, respectively. For example, synaptic
signals from RF to MA1 via mA1 are calculated between the horizontal pixels in the center
and the other six neighboring pixels. The center pixel in the RF and its neighbors to its
left and right have an excitatory synaptic connection through the matrix mA1, whereas
other pixels have an inhibitory synaptic connection. If the excitatory pixels have a higher
gray-level value than the inhibitory pixels, the membrane potential of the neuron MA1
will increase and the neuron will generate spikes at intervals. Otherwise, the membrane
potential of mA1 will not change and the neuron will not generate any spike. The same is
true for the neuron MA2, which has synaptic connections opposite to that of the neuron
MA1. In the matrix mA2, the central pixel and its left and right neighbors have inhibitory
synaptic connections, whereas the other six neighbors have excitatory connections. So, if
the pixels on the central horizontal plane have a lower gray-level value than those of the
other neighbors, the membrane potential of the neuron MA2 will increase and the neuron
will generate spike(s). The greater the difference between the signals from the excitatory
and inhibitory synapses, the higher the frequency of spike generation will be. If the pixels
on the central horizontal plane and the gray-level values of the other six neighbors are the
same or close, neither of the neurons MA1 and MA2 will generate spikes.

It is known that HVS does not linearly calculate the difference between the gray-level
values of pixels like the gradient, but it determines this difference according to the firing
levels of neurons with inhibitory and excitatory synaptic connections [42]. Therefore, it
is aimed at detecting the edge directions in a 3 × 3 neighborhood by using two different
synaptic matrices for each edge direction in this study.

If the neurons MA1 or MN2 generate spikes at certain intervals, these generated spikes
will be transmitted to neuron O90 in the output layer. In the proposed model, the pairs
of neurons in the intermediate layer have only excitatory synaptic connections with the
corresponding neuron in the output layer. Depending on the intensity of the synaptic
signals from MA1 and MA2, the output neuron O90 will also generate spikes at certain
intervals. A similar situation is realized in other output neurons (O0, O45, and O135), and
edge images are obtained at four different angles.

The CIF neuron model used for visual attention [29] is applied to the proposed SNN
in this study. (x, y) in the SNN represents the coordinates of the pixels corresponding to the
receivers. The peak conductivity values qex and qih of excitatory and inhibitory receptors are
calculated by Equation (3). Gx,y is the gray-level value of the pixel at the (x, y) coordinate.

qex(x, y) = αGx,y; qih(x, y) = βGx,y (3)

where α and β are the coefficients used to normalize the gray-level values between 0 and
1 and are accepted as 1/255. For clarity, only the equations for the MA1 neuron are given
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below. Calculations for each neuron in the intermediate layer are performed with the same
equations.

dgex(t)
dt

= − 1
τex

gex(t) + ∑
(x,y)∈RF

wex(x, y)qex(x, y)
Aex

(4)

dgih(t)
dt

= − 1
τih

gih(t) + ∑
(x,y)∈RF

wih(x, y)qih(x, y)
Aih

(5)

where τex and τih are the time constants for excitatory and inhibitory synapses, respectively.

Isyn = −gexEex − gihEih (6)

where Isyn is the total synaptic current from the synaptic connections. Equation (7) which is
the analytical solution to Equation (2), is used to calculate the membrane potential v(t) of
the MA1 neuron [35].

vMA1 =

(
1
gl

){(
− exp

(
glt
cm

))(
Isyn + 70gl + glEl

)
+ Isyn + glEl

}
(7)

In the matrix mA1, which determines the synaptic connections of the neuron MN1, gex
is the total conductivity of the receptor of the central pixel and receptors of its left and
right neighbors. gih, on the other hand, refers to the conductivity of the receptors of the
six pixels located on the top and bottom rows of the central pixel. For the neuron MA2, the
connections to the receptors of the same pixels are expressed as in the matrix mN2. In mN2,
the center pixel and its left and right neighbors have inhibitory connections and the other
neighbors have excitatory connections.

Calculations for MA1 are also performed for neurons MA2, MB1, MB2, MC1, MC2, MD1,
and MD2. If the membrane potential of a neuron in the network achieves its threshold value,
the neuron generates spike(s). The generated spikes are stored in a separate spike train for
each neuron. SA1, the spike sequence of the MA1 neuron, is determined by Equation (8).

SA1(t) =

{
1 if neuron i fires a spike at time t
0 if there is no spike at time t

(8)

The four output neurons in the output layer have only excitatory synaptic connections
with pairs of neurons in the intermediate layer. Calculations for output neurons are
performed by Equations (9)–(11).

dgout(t)
dt

= − 1
τout

gout(t) +
SA1(t) + SA2(t)

Aex
(9)

Iout = −goutEout (10)

v(t)O90 =

(
1
gl

){(
− exp

(
glt
cm

))
(Iout + 70gl + glEl) + Iout + glEl

}
(11)

where gout is the conductivity value, τout is the time constant, Iout is the total synaptic current,
Eout is the reverse potential for synapses, and v(t)O90 is the membrane potential of the O90
neuron. SA1 and SA2 are the spike trains of the MA1 and MA2 neurons, respectively. The
spike train O90 of the neuron S90 is also calculated by Equation (8). The number of spikes
F90 generated by the output neuron O90 during time T can be calculated by Equation (12).
The spike numbers of other output neurons are also calculated using the equations above.

F90 =
T

∑
t=0

S90(t) (12)
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Instead of edges obtained using gradient-based edge detection approaches, edge
images consisting of F values, which include the number of spikes produced by each
output neuron during time T, are determined by HVS with the help of SNNs. The edge
images of the proposed model are given in Figure 5.
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Figure 5. Edge outputs of proposed SNN model for cameraman image IL. (a) F0; (b) F90; (c) F45;
(d) F135.

Whereas vertical lines are more prominent in Figure 5a, horizontal lines are seen
uninterrupted and distinctly in Figure 5b. The edges at angles 45◦ and 135◦ appear uninter-
rupted and distinctly in Figure 5c,d. The edge information from the four angles obtained
with the proposed SNN model is used when calculating the image interpolation.

4.2. Image Interpolation with SNN-Based Edge Detection

The method used for image interpolation in this study includes the steps shown in
Figure 6. In general, these steps have been frequently included in recent studies in the field
of interpolation in the literature. The most important difference of the proposed method
is that it determines the edges and edge directions with an SNN model. In the first step,
gray-level conversion is performed for IL. Then, the edges of the gray-level image in four
different directions are determined by the proposed SNN model. Afterward, whether the
pixel is an edge pixel or a non-edge pixel is checked. If the pixel is marked as an edge pixel,
its direction is determined.
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While checking the edge or non-edge status of the pixel, it is needed to first examine
whether it is included in one of the diagonal or linear edges.

θ(2i, 2j) =
{

45◦ if F45(i, j) > F135(i, j)
135◦ if F45(i, j) < F135(i, j)

(13)
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If there is no difference between the values of F45(i, j) and F135(i, j), which are the SNN
outputs of the gray-level transform of the IL image in Equation (13), the pixel in IH(2i,
2j) is considered a non-edge pixel and no assignment is performed. If F45(i, j) is greater
than F135(i, j), θ(2i, 2j) is assigned 45◦, whereas otherwise, it is assigned 135◦. The same
procedure is then performed for the pixels IH(2i−1, 2j) and IH(2i, 2j−1) whose known
neighbors are horizontal and vertical.

θ(2i, 2j− 1) = θ(2i− 1, 2j) =
{

0◦ if F0(i, j) > F90(i, j)
90◦ if F0(i, j) < F90(i, j)

(14)

In Equation (14), if F90(i, j) and F0(i, j), which are the SNN outputs of the gray-level
transform of the IL image, are equal to each other, then, IH(2i − 1, 2j) and IH(2i, 2j − 1) are
defined as non-edge pixels. If F90(i, j) is greater than F0(i, j), θ(2i − 1, 2j) and θ(2i, 2j − 1)
are assigned 90◦, they are assigned 0◦ otherwise.

After the edge directions are detected, firstly, the pixels at IL(i, j) are transferred to
IH(2i − 1, 2j − 1) as shown in Figure 2b. Then, the same operations are applied to the pixels
in Figure 2c,d, respectively. Thus, all the pixels marked as edges are interpolated. If the
pixels IH(2i, 2j), IH(2i, 2j − 1), and IH(2i − 1, 2j) are marked as edges, their values are
calculated using Equations (15)–(19), which have also been used in different studies [12,14].

IH = w(Ia + Ib) + (0.5− w)(Ic + Id) (15)

where w is an interpolation coefficient, and its value is 0.575 [12,14]. Let us assume that the
indices of the 2M × 2N-sized IH image are p and q. If θ(p, q) has an angle of 45◦:

Ia = IH(p− 1, q− 1), Ib = IH(p + 1, q + 1)
Ic = IH(p− 3, q− 3), Id = IH(p + 3, q + 3)

(16)

If θ(p, q) = 135◦:

Ia = IH(p + 1, q− 1), Ib = IH(p− 1, q + 1)
Ic = IH(p + 3, q− 3), Id = IH(p− 3, q + 3)

(17)

If θ(p, q) = 0◦:
Ia = IH(p, q− 1), Ib = IH(p, q + 1)
Ic = IH(p, q− 3), Id = IH(p, q + 3)

(18)

If θ(p, q) = 90◦:
Ia = IH(p− 1, q), Ib = IH(p + 1, q)
Ic = IH(p− 3, q), Id = IH(p + 3, q)

(19)

Finally, bicubic interpolation is applied for the IH(2i, 2j), IH(2i, 2j− 1), and IH(2i − 1, 2j)
pixels, which are marked as non-edge, and an IH image is obtained. In this study, the
interpolation process refers to 2 × 2 upsampling.

5. Experimental Results

The proposed method is tested on the 12 most commonly used images for testing
interpolation techniques. The results are obtained with the CGI [9], CED [10], PCI [11], and
IEDI [8] techniques for all images. Apart from these, the results of the recently developed
WTCGI [12] and GEI [14] techniques are also included in the comparisons. First, all images
are originally downsampled to a size of 1

2×
1
2 . Then, by upsampling to 2 × 2 with the tested

methods, the obtained images are ensured to be the same size as the original image. The
upsampled images are compared to the original images, and the results are obtained as
PSNR and SSIM.

The proposed SNN model is tested in MATLAB with the following parameters:
cm = 1 µF/mm2, El = −44.42 mV, gl = 0.003 µS/mm2, τex = 4 ms, τih = 10 ms, τref = 0 ms,
Eex = 36.78 mV, Eih = −72.14 mV, Eout = 36.78 mV, vreset = −70 mV, νth = −55 mV,



Appl. Sci. 2023, 13, 2438 10 of 14

Aex = 0.0141 mm2, Aih = 0.0281 mm2, T = 100 ms, and dt = 0.1 ms. The weight matrices of
the synapses for mA1 and mA2 are as follows:

wex =

 0 0 0
0.32 0.36 0.32

0 0 0

, wih =

0.16 0.18 0.16
0 0 0

0.16 0.18 0.16


Table 1 shows the PSNR results of the techniques that are compared in this study.

The best results are marked in bold. According to the PSNR results, the proposed method
is more successful both in individual images and on average. When compared with the
relatively new and successful PCI and GEI techniques, it is seen that using the edges
detected by the proposed SNN model increases the success of interpolation.

Table 1. PSNR comparison results of interpolation techniques.

Image CGI CED PCI IEDI WTCGI GEI Proposed

Bike 25.82 25.82 25.90 25.17 25.21 25.85 26.60
Wheel 21.01 20.98 21.22 20.31 20.57 21.32 21.53
Boats 29.51 29.56 29.77 29.24 29.32 29.42 29.71

Butterfly 29.27 29.24 29.31 28.97 28.97 29.26 29.55
House 32.83 32.71 32.88 32.31 31.87 32.84 33.17

Cameraman 25.86 25.9 25.81 25.48 25.76 25.83 26.09
Baboon 22.50 22.41 22.53 22.41 22.35 22.59 22.82
Peppers 30.88 30.77 30.87 30.47 30.19 30.81 31.12

Fence 25.70 25.63 25.84 25.61 25.69 25.75 26.01
Airplane 26.54 26.49 26.59 26.6 26.10 26.61 26.88
Barbara 23.75 23.64 23.82 23.54 23.41 24.01 24.25

Stars 34.13 33.94 34.38 33.36 33.71 34.33 34.67
Average 27.32 27.26 27.41 26.96 26.93 27.39 27.70

Another metric used to evaluate the performance of the proposed method is SSIM.
According to the SSIM results in Table 2, the proposed method is more successful than the
other techniques under investigation. The proposed method has significant success versus
both PCI and GEI techniques for each of the 12 images tested in terms of SSIM metric.
The success of the proposed method according to the SSIM metric [43], which is known
to correlate well with human visual perception, is another indicator of the usefulness of
SNN-based approaches modeling HVS.

Table 2. SSIM comparison results of interpolation techniques.

Image CGI CED PCI IEDI WTCGI GEI Proposed

Bike 0.8808 0.8812 0.8803 0.8751 0.8791 0.8798 0.9071
Wheel 0.8621 0.8626 0.8668 0.8644 0.8649 0.8665 0.8986
Boats 0.8763 0.8801 0.8794 0.8771 0.8744 0.8796 0.8963

Butterfly 0.9721 0.9732 0.9720 0.9718 0.9698 0.9758 0.9992
House 0.8781 0.8778 0.8789 0.8783 0.8775 0.8780 0.8956

Cameraman 0.8711 0.8732 0.8715 0.8704 0.8692 0.8732 0.8976
Baboon 0.9125 0.9111 0.9130 0.9121 0.9112 0.9165 0.9403
Peppers 0.9032 0.9041 0.9035 0.9029 0.9026 0.9025 0.9278

Fence 0.7752 0.7780 0.7785 0.7763 0.7765 0.7723 0.7893
Airplane 0.9405 0.9410 0.9401 0.9389 0.9422 0.9412 0.9591
Barbara 0.9125 0.9128 0.9130 0.9114 0.9105 0.9118 0.9392

Stars 0.9584 0.9603 0.9617 0.9608 0.9610 0.9608 0.9762
Average 0.8952 0.8963 0.8966 0.8950 0.8949 0.8965 0.9279

The most important difference that distinguishes the proposed method from state-
of-the-art techniques is that the edge pixels are determined with a new SNN model that
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simulates HVS instead of gradient-based techniques. The clearest advantage of SNNs is
the detection of edge angles without a threshold value. The general condition for a pixel
to be defined as an edge is |F0(i, j) − F90(i, j)| ≥ T in the WTCGI and GEI techniques. T
is a user-defined threshold value. The T value, which is generally used as a constant, is
accepted as 0.01 in GEI. As seen in Figure 7, the edge values obtained with SNNs change
as non-linear values, as opposed to linear ones as in a gradient. Thus, there is no need to
select a threshold value.
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When the interpolation results seen in Figure 8 are examined visually, it is seen that
the edges are preserved in a similar way to other techniques in the literature. Although the
proposed method produces successful results, the computational time of the SNN model is
slightly longer than those of gradient-based techniques. However, the tests show that this
difference is tolerable. Figure 9 shows the average calculation times for the results obtained
through MATLAB. The tests are run on a computer with an Intel Core i7 4710HQ 2.50 GHz
processor and 32GB RAM. Although the proposed method is somewhat behind in terms
of calculation times, it can be easily argued that this difference is minimal. This is quite
inspiring for studies that can perform edge detection by HVS.

The proposed SNN model is designed in a simpler way than existing SNN models.
First of all, since the receptor field utilized is 3 × 3 in size, the computational cost of the
proposed method is approximately 1/2.5 times those in studies using 5 × 5 dimension
receptor fields [25,28,35]. Additionally, it does not contain additional filters such as the
Gabor filter which also provides an advantage in terms of the computational cost. Another
important aspect of the proposed approach is that it does not require any learning steps
while detecting edges, just like gradient-based techniques. The proposed approach provides
successful results by simulating HVS in a much simpler way compared to known machine
learning (ML) techniques. The results obtained in this study, where SNNs are used for the
first time for interpolation, will open the door to many similar studies in the future.
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6. Conclusions

In recent years, many techniques in which the edges of an image are used to increase
the success of interpolation have been developed. However, current techniques use ap-
proaches such as gradients or wavelets that calculate the gray-level difference between
pixels linearly. Additionally, it is observed that previously developed techniques include
very similar steps, and the greatest differences are in the edge detection processes. On the
other hand, it is known that the edge detection success of SNNs simulating the HVS is
quite high. In this study, a new SNN model is proposed to be used in the interpolation
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process. Whereas 1D cubic interpolation is applied on the edge pixels determined using the
proposed SNN model, standard bicubic interpolation is applied to the others. The success
of the proposed method is compared to other edge-based interpolation methods using the
PSNR and SSIM metrics. The results that are obtained show that the SNN-based method,
which is used for the first time in interpolation studies, is quite successful. Additionally,
the fact that the running time of the proposed method is not very long compared to other
methods shows that it can be used in different image processing studies where the detection
of edge directions is important. In the future, the proposed SNN model is planned to be
used in other image-processing fields based on edge detection.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: The study did not involve humans.

Data Availability Statement: Data sharing is not applicable.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Pramunendar, R.A.; Wibirama, S.; Santosa, P.I. Fish Classification Based on Underwater Image Interpolation and Back-propagation

Neural Network. In Proceedings of the 2019 5th International Conference on Science and Technology, ICST 2019, Yogyakarta,
Indonesia, 30–31 July 2019.

2. Moraes, T.; Amorim, P.; Da Silva, J.V.; Pedrini, H. Medical Image Interpolation Based on 3D Lanczos Filtering. Comput. Methods
Biomech. Biomed. Eng. Imaging Vis. 2020, 8, 294–300. [CrossRef]

3. Cardona, J.G.; Ortega, A.; Rodriguez-Alvarez, N. Graph-Based Interpolation for Remote Sensing Data. In Proceedings of the 2022
30th European Signal Processing Conference (EUSIPCO), Belgrade, Serbia, 29 August–2 September 2022; pp. 1791–1795.

4. Saharia, C.; Ho, J.; Chan, W.; Salimans, T.; Fleet, D.J.; Norouzi, M. Image Super-Resolution via Iterative Refinement. IEEE Trans.
Pattern Anal. Mach. Intell. 2022, 1–14. [CrossRef] [PubMed]

5. Lugmayr, A.; Danelljan, M.; Van Gool, L.; Timofte, R. SRFlow: Learning the Super-Resolution Space with Normalizing Flow.
In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Springer Science + Business Media: Berlin, Germany, 2020; Volume 12350.

6. Mei, Y.; Fan, Y.; Zhou, Y. Image Super-Resolution with Non-Local Sparse Attention. In Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, Virtual, 19–25 June 2021.

7. Wang, P.; Bayram, B.; Sertel, E. A Comprehensive Review on Deep Learning Based Remote Sensing Image Super-Resolution
Methods. Earth-Sci. Rev. 2022, 232, 104110. [CrossRef]

8. Hossain, M.S.; Jalab, H.A.; Kahtan, H.; Abdullah, A. Image Resolution Enhancement Using Improved Edge Directed Interpolation
Algorithm. In Proceedings of the 9th IEEE International Conference on Control System, Computing and Engineering, ICCSCE
2019, Penang, Malaysia, 29 November–1 December 2019.

9. Wei, Z.; Ma, K.K. Contrast-Guided Image Interpolation. IEEE Trans. Image Process. 2013, 22, 4271–4285. [CrossRef] [PubMed]
10. Ye, W.; Ma, K.K. Convolutional Edge Diffusion for Fast Contrast-Guided Image Interpolation. IEEE Signal Process. Lett. 2016, 23,

1260–1264. [CrossRef]
11. Zhong, B.; Ma, K.K.; Lu, Z. Predictor-Corrector Image Interpolation. J. Vis. Commun. Image Represent. 2019, 61, 50–60. [CrossRef]
12. Zhao, Y.; Huang, Q. Image Enhancement of Robot Welding Seam Based on Wavelet Transform and Contrast Guidance. Int. J.

Innov. Comput. Inf. Control 2022, 18, 149–159. [CrossRef]
13. Lama, R.K.; Shin, S.; Kang, M.; Kwon, G.R.; Choi, M.R. Interpolation Using Wavelet Transform and Discrete Cosine Transform for

High Resolution Display. In Proceedings of the 2016 IEEE International Conference on Consumer Electronics, ICCE 2016, Las
Vegas, NV, USA, 7–11 January 2016.

14. Jia, Z.; Huang, Q. Image Interpolation with Regional Gradient Estimation. Appl. Sci. 2022, 12, 7359. [CrossRef]
15. Pratt, W.K. Digital Image Processing, 4th Edition. J. Electron. Imaging 2007, 16, 029901. [CrossRef]
16. Singh, A.; Singh, J. Review and Comparative Analysis of Various Image Interpolation Techniques. In Proceedings of the 2019 2nd

International Conference on Intelligent Computing, Instrumentation and Control Technologies, ICICICT 2019, Kannur, India, 5–6
July 2019; pp. 1214–1218.

17. Palconit, M.G.B.; Conception, R.S.; Alejandrino, J.D.; Evangelista, I.R.S.; Sybingco, E.; Vicerra, R.R.P.; Bandala, A.A.; Dadios, E.P.
Counting of Uneaten Floating Feed Pellets in Water Surface Images Using ACF Detector and Sobel Edge Operator. In Proceedings
of the IEEE Region 10 Humanitarian Technology Conference, R10-HTC, Bangalore, India, 30 September–2 October 2021; Institute
of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2021.

18. Wu, F.; Zhu, C.; Xu, J.; Bhatt, M.W.; Sharma, A. Research on Image Text Recognition Based on Canny Edge Detection Algorithm
and K-Means Algorithm. Int. J. Syst. Assur. Eng. Manag. 2022, 13, 72–80. [CrossRef]

http://doi.org/10.1080/21681163.2019.1683469
http://doi.org/10.1109/TPAMI.2022.3204461
http://www.ncbi.nlm.nih.gov/pubmed/36094974
http://doi.org/10.1016/j.earscirev.2022.104110
http://doi.org/10.1109/TIP.2013.2271849
http://www.ncbi.nlm.nih.gov/pubmed/23846469
http://doi.org/10.1109/LSP.2016.2571738
http://doi.org/10.1016/j.jvcir.2019.03.018
http://doi.org/10.24507/ijicic.18.01.149
http://doi.org/10.3390/app12157359
http://doi.org/10.1117/1.2744044
http://doi.org/10.1007/s13198-021-01262-0


Appl. Sci. 2023, 13, 2438 14 of 14

19. Chandwadkar, R.; Dhole, S.; Gadewar, V.; Raut, D.; Tiwaskar, P.S.A. Comparison of Edge Detection Techniques. In Proceedings of
the Sixth IRAJ International Conference, Pune, India, 6 October 2013; pp. 133–136.

20. Keil, M.S.; Cristóbal, G.; Neumann, H. Gradient Representation and Perception in the Early Visual System—A Novel Account of
Mach Band Formation. Vision Res. 2006, 46, 2659–2674. [CrossRef] [PubMed]

21. Manjunath, B.S.; Chellappa, R. A Unified Approach to Boundary Perception: Edges, Textures, and Illusory Contours. IEEE Trans.
Neural Netw. 1993, 4, 96–108. [CrossRef]

22. Natschläger, T. Spatial and Temporal Pattern Analysis via Spiking Neurons. Netw. Comput. Neural Syst. 1998, 9, 319–332.
[CrossRef]

23. Buhmann, J.M.; Lange, T.; Ramacher, U. Image Segmentation by Networks of Spiking Neurons. Neural Comput. 2005, 17,
1010–1031. [CrossRef]

24. Ghosh-Dastidar, S.; Adeli, H. Spiking Neural Networks. Int. J. Neural Syst. 2009, 19, 295–308. [CrossRef] [PubMed]
25. Wu, Q.X.; McGinnity, M.; Maguire, L.; Belatreche, A.; Glackin, B. Edge Detection Based on Spiking Neural Network Model.

In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics);
Springer Science + Business Media: Berlin, Germany, 2007; Volume 4682.

26. Clogenson, M.; Kerr, D.; McGinnity, M.; Coleman, S.; Wu, Q. Biologically Inspired Edge Detection Using Spiking Neural Networks
and Hexagonal Images. In Proceedings of the International Conference on Neural Computation Theory and Applications, Paris,
France, 24–26 October 2011.

27. Kerr, D.; Coleman, S.; McGinnity, M.; Wu, Q.X.; Clogenson, M. Biologically Inspired Edge Detection. In Proceedings of the
International Conference on Intelligent Systems Design and Applications, ISDA, Cordoba, Spain, 22–24 November 2011.

28. Kerr, D.; McGinnity, M.; Coleman, S.; Wu, Q.; Clogenson, M. Spiking Hierarchical Neural Network for Corner Detection. In
Proceedings of the International Conference on Neural Computation Theory and Applications, Paris, France, 24–26 October 2011;
pp. 230–235.

29. Wu, Q.X.; McGinnity, T.M.; Maguire, L.; Cai, R.; Chen, M. A Visual Attention Model Based on Hierarchical Spiking Neural
Networks. Neurocomputing 2013, 116, 3–12. [CrossRef]

30. Kerr, D.; Coleman, S.; McGinnity, M.T. Biologically Inspired Intensity and Depth Image Edge Extraction. IEEE Trans. Neural Netw.
Learn. Syst. 2018, 29, 5356–5365. [CrossRef] [PubMed]

31. Kerr, D.; Coleman, S.A.; McGinnity, T.M.; Clogenson, M. Biologically Inspired Intensity and Range Image Feature Extraction. In
Proceedings of the International Joint Conference on Neural Networks, Dallas, TX, USA, 4–9 August 2013.

32. Kerr, D.; McGinnity, T.M.; Coleman, S.; Clogenson, M. A Biologically Inspired Spiking Model of Visual Processing for Image
Feature Detection. Neurocomputing 2015, 158, 268–280. [CrossRef]

33. Yedjour, H.; Meftah, B.; Lézoray, O.; Benyettou, A. Edge Detection Based on Hodgkin–Huxley Neuron Model Simulation. Cogn.
Process. 2017, 18, 315–323. [CrossRef]

34. Hodgkin, A.L.; Huxley, A.F. A Quantitative Description of Membrane Current and Its Application to Conduction and Excitation
in Nerve. J. Physiol. 1952, 117, 500–544. [CrossRef] [PubMed]

35. Vemuru, K.V. Image Edge Detector with Gabor Type Filters Using a Spiking Neural Network of Biologically Inspired Neurons.
Algorithms 2020, 13, 165. [CrossRef]
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