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Abstract: As a novel bio-inspired vision sensor, spike cameras offer significant advantages over
conventional cameras with a fixed low sampling rate, recording fast-moving scenes by firing a
continuous stream of spikes. Reconstruction methods including Texture from ISI (TFI), Texture from
Playback (TFP), and Texture from Adaptive threshold (TFA) produce undesirable noise or motion
blur. A spiking neural model distinguishes the dynamic and static spikes before reconstruction,
but the reconstruction of motion details is still unsatisfactory even with the advanced TFA method.
To address this issue, we propose a coarse-to-fine high-speed motion scene reconstruction (CFSR)
method with a region-adaptive-based spike distinction (RASE) framework to reconstruct the full
texture of natural scenes from the spike data. We utilize the spike distribution of dynamic and static
regions to propose the RASE to distinguish the spikes of different moments. After distinction, the
TFI, TFP, and patch matching are exploited for image reconstruction in different regions, respectively,
which does not introduce unexpected noise or motion blur. Experimental results on the PKU-SPIKE-
RECON dataset demonstrate that our CFSR method outperforms the state-of-the-art approaches in
terms of objective and subjective quality.

Keywords: spike camera; image reconstruction; region adaptive; spike distinction; coarse-to-fine

1. Introduction

Typical emerging vision applications such as autonomous driving [1], unmanned
aerial vehicles [2], and wearable computing [3] require rapid reaction in computer vision
processing [4]. When performing image analysis tasks such as detecting or tracking an
object, most conventional cameras exploit a fixed low sampling rate and compress the
scenes in the exposure time into one frame. These consecutive frames have to be compared
to recover temporal changes [5], which may suffer from serious motion blur in high-speed
scenarios and are computationally expensive [6].

Different from conventional frame-based cameras, bio-inspired cameras have been
proposed to record high-speed motion. Event-based cameras, such as Dynamic Vision Sen-
sors (DVS) [7–10] and Dynamic and Active pixel Vision Sensors (DAVIS) [11], can acquire a
stream of asynchronous events based on the variation of light intensity for independent
pixels. However, event-based cameras are not able to acquire visual images as the conven-
tional camera does since they only record the change information. Although there are some
hybrid sensors combining DVS with a frame-based camera [12,13], a conventional image
sensor [14], or a photo-measurement circuit [15] to reconstruct textures, mismatch still
exists due to the difference in the sampling rate and time, which hinders the performance
of the reconstruction.

Addressing the issue of capturing high-speed visual texture while recording the
continuous-time signal, a retina-inspired spike camera with high spatial (250× 400) and
temporal resolutions (40,000 Hz) has been proposed [16,17]. Unlike traditional digital
cameras that record the visual information of the entire exposure process as a snapshot, a
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spike camera abandons the concept of exposure window. Instead, it continuously monitors
the intensity of incoming light, with each pixel firing a stream of spikes that independently
record the intensity of light over time. The emission of each spike represents the arrival
of a very small number of photons, and the spike stream is recorded with very high
temporal resolution, which allows high-speed motion scenes to be recovered from the spike
sequence [18–21].

However, reconstructing visual images from the spikes remains a challenge. Previous
reconstruction algorithms suffer from low contrast or blur. A typical method, TFI (Texture
from ISI) [20], uses two neighboring spikes to measure the instantaneous brightness inten-
sity, which can reconstruct the outline of the texture for high-speed motion well but may
generate undesirable noise in stationary scene reconstruction. Other methods, such as TFP
(Texture from Playback) [18] and TFA (Texture from Adaptive threshold) [20], average the
spikes over a large moving time window in a specific period to improve the signal-to-noise
ratio (SNR), but the reconstructions could suffer unexpected motion blur, especially in a
high-speed scene. Moreover, the TFP method with a small moving window utilized for
dynamic area reconstruction may introduce unexpected noise. The signal-to-noise ratio
is improved by motion aligned filtering [22] via utilizing temporal correlations of signals,
but it can only be applied to scenes with linear motion. Spk2ImgNet [23] can reconstruct
high-quality images for dynamic scenes by using a deep convolutional neural network but
costs huge computational complexity. To construct the high-speed motion and stationary
scenes, methods, such as the SNM three-layer spiking neural model [24] and TFSTP (texture
from short-term plasticity) [25], are proposed to distinguish the spike states (dynamic or
static) in an incremental way, which are effective in reconstructing visual images in both
stationary and high-speed scenes. After continuous-time-spikes processing by a combina-
tion of biologically plausible mechanisms, however, the TFA-like SNM method is utilized
for the reconstruction according to the state of the neuron and the firing threshold, which
may still suffer the problem of motion blur. The TFSTP method [25] utilizes the short-term
plasticity to distinguish the static and motion areas to further enhance the reconstruction
results; however, it may introduce unexpected noise.

Motivated by successful applications of the coarse-to-fine strategy for various tasks,
such as deep video coding [26] and optical flow estimation [27], this paper proposes a
CFSR framework to reconstruct the image with region-adaptive-based spike distinction.
This paper analyzes the distribution characteristics of spikes and the difference between
adjacent inter-spike intervals (DAISI) in fixed time to distinguish real-time spike states.
Then, we utilize these different distributions to adopt the TFP [18] and TFI [20] methods to
reconstruct dynamic and static regions in coarse-grained and fine-grained reconstructions,
respectively. Finally, we fuse the reconstruction results of dynamic and static regions to
obtain final results.

Our contributions are summarized as follows: (1) We first propose a lightweight
coarse-to-fine high-speed motion scene reconstruction (CFSR) framework with region-
adaptive-based spike distinction. (2) We propose the coarse-grained distinction and the
fine-grained distinction based on the spatial distribution for the inter-spike interval (ISI)
and the difference between adjacent inter-spike intervals (DAISI), respectively. (3) Before
the fine-grained distinction, we take an adaptive threshold scene reconstruction (ATSR) to
fuse the static and dynamic region reconstruction. (4) Experimental results on the PKU-
SPIKE-RECON dataset demonstrate that our CFSR can achieve high dynamic range and
high image quality in reconstructing high-speed scenes.

This paper is organized as follows. Section 2 introduces the related works of this paper.
Section 3 proposes the CFSR framework in detail. Section 4 shows experimental results,
and Section 5 concludes the paper.

2. 2 Related Works

This section presents related works on spike data representation and high-speed image
reconstruction based on spiking cameras.
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2.1. Spike Data Representation

The photo receptor converts the intensity of light into the voltage in FSM [20]. Once
the voltage reaches a predetermined threshold, a one-bit spike is generated, along with
a signal to reset the integrator. This operation is quite similar to the integrate-and-fire
neuron [24]. Different brightness stimuli I cause different spike firing rates, and the output
and reset are activated asynchronously over various pixels. The faster the firing speed, the
brighter the light. Thus, ∫ t

0
Idt ≥ ∅, (1)

where I and t refer to the luminance intensity and the integration time, respectively, and ∅
indicates the predetermined threshold. It is quite similar to how ganglion cells analyze their
response latencies, which decode the spike latencies to show the shape of the object [28].

Assuming that the brightness intensity remains constant over time, Equation (1) can be

simplified to
−
I ∆t ≥ ∅ based on the spike generation mechanism, where ∆t is the inter-spike

interval (ISI) produced by computing the time difference between two neighboring spikes.
As a result, the average intensity of pixels in this time period can be approximated by

−
I =

∅
∆t

. (2)

2.2. Reconstruction Methods
2.2.1. Texture from ISI

Previous reconstruction algorithms [18,20,21] use two principles of the spikes: (1) The
intensity is inversely proportional to the ISI. (2) The intensity is directly proportional to
the spike counts or spike frequency [20]. Spike firing patterns change rapidly in high-
speed motion applications. According to Equation (2), the reconstructed pixel value can be
estimated by the mean luminance intensity using only two spikes (i.e., one ISI)

Ptm =
C

∆tm
, (3)

where Ptm refers to the pixel value at the moment of tm, C represents the maximum dynamic
range, and ∆tm means the ISI between tm and the last moment when a spike generates.

This Texture from the ISI (TFI) method can reconstruct the outline of the texture but
with unclear details. When the object moves very quickly, the picture reconstructed from
luminance intensity performs the motion nearly synchronously. Due to the advantage of
the TFI in high-speed motion reconstruction, it has been utilized in our reconstruction of
dynamic regions.

2.2.2. Texture from Playback

As shown in [20], the spike firing characteristics are rarely changed for stationary
scenes. Thus, by making use of the second principle, the Texture from Playback method
(TFP) is proposed in [20], where a moving time window collecting the spikes in a specific
period is utilized. The texture is computed by counting these spikes in the given time
window via

Ptm =
Nw

w
· C, (4)

where the size of the time window w refers to the previous w moments before tm. Nw is the
total number of spikes collected in the time window.

When the time window size is set to the dispatch threshold, the textures are accurately
reconstructed. Moreover, the TFP method could restore the texture with various dynamic
ranges by resizing the time window to the value of different contrast levels. Since the
length of the window significantly influences the results, it needs to be carefully set. When
the time window is set to a high value, the reconstructions could suffer unexpected motion
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blur when the scene contains fast-moving objects, and when the time window is set to a
low value, the reconstructions may suffer from unexpected noise. In this paper, we use
the TFP method in our reconstruction of static regions, where the time window of the TFP
method is set to a high value to reduce the noise in the reconstruction.

2.2.3. Spiking Neural Model

In order to improve the scene reconstruction performance, the retina-like visual image
reconstruction framework via a spiking neural model has been proposed to distinguish the
dynamic and static spikes and reconstruct the image by using a dynamic neuron extraction
model [24]. The local motion excitation layer models the spike data as a motion confidence
matrix according to the historical firing distribution, abstracts the spike states into the
first-order Markov random field with binary labels [29], and marks each output spike as
dynamic or static based on the graph cuts to distinguish the state of the neuron. Then,
a spike refining layer sets different refractory periods for dynamic and static neurons to
eliminate the noise and preserve the high dynamic range. Finally, a visual reconstruction
layer utilizes the spike-timing-dependent plasticity (STDP) learning rule [30] and threshold
adaptation [31] to reconstruct the dynamic and static scenes simultaneously.

However, the dynamic scenes reconstruction could still generate motion blur due to
the texture from the adaptive threshold (TFA) method, and the STDP learning rule requires
a large amount of datasets and time cost. In this paper, we propose a new framework
to distinguish the dynamic and static spikes and a new way to reconstruct the images.
Experimental results illustrate that our method is superior to SNM in both time complexity
and reconstruction results.

To address the aforementioned problem, we propose a CFSR method to reconstruct
dynamic and static scenes with region-adaptive-based spike distinction. At the coarse-
grained level, we distinguish real-time spikes into dynamic and static regions according to
the distribution characteristics of spikes from the input spike data in fixed time, and then
we take advantages of the TFI and TFP methods to reconstruct high-speed and stationary
scenes, respectively. The reconstructions of two regions are fused to obtain the coarse-
grained results. Based on the coarse-grained reconstructions and the distinguished spikes,
we perform these major operations, including the fine-grained spikes distinction, the region-
based reconstruction, and the fusion at the fine-grained level to additionally distinguish the
spikes for further image reconstruction. Furthermore, the difference between adjacent inter-
spike intervals (DAISI) and the background subtraction [32] are utilized for the fine-grained
distinction. The patch matching method is integrated along with the TFI for dynamic
region reconstruction, which is fused with the static region scene reconstruction via the TFP
method to obtain the final reconstruction. Finally, our coarse-to-fine scene reconstruction
can obtain better image quality and motion details with lower noise and less blur.

3. The CFSR Method
3.1. The Coarse-to-Fine High-Speed Motion Scene Reconstruction Framework

To address the challenge of high-speed motion scene reconstruction from the spike
data, we propose a novel spike-based CFSR model. The overall architecture of the spike-
based CFSR model is illustrated in Figure 1.

We first take the traditional TFI method for the input spike data for the global re-
construction. Then, we take the coarse-grained distinction to distinguish the spike state
adaptively according to the input spike data to output a spike train with binary marks
(dynamic or static), which are marked by the dynamic or static state.
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Figure 1. The overall architecture of the spike-based CFSR framework. The coarse-grained reconstruc-
tion branch is denoted by dark blue lines. The input is spike data and the outputs are spike train with
binary marks (dynamic or static) and the CSR, which are the inputs of the fine-level reconstruction
branch denoted by the red lines. The image with the blue wire frame is the intermediate result fused
by the results of the TFP and TFI methods directly.

We take the TFP to reconstruct the static spikes and fuse them with the reconstruction
via the TFI method to reconstruct the intermediate motion scene denoted by the CSR
via the adaptive threshold scene reconstruction (ATSR). Moreover, we propose a fined-
grained distinction to further distinguish the spike state and use the patch matching
method [33] to refine the dynamic region reconstruction. Finally, the dynamic and static
reconstruction results are fused to obtain the final reconstructed scene denoted by the CFSR
via the ATSR method. The details of the coarse-grained reconstruction and the fine-grained
reconstruction are described in Section 3.2 and Section 3.3, respectively .

3.2. Coarse-Grained Reconstruction

For the input raw spike data, we first use the TFI method for global reconstruction
and distinguish the spikes in a coarse-grained level. We exploit the spatial distribution
for ISI to guide the coarse-grained distinction process. As shown in Figure 2a, we observe
that there are different numbers and values of ISI within a fixed time interval T, which is
formulated as a set,

T = {∆t m}
n
m=1, (5)

where n denotes the number of ISI in the set T, and ∆tm is the m-th inter-spike interval in
the fixed time interval T.

Given a fixed time interval T, the cardinality of the set T are not identical. As shown
in Figure 2b, when the pixel belongs to the static region, each ISI value in the {∆t m}

n
m=1

is relatively average. However, the differences of all the ISI values {∆t m}
n
m=1 for the

dynamic region are large.Thus, the cardinality of the set T in the dynamic region is larger
than that in the static region. Therefore, we distinguish the dynamic and static regions
coarsely by

Mtm(x, y) =
{

1
∣∣ {∆t m}

n
m=1

∣∣ ≥ θ
0

∣∣ {∆t m}
n
m=1

∣∣ < θ,
(6)

where θ represents the predetermined threshold, and |•| is the cardinality of a given set.
Mtm ∈ {0, 1} is a binary matrix denoting the states of the spike, where the value 1 denotes
that the pixel (x, y) belongs to the dynamic region at moment tm. The real-time spike can
be marked as static and dynamic states adaptively by Equation (6). In addition, the range
of θ depends on n, and the size of n is related to time and light intensity. We empirically set
the threshold θ.
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Figure 2. The temporal distribution of index of number of ISI (INI) under different brightness and
motion state. From left to right: (a) value of interval; (b) cardinality of interval; (c) the difference
between adjacent inter-spike intervals (DAISI). From top to bottom, the results of different regions
are marked in different colors, where the red and gray belong to the dynamic, and the yellow and
blue ones are the static, respectively.

For the dynamic and static regions after coarse-grained spike state distinction, we use
different characteristics of the static and dynamic regions for image reconstruction. The TFI
method (3) and the TFP method (4) mentioned in Section 2.2 are utilized for the dynamic
region reconstruction and static region reconstruction, respectively, as shown in Figure 1.

After the static and dynamic region reconstruction, to keep the consistency of bright-
ness of the two states reconstruction we adopt an adaptive threshold scene reconstruction
(ATSR) step to fuse the static and dynamic region reconstruction. We calculate the aver-
age brightness ratio of the reconstructions of static regions via the TFP and TFI methods
as the adaptive threshold to adjust the brightness of the static region reconstruction via
the TFP method,

S
′
TFP(x, y) = STFP(x, y) · ∑

(x,y)∈R
(STFI(x, y)/STFP(x, y))/N, (7)

where R represents the static region of the reconstruction image, S is the value of static
region of the reconstruction, and STFP represents the value of the static region of the
reconstruction by the TFP method. N is the number of spikes in the region R.

Here, the scene reconstruction of static regions is also performed by the TFI method as
a guide to obtain the adaptive threshold. After multiplying by the adaptive threshold, the
brightness value of the static region via the TFP method is adjusted to be as consistent as
possible with that of the dynamic region. Thus, we can obtain the fused scene. In addition,
the adaptive threshold is also adopted in the ATSR of the fined-grained reconstruction.

3.3. Fine-Grained Reconstruction

As shown in Figure 2c, the difference between adjacent inter-spike intervals (DAISI)
of the static and dynamic regions are also different. After coarse-grained reconstruction,
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the fine-grained distinction is operated on the dynamic spikes and the coarse-grained
scene reconstruction, as illustrated in Figure 3. We can first obtain the coarse-grained
reconstruction scene ftm(x, y) of consecutive frames in the fixed time interval T. We utilize
the Mixture of Gaussian model (MOG) based background subtraction method [32] to
distinguish the moving object from the dynamic region to obtain the background image
B(x, y). Then, we can calculate the differential image D′tm

(x, y) via

D
′
tm(x, y) = | ftm(x, y)− B(x, y)|. (8)

We set a threshold ϕ0 and obtain the binary image R′tm
(x, y) by the threshold process-

ing for the differential image D′tm
(x, y),

R
′
tm(x, y) =

{
1 D

′
tm
(x, y) ≥ ϕ0

0 D
′
tm(x, y) < ϕ0.

(9)

The values of 1 and 0 represent the dynamic object and the static region, respectively.

Figure 3. Fine-grained spike state distinction for the dynamic region and the static region. Spike train
with binary marks (dynamic or static) and the CSR are as inputs to the fine-grained distinction. The
Mixture of Gaussian model (MOG) based background subtraction method is utilized on the CSR
for dynamic object judgment, and the difference between adjacent inter-spike intervals (DAISI) is
utilized to judge the edge of the dynamic object. Finally, the edge information obtained by the DAISI
method is used to refine the dynamic and static spikes.

However, the distinction of the edge of the dynamic object is not well-defined. We
then use the difference between adjacent inter-spike intervals (DAISI) to judge the edge of
the dynamic object. We observe that when the average brightness intensity changes greatly
in a short time, the current spikes are the edge of the dynamic region, assuming that the
brightness of the dynamic region is inconsistent with that of the static region, as shown
in Figure 2c. There is an edge of the dynamic region when a change in that log average
luminance intensity Īm of ∆tm exceeds a threshold δ,∣∣∣∣log

(−
I m

)
− log

(−
I m−1

)∣∣∣∣ ≥ δ, (10)

where Īm and Īm−1 can be estimated by Equation (2). Correspondingly, the edge of the
dynamic region exists when a change in the log ISI exceeds a threshold ϕ,

|log(∆tm)− log(∆tm−1)| ≥ ϕ. (11)
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When a spike is generated at time tm, Equation (10) can represent the motion state at
the current time well, as shown in Figure 3. However, when there is no spike generated
at time tm, we have difficulty judging the motion state at the current moment tm by the
difference between two adjacent ISIs, as shown in Figure 3. For this case, we utilize the
difference among three adjacent ISIs to judge the edge of the moving region via{

|log(∆tm)− log(∆tm−1)|
⋂
|log(∆tm)− log(∆tm+1)|

}
≥ ϕ. (12)

Assume ta is the time point when the spike is generated before tm. We can assess whether
a one-bit spike is generated or not from ta to tm via Equation (1). Thus, we formulate the
difference image Dtm(x, y) of the spike data at time tm in the case of Figure 3 as follows,

Dtm(x, y) =

{
|log(∆tm(x, y))− log(∆tm−1(x, y))|

∫ tm
ta

Idt ≥ ∅
( |log(∆tm(x,y))−log(∆tm−1(x,y))|⋂
|log(∆tm(x,y))−log(∆tm+1(x,y))|)

∫ tm
ta

Idt < ∅.
(13)

The threshold ϕ in Equations (11) and (12) is a predetermined set, and the binary processing
is performed on the pixel points one by one to obtain the binary image Rtm(x, y). The
values of 1 and 0 are set to indicate the edge of the dynamic object and the static region

Rtm(x, y) =
{

1 Dtm(x, y) ≥ ϕ
0 Dtm(x, y) < ϕ.

(14)

Finally, the edge information obtained by the DAISI method is used to refine the edge of
the dynamic object. Thus, the dynamic and static spikes by the fine-grained distinction
are obtained.

Different from the coarse-grained reconstruction, after using the TFI method for the
dynamic region reconstruction, the PatchMatch method [33] is utilized to preserve the
local structure and visual richness of textures as well as to eliminate the noise and enhance
the moving object detail. For each patch of the given f tm

(x, y) , the most similar patch
in each of the adjacent frames { f t(x, y)}t=tm±5i, where i = {1, 2, 3, . . . N}, N = 10, has a
size 6× 6, obtained by the PatchMatch method [33]. The patches of the dynamic region
are overlapped extracted to prevent blocking artifacts, and we take the average of all
candidates as the output pixel value. Finally, the ATSR step is also utilized to guarantee the
consistency of brightness of final scene reconstruction.

4. Experiment Results
4.1. Experimental Setting

Our CFSR framework was implemented by the publicly available Matlab (version
2019a), Python (version 2.7), and Brian2 (version 2.2.2.1) on an AMD Ryzen 7 5800H-
GPU system. To demonstrate the CFSR framework, we used the PKU-SPIKE-RECON
dataset [6,8] from Peking University, including spike sequences captured by the spike
camera. This dataset contains eight sequences including two categories of normal speed
(Class A) and high speed (Class B) scenarios. Each sequence was captured by the spike
camera with 40,000 Hz sampling rate. The experiments were conducted on three spike
sequences captured from high-speed scenes, including “Rotation1”, “Rotation2” and “Car”,
as shown in Figure 4. Among them, “Car” describes a car traveling at a speed of 100 km/h
(kilometers per hour). The sequence “Rotation1” describes a disk with 2000 rpm (revolu-
tions per minute), and the sequence “Rotation2” depicts an electric fan with 2600 rpm [18].
The resolution of these three high-speed scenes is of size 400 × 250 × 2000. According
to our previous statistics, we set T = 400, θ = 6, ϕ0 = 50, ϕ = 4, and ∅ = 12, respectively.
To evaluate the performance of our CFSR method on reconstructing high-speed moving
scenes, we compared it with three conventional texture reconstruction methods, including
“Texture from ISI (TFI)”, “Texture from Playback (TFP)” (w = 160), and a spiking neural
model [8].
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Figure 4. Examples of raw spikes presented in the PKU-SPIKE-RECON dataset. From top to bottom:
raw spike of the high scenes of ‘Rotation1’, ‘Rotation2’ and ‘Car’, respectively; From left to right of the
first two rows: (a) the 100th, (b) 150th, (c) 200th, and (d) 250th frame of ‘Rotation1’ and ‘Rotation2’,
respectively. Those of the last row are (a) the 1000th, (b) 1500th, (c) 2000th, and (d) 2500th frame of
‘car’, respectively.

4.2. Visual Texture Reconstruction

Spike Distinction. In our CFSR, the spikes <are distinguished into dynamic and static
regions by RASD, including coarse-grained and fine-grained distinctions. We compared
our spike distinction method with raw spike and TFI [20]. As shown in Figure 5, static and
dynamic regions can be roughly distinguished, where the pixels belong to static regions
are marked as the dynamic due to high speed. The dynamic and static regions with the
fine-grained distinction can be further distinguished; thus, the dynamic region for each
frame with the fine-grained method is marked more accurately than that of coarse-grained.

Visual Quality. We compared our CFSR with three methods, namely, the TFI [20],
TFP [18], and a spiking neural model [24]. The first two methods are retina-inspired
sampling methods, and the last method is a spiking neural network learning method.
As shown in Figure 6, the reconstructed image by the TFI can reconstruct the outline of
fast-moving objects well but with some noise, artifact, and ghosts. To see more clearly,
we also present the difference images of the TFP and SNM methods and our proposed
CFSR method compared with the TFI reconstruction, as shown in Figure 7. The TFP
method can improve the performance but still suffers severe motion blur on dynamic
regions, which also influences the visual performance. The spiking neural model (SNM)
can promote the image quality in both static and dynamic regions; however, the dynamic
regions reconstruction still suffers some motion blur. In contrast, our CFSR method can
outperform other methods and generate the best results with lower noise, less blur, higher
image quality and richer details.



Appl. Sci. 2023, 13, 2424 10 of 15

Figure 5. Comparison of the coarse-grained and fine-grained distinctions with raw spike and the
TFI result. From left to right: (a) raw spike; (b) the reconstruction by the TFI; (c) the coarse-grained
distinction; and (d) the fine-grained distinction. The white and black value in both (c,d) represent the
dynamic and static regions, respectively.

Figure 6. Visual quality comparison of texture reconstruction by the TFP, the TFI, and the spiking
neural model and our proposed method. From left to right: (a) TFP (w = 160); (b) TFI; (c) spiking
neural model; (d) coarse-grained reconstruction; (e) fine-grained reconstruction; (f): closeups of the
reconstructed results on each method, respectively.
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Figure 7. Different images of the reconstructions of the TFP, SNM, and our CFSR with the TFI. From
left to right: (a) TFP (w = 160); (b) SNM; (c) CFSR. The larger the white areas on the image, the larger
the difference. The results of our CFSR are with less noise and motion blur in the static and dynamic
region, respectively.

Quantitative Evaluation. We also evaluated our proposed CFSR using an image
quality assessment metric standard deviation (STD) and a no-reference image blur metric
called CPBD [34] on the consecutive 200 frame raw spikes from the PKU-SPIKE-RECON
dataset for quantitative comparison. The STD is related to the contrast of the image; it can be

computed as STD =

√
∑H

x=1 ∑W
y=1(I(x,y)− Ī)

2

(H−1)(W−1) , where H and W represent the width and length

of the reconstructed image, I(x,y) is the gray value of the pixel (x, y), and Ī is the sample
mean. Larger standard deviation (STD) values mean higher contrast. CPBD was used
to measure the motion blur. From the probability density function of detecting blur, the
cumulative probability of blur detection was calculated as CPBD = ∑

PBLUR=PJNB
PBLUR=0 P(PBLUR),

where PBLUR = 1− exp(−
∣∣∣ w(ei)

wJNB(ei)

∣∣∣β), w(ei) is the measured width of the each edge ei,

wJNB(ei) is the “just noticeable blur” (JNB) [35] width, which depends on the local contrast
C in the neighborhood of edge ei, and β is a parameter whose value is obtained by means
of least squares fitting. P(PBLUR) denotes the value of the probability distribution function
at a given PBLUR. At the JNB, w(ei) = wJNB(ei), which corresponds to the probability of
blur detection PBLUR = PJNB = 63%. Higher CPBD means less blur and vice versa. As
listed in Table 1, our CSFR outperformed other state-of-the-art methods in terms of STD.
Compared to the SNM method, our CFSR model had a 22.61% improvement in terms
of STD on average. However, we notice that the CPBD of the TFI outperformed other
methods due to the TFI results with rich texture along with high noise and artifact. Our
CSFR method which maintains sharpness and higher contrast, presented the second best
performance in all the comparison methods. The 14.92% improvement of CPBD can be
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achieved by our CSFR model compared with SNM method on average. In summary, our
CFSR methods can present appreciable performance.

Table 1. The STD and CPBD metrics of the PKU-SPIKE-RECON dataset by different methods. Red
and blue indicate the best and the second best performance, respectively.

Metric Method Rotation1 Rotation2 Car Mean

TFI [18] 25.1455 40.1673 53.6904 39.6677

TFP [20] 23.5241 35.9377 43.6953 34.3858

SNM [24] 39.9200 60.2485 58.1364 52.7683

CSR 24.3537 37.6037 55.8144 39.2573
STD

CFSR 50.6763 75.0012 68.4223 64.6998

TFI 0.9101 0.8189 0.9572 0.8954

TFP 0.8115 0.6153 0.5075 0.6448

SNM 0.8254 0.6376 0.6511 0.7041

CSR 0.8811 0.6781 0.7564 0.7719
CPBD [34]

CFSR 0.9262 0.6905 0.8109 0.8092

Furthermore, we also applied the reconstruction methods on a simulated dataset
provided by [23], where the spike streams and ground truth images are generated from
video-based virtual scenes with the camera’s ego-motion. We compared the TFP, TFI, SNM,
and CSR methods against the ground truth for quantitative evaluation. All parameters
involved in our method and the competing methods were optimally assigned or selected
as suggested in the reference papers. In our method, we set T = 300, θ = 10, and w = 30,
respectively. As shown in Figure 8, the proposed CSR method achieved the best results in
terms of PSNR and comparable results with SNM in terms of SSIM.

Figure 8. Comparison among different reconstruction methods on synthetic data. From left to right:
ground truth, (a) TFP (w = 160); (b) TFP (w = 30); (c) TFI; (d) SNM; (e) CSR (w = 30, θ = 10). The
PSNR and SSIM of the reconstructed images are also listed below the images, respectively.
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4.3. Complexity Analysis

Here we evaluate the computational complexity of our method. For comparison,
we consider the problem of a reconstructing image from K-frame raw spike data of size
H ×W. We first discuss the complexity of each pixel in the reconstruction image. In
coarse-grained reconstruction, for each pixel, the CSR method only needs to update the
fixed time interval T, the number n of ISI in the set T, the number N of spikes in the
region R, and the predetermined threshold θ when a spike generates at that pixel. For
the TFI and TFP methods utilized in CSR, the TFI only needs to find the nearest spike to
reconstruct the image; thus, the best and the worst case complexity of the TFI are O(1) and
O(logK), respectively. The complexity of the TFP is O(w), where w is the time window
utilized in TFP. Therefore, the total complexity of the reconstruction methods utilized in
CSR is O(logK). Note that the CSR method needs extra steps to distinquish whether a
pixel belongs to the motion region or not by Equation (6). However, it only takes constant
time for each pixel. It does not affect the asymptotic time complexity. Therefore, the time
complexity of the CSR method is O(HWlogK) for each frame.

Different from coarse-grained reconstruction, the randomized correspondence algo-
rithm [33], as the patch matching method, is added to fine-grained reconstruction in the
dynamic region reconstruction. It takes at most logR steps to find the most similar patch
in each of the adjacent frames ft(x, y)t=tm±5i, where i = {1, 2, 3, . . . N}, N = 10, where
R is the region of fine-grained distinction. Thus, the total complexity of the randomized
correspondence algorithm is O(RlogR). Fine-grained distinction also takes constant time
for each pixel, so it does not affect the asymptotic time complexity. Therefore, the total
complexity of the CFSR method is O(HWRlog(R)) for each frame, and it takes at most
O(HWKRlog(R)) time to construct a K-frame video from raw spikes.

In comparison, the SNM method in [24] takes at least O
(

H3W3) time to implement a
graph cut for each frame; thus, it takes at least O

(
H3W3K

)
time to reconstruct a K-frame

video [25]. Therefore, our method achieves a significantly lower time complexity than the
state-of-the-art methods.

4.4. Discussion

There are still some limitations in this work, which could be improved. We observe
that the brightness of the scenes affects the frequency of the interval of the spike dataset
captured by the spike camera. Meanwhile, the inter-spike interval is utilized in spike
distinction. Now, the brightness is not considered in our CSFR model. In the future, the
region-based distinction with brightness guidance will be studied for further distinguishing
the dynamic and static region. Furthermore, although our proposed CFSR framework
supports flexible and adaptive ways to reconstruct images, the patch matching method
utilized in fine-grained reconstruction spends most of the time in the CFSR framework,
which partly restricts the efficiency of our CFSR framework. Therefore, we can further
improve the efficiency of the high-speed scene reconstruction. Moreover, the image quality
of the reconstruction in the static region by the CFSR method did not reach the image
quality captured by the frame-based camera. Motivated by the successful applications
of the attention fusion network [12] with the frames and events as well as the unifying
framework that bridges the intensity images and neuromorphic event [13], the APS data
captured from a frame-based camera as the guidance may also be introduced in the CFSR to
further improve the performance of the reconstructed images. As the synthesized dataset
is generated with only the camera’s ego-motion, it is unnecessary to further distinguish
the static and motion regions, and the fine-grained reconstruction is not required. Our
proposed CFSR and CSR can be utilized in high-speed motion and video-based scenes
reconstruction captured by a spike camera, respectively.

5. Conclusions

In this paper, we propose a novel CFSR method with the region-adaptive-based spike
distinction (RASE) framework to reconstruct visual scenes from spike data. Both coarse-
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grained and fine-grained reconstructions in our CSFR method include spike distinction,
region-based reconstruction, and adaptive threshold scene fusion (ATSF). We utilize the
characteristic of the ISI and integrate the DAISI and the background subtraction into the
region-adaptive-based spike distinction (RASD) to distinguish the spikes. The TFP is
utilized for static region reconstruction and the TFI along with the patch matching method
used for dynamic region reconstruction. Finally, the visual scene can be reconstructed by
the ATSF. Experimental results demonstrate that our proposed CFSR method can generate
visual scene with high quality in terms of low noise, sharp textures, and fine details, which
validates the superiority of our CFSR over the competing methods. In future work, our
CFSR framework can be further improved by other retina-inspired methods applied for
region-based reconstruction.
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