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Abstract: Climate change will greatly influence the world at several levels and will have consequences
on the interior climate of historic buildings and artifacts conservation. Buildings are responsible for a
large slice of the overall emissions, which is due both to the greenhouse gases that are released during
their construction as well as the activities that are performed therewithin. One way of counteracting
this trend is to design more efficient retrofit buildings and predict their behavior using simulation
software, which can thoroughly assess the performance of new buildings or the impact of each retrofit
measure for existing buildings. In this study, a calibrated computational model of high thermal inertia
building was used to assess the performance of passive retrofits in mitigating the effects of climate
change concerning artifact decay mechanisms. In addition, a methodology that aims to reduce the
amount of time spent to perform these studies is also presented, in which time savings reach up
to 63%.

Keywords: climate change; artifacts conservation; passive retrofit measures; hygrothermal modeling;
time-saving methodology

1. Introduction
1.1. Retrofitting Historic Buildings for the Future Climatic Conditions

The emission of greenhouse gases (GHGs) into the atmosphere caused by anthro-
pogenic activities is greatly responsible for the changes that the outdoor climate will suffer
in the future [1]. Climate change is one of the key challenges that mankind faces nowadays
since it will greatly influence the environment, human health, and the world’s economy [2].
The European Union (EU) has a key contribution to the overall GHGs emissions since it
is responsible for more than one-third of the GHGs emitted by the OECD members, i.e.,
5,600,000 tons of CO2-equiv per year [3]. This amount has been steadily decreasing over
the past years, mostly due to the efforts made by the EU parliament to promote a more
environmentally friendly society by proposing demanding goals that aim to reduce the
GHG emissions of the European Union [4].

In Europe, the building sector has a significant contribution to the amount of GHGs
emitted. Evidently, this is due to the construction of buildings but also due to the several ac-
tivities that are performed within the buildings [5]. In the scope of the CPA08 classification,
the GHGs emitted by the construction sector in 2017 corresponded to more than 3.3 × 108

tons of CO2-equiv (7% of the total emissions), while the energy sector corresponded to more
than 4.0 × 108 tons of CO2-equiv (9% of the total emissions) and the private households
corresponded to more than 8.3 × 108 tons of CO2-equiv (19% of the total emissions). If the
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goals of the Paris Agreement are to be achieved [6], then it is necessary to reduce, as much
as possible, the portion of the GHGs emitted by the building sector.

One way of reducing the GHG emissions caused by the building sector is to design
more efficient buildings using, among other means, simulation software such as Ener-
gyPlus [7] or WUFI®Plus [8]. This kind of software allows one to thoroughly assess the
performance of each building assembly in new buildings or to predict the impact of each
retrofit strategy for existing buildings [9], which allows choosing the best course of action
for each case study while considering the goal of reducing GHG emissions [10].

On the scope of buildings, climate change will have a negative effect on their dura-
bility [11] but also on the indoor climate [12–15]. Hence, it is of the utmost importance
to prepare our buildings for what is to come by implementing retrofit measures—passive
or active—that will aim to mitigate the negative effects of climate change. This can be
carried out through a non-destructive technique that is based on a two-step procedure:
1st) determine the indoor climate through a long-term monitoring campaign; and 2nd) use
the monitored indoor climate to calibrate the computational model [16–19]. The calibrated
computational model can be used to perform several accurate “what-if analyses”, namely
to determine: the effects of applying any improvement measures prior to their application,
thus adopting the most proficient set of measures for the selected case study (e.g., [20]); and
the effects of climate change on the indoor climate [21] or the effect of altering the setpoint
strategy for climate control (e.g., [22]), among others.

In this paper, a calibrated whole-building hygrothermal model of a historic building
will be used to study the effect that passive retrofit measures will have on the future
indoor climate quality in terms of artifacts’ conservation metrics. The main aim of this
analysis is to assess if the tested retrofit measures can mitigate the changes caused by
climate change in the indoor climate of historic buildings that house artifacts since it is
expected that these indoor climates will be prone to considerable negative changes [13,14].
In addition, a methodology that substantially decreases the time it takes to perform these
multi-simulation studies is presented, with its benefits being shown through an example.

The selected retrofit measures were the following: (1) interior insulation systems
and an external thermal plaster; (2) insulation system for the ceilings/roofs; and (3) the
replacement of the window system, which will allow assessing the typical retrofits applied
to historic buildings. The study included two climates: Seville (Mediterranean climate) and
Oslo (humid continental climate). Two IPCC scenarios were selected: RCP 4.5 (intermediate
GHG emissions [23]) and RCP 8.5 (high GHG emissions [23]). The future indoor conditions
were obtained using the model of St. Cristóvão church coupled with the developed RCP
weather files for two moments in time, i.e., near future and far future. The historical values
work as a reference for future weather files.

1.2. Whole-Building Modeling Using WUFI®Plus

Nowadays, thermal and hygrothermal models are frequently used in the literature
due to their flexible capacity to thoroughly analyze several parameters that influence the
building’s behavior. In historic buildings, this type of tool is very useful because it allows a
thorough analysis of any improvement measure prior to its application and, consequently,
decreases the risk of irrecuperable damages [24]. Nonetheless, the development of these
models is usually associated with a thorough monitoring campaign of the case study. The
results of these campaigns are used to calibrate the developed models so that they represent
an accurate reality (e.g., [25]). The calibration of these models, though a time-consuming
process, is a crucial task if their outputs are to be reliable [16,26].

The simulations shown in this paper were run in WUFI®Plus since it is one of the most
known software where studies concerning the hygrothermal behavior of buildings have
been developed, but mainly due to the fact that it has been extensively validated over the
years, it has been continuously subjected to updates and because it accounts for many of
the behaviors that affect the thermal and moisture behavior of buildings [27].
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The software determines the indoor temperature and relative humidity for each zone
of the model by taking into consideration the heat and moisture transfer that occurs
through components, which is induced by the boundary conditions; the gains/losses due
to natural and/or mechanical ventilation and the gains/losses due to internal heat or
moisture sources/sinks, i.e., people, lights, and equipment.

The studies that use this kind of software have the drawback of requiring a large num-
ber of simulations so that the analysis is thorough and accurate (e.g., [28]). This situation is
even more time-consuming if the study is performed using the hygrothermal mode. The
choice between using the thermal mode or the hygrothermal mode will depend on the goals
of the study. For example, Huijbregts et al. [13] developed hygrothermal computational
models of two museums located in The Netherlands and in Belgium to study how artifacts
will fare in the future. The use of these hygrothermal models coupled with future weather
files allowed to obtain the future indoor conditions. Since the deterioration processes that
affect the artifacts are dependent on both temperature and relative humidity [29], it is only
natural that the authors opted for hygrothermal models.

Several studies that use either thermal or hygrothermal models to conduct a thorough
analysis of the indoor climate can be found in the literature. For example, Muñoz-González
et al. [30] constructed a model of San Francisco de Asís church based on the results of
the monitoring campaign that they installed to study retrofit opportunities for Spanish
churches while taking into account the building’s energy consumption, the occupants’
thermal comfort and the preservation of the artifacts; and Kramer et al. [31] analyzed the
energy impact of four typologies of buildings among 20 European cities using a model
that they developed for the Hermitage Amsterdam museum [22]. Nonetheless, the time
needed to perform these studies is very substantial, and it will greatly increase with analysis
complexity [28].

This paper also presents a methodology that aims to decrease, as much as possible,
the time required to develop large-sized hygrothermal simulation studies, thus making
this type of study more time efficient. Several techniques were used to minimize the time
required for the first three stages of simulation studies, i.e., simulation setup, simulation
run, and results processing. The benefit of using this methodology is shown in the study
presented in Section 3.2. The obtained time savings are reported while comparing with a
more traditional way of performing simulations.

2. Methodology
2.1. Research Questions and Aims

Due to climate change, it is expected that the indoor climate of historic buildings
that house artifacts climates will be prone to considerable negative changes. Hence, it is
necessary to prepare our buildings in accordance with these future requirements [32,33]. In
order to determine to what extent the selected passive retrofit measures can mitigate these
negative effects in terms of artifacts conservation metrics, the future indoor conditions
were obtained using the whole-building model of St. Cristóvão church and developed RCP
weather files: RCP 4.5 and RCP 8.5.

The obtained conditions were assessed for the risk of three decay processes: biological
decay, chemical decay, and mechanical decay. In addition, to determine how different
the selected measures would perform in accordance with the location of the case study,
two climates were tested: Seville (Mediterranean climate) and Oslo (continental climate).
Seville was chosen because it constitutes a temperate climate with hot summers and
moderately rainy winters, while Oslo is a humid continental climate with cold winters,
in which the temperature remains below zero for large periods of time, and it has higher
annual precipitation. These tools are briefly addressed in the following sections, but more
information can be found in Ref. [34].

The development of whole-building computational models is a complex endeavor due
to the huge number of inputs that these models require to run proficiently. Nonetheless,
their advantages are quite clear, namely due to the wide variety of functions in which
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they can be used. On the other hand, the time it takes to perform a thorough and accurate
study using these models can be quite substantial due to the amount of time that it takes to
perform each necessary task, namely: (a) setting up the simulations’ inputs, (b) running
each simulation, and (c) processing a large amount of obtained outputs. The duration of
these tasks will proportionally increase with the complexity of the analysis.

Hence, this paper also aims to develop a methodology that can considerably reduce
the time necessary to perform large-sized hygrothermal simulations, thus making them
more viable. For this purpose, a methodology was developed based on several techniques
that aim to reduce the required time at three levels, namely in the simulation setup, the
simulation run, and the results processing. The methodology will be thoroughly explained
in Section 2.5, and its benefits will be shown in Section 3.2. This methodology does not deal
with the optimization of the model calibration, although it is an interesting topic, since it
has already been addressed in Ref. [16].

2.2. Case Study: St. Cristóvão Church

The simulations presented in this paper are based on a case study, i.e., St. Cristóvão
church, which is a 13th-century church that is located in the vicinity of St. Jorge Castle in
Lisbon (Figure 1). The church has thick, mortared limestone walls, single-glazed windows,
and a ceramic tile roof, and it does not have any type of climate control system [17]. The
church, which is naturally ventilated, has several compartments, with the largest ones
being the nave, the mortuary, and the sacristy. Overall, the church has a volume of 5250 m3,
and the window (45 m2) per wall area (800 m2) ratio is 0.056 [35]. St. Cristóvão church has
a large variety of artifacts, among which sculptures and panel paintings [36].
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Figure 1. Location (a) and façade (b) of St. Cristóvão Church, Lisbon.

The church was subjected to a long-term monitoring campaign from November 2011
to August 2013 that used several sensors to later on determine the quality of the indoor
climate in terms of artifacts conservation [17]. Subsequentially, the recorded data were
used in the calibration process of computational models of the church [16,37]. The outdoor
temperature and relative humidity in the vicinity of the church were monitored to build an
outdoor weather file, which was then used to run the church models [16].

St. Cristóvão model was calibrated using four statistical indices, and the measured
temperature (T) and water-vapor pressure (Pυ), namely [16]: coefficient of determination
(R2—0.99 for T and 0.97 for Pυ), normalized mean bias error (NMBE—2.7% for T and 3.4%
for Pυ), coefficient of variation of the root mean square error (CV(RMSE)—3.2% for T and
4.4% for Pυ), and goodness-of-fit (fit—84.8% for T and 81.7% for Pυ). Considering the
values that exist in the models published in the literature and the limits that exist in the
specifications/guidelines [38], the obtained values for the St. Cristóvão model are quite
suitable, which validates this model [16]. The results of this validation can be seen in
Figure 2, which presents the measured and simulated indoor temperature and water-vapor
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pressure for St. Cristóvão. A detailed explanation of the performed monitoring campaign
in St. Cristóvão church can be found in Ref. [17], while Ref. [16] thoroughly describes the
development and validation procedure of the whole-building hygrothermal model used in
this study.
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Several types of retrofit measures were tested individually (Table 1), i.e., installation
of internal insulation thermal systems and application of an external thermal insulation
system (to the exterior walls), replacement of the existing windows systems by more energy
efficient ones, and installation of a thermal insulation system in the ceiling/roof [39]. The
materials used are included in the WUFI database [8].

Table 1. Overview of the tested retrofit measures.

Type of Measure Insulation Material Thermal Conductivity
(λ, W/m.K) Code

Internal insulation wall
system

(Thick. 2–10 * and 20 cm)

PUR boards 0.031 W1

Mineral wool 0.035 W2

Perlite boards 0.042 W3

Calcium silicate boards 0.050 W4

Thermal mortar (Thick. 1.5, 3, and 3 cm) 0.045 W5

Roof insulation
(Thick. 2–10 * cm)

XPS 0.030 R1

EPS 0.040 R2

Ceiling insulation (Thick.
2–10 * cm)

PUR foam 0.025 C1

Mineral wool 0.035 C2

Windows replacement
Double glazing with clear float (Uw = 2.8 W/m2.K)

Wd1
Double glazing with low E glass (Uw = 1.4 W/m2.K)

*—Thickness varies between 2 and 10 cm with an increase rate of 2 cm.

2.3. Artifacts Decay Processes

Artifacts can be prone to three types of decay depending on the indoor conditions, i.e.,
biological, chemical, and/or mechanical decay. Each of these types of decay is assessed us-
ing a respective method that will be briefly described in this subchapter. More information
concerning these topics can be found elsewhere [29].

Biological decay in materials will be assessed using the mold risk factor (MRF) [40],
which will be calculated based on the isopleth method [41]. In order for mold to grow in
organic materials, it is necessary that certain values of temperature and relative humidity
are met, but it is also necessary that the substrate has the necessary nutrients for mold
to grow [41]. For each timestep, the values of temperature and relative humidity are
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compared against the Lowest Isopleth for Mold (LIM) curve to determine if this value
is overcome. In case LIM is overcome, then the spores become active fungi, and their
respective time contribution is added to the overall mold risk factor (Ref. [41] shows how
these time contributions are calculated). The spores became fully active fungi when MRF is
1.0 [40].

Chemical decay in materials will be assessed using the lifetime multiplier concept [42],
more precisely, the equivalent lifetime multiplier concept. This latter concept manages to
characterize the material’s respawn to chemical decay under a single value [35]. Materials
such as paper (activation energy of 100 kJ/mol [29]) and varnish (activation energy of
70 kJ/mol [29]) are prone to this type of decay. The lifetime multiplier concept is based
on the Arrhenius equation, and it determines the time spans that material remains usable
when compared to standard conditions, i.e., 20 ◦C and 50% RH. The equivalent lifetime
multiplier (eLM, -), which is the average of the reciprocal of the lifetime multiplier values
for the analyzed time period [42], is calculated using the following equation:

eLM = 1/

 1
n
·

n

∑
x=1

 1(
50 %
RHi

)1.3
· e

Ea
R ( 1

Ti+273.15−
1

293.15 )


 (1)

where n is the number of data points in the selected period (-), RHi is the surface rela-
tive humidity at instant i (%), Ea is the activation energy (J/mol), R is the gas constant
(8.314 J/Kmol), and Ti is the temperature at instant i (◦C).

Mechanical decay is a crucial damaging process for hygroscopic materials, which is
mainly governed by the variation of the relative humidity since it will cause the moisture
content of these materials to vary. In turn, this moisture content variation will damage the
materials due to the prompted shrink/swell cycles [29]. Moreover, if objects are composed
by two or more hygroscopic materials, the damage can be heightened since they will have
different characteristics and, therefore, they will respond differently to the indoor climate
variations [29].

Four different models were used to assess the risk of mechanical decay, namely:
furniture, the model developed by Bratasz et al. [43]; sculptures, the model developed by
Jakiela et al. [44]; and panel paintings, which had to be assessed using two different models
due to the different characteristics of its constituents. The base layer was assessed using
the model developed by Mecklenburg et al. [45], and the pictorial layer was assessed using
the model developed by Bratasz et al. [46]. Martens [29] adapted these four models so that
they could be used based on the indoor conditions recorded by monitoring campaigns or
the results obtained from computational models.

2.4. Selected Outdoor Climates and Developed Methodology to Build the Respective Weather Files

Seville has a temperate climate with relatively high temperatures during the summer
and does not reach below zero temperatures during winter. It rains moderately all year
round, but the more prominent rains occur during winter, and the rains are less frequent
during summer. On the other hand, Oslo is a humid continental climate, in which the
temperature reaches below zero values a great part of winter, and the rains are more
prominent also during winter.

In terms of temperature and water-vapor pressure, the expected trend is similar for
the two climates, i.e., there is a substantial increase across the 21st century with RCP 8.5, as
expected, attaining higher values in the far future [34]. In terms of precipitation and global
radiation, two opposite behaviors are expected to occur, which depend on the location.
Precipitation is expected to decrease, and global radiation is expected to increase for the
Mediterranean climate, while for Oslo, the opposite is expected to occur [34].

The weather files used in this paper were created following the methodology described
in Coelho and Henriques [39]. The past and future weather files were created using 30 years’
worth of data, as recommended by the World Meteorological Organization [47]. The
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meteorological data were downloaded from the CORDEX database [48]. The weather files
were built using the methodology described in EN 15927-4 [49]. The global radiation was
subdivided into its direct and diffuse fractions using the Skartveit and Olseth model [50],
which is one of the most reliable models to perform this subdivision [51]. More information
concerning the topic can be found in Ref. [34].

2.5. Time-Saving Measures

In order to proficiently perform the proposed simulations, a new methodology to
reduce the overall simulation time of whole-building hygrothermal studies was developed.
Simulation studies, which already have the computational model calibrated, can be di-
vided into four steps (Figure 3): (1) setting up the simulations inputs; (2) performing the
simulations; (3) processing the obtained results in figures or tables; (4) assessing the results
and writing conclusions.
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The duration of each of these steps will greatly depend on the aim of the performed
study. The purpose of this procedure is to minimize the time taken to perform each of the
first three stages:

Step 1 (Simulation setup): The time spent on this step can be reduced drastically by
automatically inserting the inputs, for example, using external software, such as MATLAB
or OCTAVE. In WUFI®Plus, the users can save the project as an mwp file (traditional way
of saving files in WUFI®Plus) or as an xml file. This latter type of file allows one to change
its parameters, such as the thickness of a material or the location of the outdoor climate
weather file, by resorting, for example, to a code that is developed for that purpose [34].
This step has a very substantial time-saving effect on simulation studies that are subdivided
into several computers. In addition, this step also decreases the possibility of human error
since the inputs are automatically introduced, thus eradicating monotonous tasks.

Step 2 (Simulation run): The time spent on this step can be reduced by performing the
simulations resorting to batch mode, which allows running the simulations sequentially,
and by dividing the simulations through several computers. This measure can lead to an
increase in the individual simulation time if the computers are not modern, but it ultimately
decreases the overall simulation time. For example, Coelho et al. [28] initially used a
computer equipped with an Intel(R) Core(TM) i5-8500 CPU @ 3.00 GHz and 16 GB of RAM
to perform the hygrothermal simulations (henceforth known as PC#1), which took between
1 h and 1 h 30 min to run depending on the outdoor climate. Alternatively, they used a set
of 20 computers equipped with an Intel(R) Core(TM) i5-650 CPU @ 3.20 GHz and 4 GB
of RAM (henceforth known as PC#2) to run the same simulations and took at least 3 h.
However, the overall simulation time, i.e., the sum of all the individual simulation times, is
much lower in the 20 PC#2 than in the PC#1. Taking into account the previously mentioned
simulations run time for PC#1, and if we chose to run, for example, 20 simulations in
PC#1, this would mean that the overall simulation time would take between 20 and 30 h,
depending on the outdoor climate. On the other hand, if we run the same number of
simulations but divide them between the 20 PC#2, the overall simulation time is around
3 h, which means a reduction of 85–90% of the overall simulation time.

Step 3 (Result processing): The time spent on this step can be substantially decreased
if instead of using the traditional excel spreadsheets, a software that is aimed at numerical
calculation is used, such as, for example, MATLAB or OCTAVE. Evidently, the users will
spend time developing the code for the analysis that they aim to perform. However,
if the code is developed taking into consideration that it might be adapted to assess a
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larger number of simulations or a large number of inputs in the future, the time it takes to
make this change is compensated when compared to performing the same task in Excel
spreadsheets. This step gains importance with the growing complexity of the analysis and
decreases the time taken to perform the same analysis for other sets of simulations very
considerably when compared to Excel spreadsheets.

Alternative to using a set of several computers, as mentioned previously, it is possible
to use a single computer, but it has to be a rather powerful one to compensate for the
performance of the individual computers. With WUFI®Plus, which has the drawback of
only performing the simulations sequentially, the computer has to be powerful enough to
at least perform each simulation in 9 min in order to compensate for the performance of
the set of computers used by Coelho et al. [28]. However, these powerful computers are
considerably more expensive than the typical office/personal computers (e.g., [52]).

A task that can also be greatly time-consuming is the insertion of the building geom-
etry into the simulation software. Fortunately, WUFI®Plus has three different options to
introduce the geometry, namely: 3-D editor, SketchUp import, and gbXML Import. The 3-D
editor consists of inputting the vertices of each surface manually and then uniting them to
build each surface. This is a very time-consuming way of introducing geometry and gives
way to inconsistencies for more complex geometries. On the other hand, the SketchUp
import and gbXML import are much more efficient ways of introducing the geometry since
the case study is designed in software that is aimed for that purpose. The gbXML import
can have key importance for projects of new buildings since it allows the use of building
geometries developed in Revit by performing the proper conversion [8].

3. Results and Discussion

This section is divided into two subsections due to the paper’s goals. Section 3.1
analyzes the potential of the selected passive retrofit measures to mitigate the effects
of climate change in the decay of artifacts, and Section 3.2 shows the benefits of the
methodology described in Section 2.5 by presenting the respective time savings for the
study partially presented in Section 3.1 and complemented by the studies discussed in
Refs [34,39].

Moreover, Section 3.1 is divided into two parts: (1) where several indoor climates are
assessed in terms of risk of biological decay (Figure 4a,b), chemical decay (Figure 5a,b),
and mechanical decay (Figure 6a–d); and (2) recommended thicknesses range for the tested
retrofit measures for walls, as well as ceilings/roofs for both Seville and Oslo. These
figures are an example of an analysis fully presented in Ref. [34]. Figure 4 concerns retrofit
measure W4, Figure 5 concerns measure W1, and Figure 6 concerns measure W4. The
minimum recommended thickness corresponds to the case in which it is worth applying,
depending on the analyzed parameter, when compared with the case study without any
retrofit measure (Table 2).

Overall, this study includes two different climates: Seville (Spain) and Oslo (Norway),
two IPCC scenarios: RCP 4.5 and RCP 8.5, and two future time frames: near future (NF)
and far future (FF). Additionally, a historical climate is also included in the study that acts
as a reference for the performed assessments (i.e., “Hist. values” in Figure 4, Figure 5,
and Figure 6). The thicknesses of the tested thermal layers for walls range between 2 and
20 cm. An additional “virtual” thickness, named lm*, which corresponds to a 30 cm layer,
was included in Figure 4, Figure 5, and Figure 6 to show the tendency that the performed
assessments would have for higher thicknesses [39]. These figures have a color code that
follows the limits proposed by Silva [53]: (1) MRF < 0.5 (green), 0.5 < MRF < 1 (yellow),
and MRF > 1 (red); and (2) eLM > 1 (green); 0.75 ≤ eLM < 1 (yellow) and eLM < 0.75 (red).
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3.1. Detailed Analysis of a Set of Retrofit Measures for Historic Buildings That House Artifacts:
Seville, Spain vs. Oslo, Norway
3.1.1. Biological Decay

The tested retrofit measures reduce the increasing risk of biological attacks caused by
climate change in Seville, which is more pronounced for RCP 8.5 in the far future (Figure 4a).
On the other hand, Oslo is not prone to biological decay (Figure 4b) due to its lower indoor
temperature and relative humidity when compared to the Mediterranean climate [12]. The
only exception to this behavior occurs in the far future and if the world evolves according
to scenario RCP 8.5 (Figure 4b). If this scenario prevails, then MRF amounts to values well
above 1.0 in Oslo, which is a risk for the preservation of the artifacts. For these conditions,
the MRF is 1.7 for the case without retrofit measure.

Nonetheless, in both cases, i.e., Seville and Oslo in the far future for RCP 8.5, the
efficiency of the application of the wall retrofit measures (Figure 4a,b, respectively) can
be observed since the MRF decreases considerably and attains values lower than 1.0 for a
wall calcium silicate board system thicker than 7.3 cm for Seville and 15.7 cm for Oslo. In
addition, the inferior limits upon which it is worth applying the thermal insulation systems
vary according to the type of insulation layer and climate change scenario, as will be shown
and discussed further ahead (Table 2).

In terms of the ceilings and roofs, the worrying situation is the far future for scenario
RCP 8.5 [34], in which the MRF values are well above the 0.5 safety limit. However, the
application of the retrofitted measures decreases this risk since it is responsible for lowering
the MRF. This reduction is only significant for the first tested thickness for Seville, which
leads to the belief that this occurs mainly due to the air tightening of the roof that is caused
by the application of the insulation system. The exception is the mineral wool retrofit,
which is only worth installing from a certain thickness onwards (Table 2). Finally, the
replacement of the window system does not affect both climates substantially because
high thermal inertia buildings, such as the case study, typically have low wall/window
ratios [35].
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Figure 4. Biological decay assessment (MRF) for the case study with calcium silicate board for Seville
(a) and Oslo (b). This figure shows the results for historical, near-future, and far-future time frames
for the case study with a wall retrofit measure and for the case without retrofits (dotted lines). lm* is
an additional “virtual” thickness that corresponds to a 30 cm layer.

3.1.2. Chemical Decay

Climate change is responsible for an increase in the risk of chemical decay in artifacts
for both analyzed climates (Figure 5a for Seville and Figure 5b for Oslo). For instance, the
eLM for Seville in the reference climate is 1.12, but when climate change is considered,
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either RCP 4.5 or RCP 8.5 scenarios, the situation worsens considerably, especially for RCP
8.5 in the far future, in which the eLM is 0.68, i.e., a decrease of 39% when compared with
the reference climate value. Nevertheless, it is also visible that the application of the retrofit
measures increases the eLM for Seville (Figure 5a), thus tackling the negative effects of
climate change by reducing the risk of chemical decay.

The application of the retrofit measures in Seville will lead to an increase in the indoor
temperature and relative humidity during winter and autumn and a decrease in the indoor
temperature during summer and spring. While the first behavior will result in a decrease
in the LM, the second behavior will increase the LM. This behavior gains importance
with climate change since the decrease in temperature during these two seasons is more
prominent, which will lead to superseding the first behavior impact, thus leading to the
increase in the eLM. These behaviors occur for all tested wall retrofit measures [34]. Note
that these retrofit measures were tested individually and, therefore, can have a greater
mitigation potential if they are properly combined [54,55].

On the other hand, the application of the retrofit measures for Oslo leads to an increase
in the risk of chemical decay since they are responsible for decreasing the eLM (Figure 5b).
However, since the initial values are quite high (i.e., 3.49 for the PUR boards retrofit for the
reference climate) due to the lower indoor temperature and relative humidity, and they
are still within the safe range (i.e., eLM above 1.0 [53]), then the retrofit measures can still
be applied if they aim to mitigate other decay mechanisms. In terms of ceilings and roofs,
the results are not substantial for both climates [34]. Once again, the replacement of the
window system does not affect both indoor climates substantially [34].
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Figure 5. Chemical decay assessment (eLM) for the case study with PUR boards for Seville (a) and
Oslo (b). This figure shows the results for historical, near-future, and far-future time frames for the
case study with a wall retrofit measure and for the case without retrofits (dotted lines). lm* is an
additional “virtual” thickness that corresponds to a 30 cm layer.

3.1.3. Mechanical Decay

Climate change is responsible for the increase in the risk of mechanical decay for the
base layer of panel paintings for both Seville (Figure 6a) and Oslo (Figure 6b), although
it is more substantial for the first climate. For instance, for the case study without retrofit
measures, 95.1% of the year in Seville is under elastic behavior (Figure 6a), while for the
worst-case scenario—i.e., RCP 8.5 in the far future—this value decreases to 91.6% (Figure 6a).
However, by applying the retrofit measures, this risk decreases substantially, e.g., the values
for the reference climate increases to 99.4% for an insulation system composed of 20 cm of
calcium silicate board. For the same conditions, the values are 100% and 92.4% for Oslo,
but for this climate, the retrofit measures are even capable of reaching the 100%-value for
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relatively thin wall insulation systems, which reinforces the notion that climate change has
a more substantial effect in Seville.

In terms of the pictorial layer (of the panel paintings), it is visible that the application
of the retrofit measures will decrease the risk of mechanical decay in Seville since the
maximum fluctuation will decrease substantially (Figure 6c). For example, for the reference
climate without any retrofit measures, the maximum fluctuation is 19.7%, while for a 20 cm
wall calcium silicate board retrofit, it is 16.8%. For the climate of Seville, most of the selected
time periods that correspond to climate change scenarios have lower values than those of
the reference climate, the only exception being the far future for RCP 8.5, which corresponds
to the most demanding scenario [23]. These behaviors are also visible for the remaining
wall retrofit measures and also for the other retrofit measures, such as the ceiling and roof
retrofit and window replacement, but to a much lower extent [34].
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Figure 6. Mechanical decay assessment for the base layer of panel paintings for the case study with
calcium silicate board for Seville (a) and Oslo (b); and mechanical decay assessment for the pictorial
layer of panel paintings for the case study with calcium silicate board for Seville (c) and Oslo (d). This
figure shows the results for historical, near-future, and far-future time frames for the case study with
a wall retrofit measure and for the case without retrofits (dotted lines). lm* is an additional “virtual”
thickness that corresponds to a 30 cm layer.

On the other hand, Olso has a different behavior, in which the application of the
retrofit measures increases the maximum fluctuation, although only the RCP 8.5 far future
is above the reference climate (Figure 6d). Nonetheless, these values are mostly below the
14% safety limit [56], which means that these retrofit measures can be applied to prevent
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other types of decay from occurring or for other reasons (e.g., improve indoor thermal
comfort [54]), without putting the pictorial panels of the panel paintings in jeopardy. The
previously described behavior is also visible for the remaining tested retrofit measures but
to a lower extent for the non-wall retrofit measures [34].

The tested retrofit measures for the ceilings and roofs also decrease the risk of mechan-
ical decay, but this reduction is only significant for the first tested thickness, which once
again leads to the belief that this is due to the air tightening of the roof. The replacement of
the window system does not affect both indoor climates substantially [34], because high
thermal inertia buildings typically have low wall/window ratios [35].

No substantial differences caused by climate change and the application of the retrofit
measures in terms of mechanical decay assessment concerning the furniture are detected [34],
which means that the tested retrofit measures can be applied to mitigate other decay mech-
anisms without compromising the mechanical integrity of furniture artifacts. Still, climate
change will slightly increase the risk of mechanical decay for sculptures [34]. Normally,
the whole year corresponds to an elastic behavior (i.e., 100%), but climate change will be
responsible for decreases below 2%. Nonetheless, the application of retrofit measures will
counteract this behavior [34].

3.1.4. Recommended Thicknesses Ranges for Wall Assemblies and Ceilings/Roofs for
Seville and Oslo

The idea behind this analysis is to find the minimum thickness that is worth applying
as a retrofit in the near future (green solid line—Figure 7a—or red solid line—Figure 7b) and
in the far future (green dash-dotted line—Figure 7a—or red dash-dotted line—Figure 7b).
This objective is achieved by comparing the results against the value for the case that does
not have any retrofit measure, i.e., dotted red or green lines.

As can be seen in Figure 7 for the MRF analysis, this results in a thickness range
that differs according to the time interval, as well as the climate change scenario. This is
understandable since the indoor conditions will also differ accordingly [34]. For example,
in Figure 7b, the recommended thicknesses for the near-future range are between 2.4 and
20 cm, while the recommended thicknesses for the far-future ranges are between 9.9 and
20 cm for RCP 4.5.
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Figure 7. Recommended thickness ranges for mineral wool retrofit if the world evolves as described
in RCP 4.5 (a), in the near future (NF) and far future (FF) for MRF, or as described in RCP 8.5 (b),
in the near future (NF) and far future (FF) for MRF. lm* is an additional “virtual” thickness that
corresponds to a 30 cm layer.

Hence, the recommended thickness ranges that appear in Table 2 are the intersection
between ranges for both time frames, i.e., 2.4–20 cm for NF and 9.9–20 cm for FF, which
leads to the 10–20 cm range for the mineral wool retrofit (W2) for the MRF parameter in the
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RCP 8.5 scenario. It is visible that RCP 8.5 is more demanding since shorter thickness ranges
are recommended and that Oslo’s climate is less demanding when compared to Seville’s
climate. The thicknesses are rounded up to unit values since these types of insulation
layers are normally commercialized in centimeters, and, in this way, they are within the
recommended range.

Table 2 allows us to determine from which thickness onward is worth applying the
retrofit measures so that the case study can withstand future conditions in accordance
with the parameter that is being analyzed. However, it is also possible to obtain a more
compressive thickness range if more than one parameter is taken into account (e.g., if the
MRF and the eLM are both considered for the perlite board retrofit (W2) for Seville in RCP
4.5, this means a recommended range of 11–20 cm), but this will also probably lead to a
more stringent thickness range [34].

Table 2. Thickness range (cm) that outperforms the case study without any retrofit measure (WR) for
Seville and Oslo for future conditions: RCP 4.5 and RCP 8.5.

Climate Scenario Parameter W1
(2–20)

W2
(2–20)

W3
(2–20)

W4
(2–20)

W5
(1.5–
5.0)

R1
(2–10)

R2
(2–10)

C1
(2–10)

C2
(2–10)

Seville

RCP 4.5

MRF 18 20 4 20 11 20 2 20 1.5 5.0 2 10 2 10 2 10 3 10
eLM 2 20 2 20 2 20 2 20 1.5 5.0 0 0 0 0 2 10 2 7

Furniture 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10
Sculpture 0 0 0 0 0 0 0 0 1.5 5.0 2 10 2 10 2 10 4 10
Base layer 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10
Pictorial

layer 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10

RCP 8.5

MRF 0 0 10 20 0 0 2 20 1.5 5.0 2 10 2 10 2 10 4 10
eLM 2 20 2 20 2 20 2 20 1.5 5.0 0 0 0 0 2 10 2 6

Furniture 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10
Sculpture 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Base layer 4 20 2 20 2 20 2 20 1.6 5.0 2 10 2 10 2 10 3 10
Pictorial

layer 2 20 2 20 2 20 2 20 1.5 5.0 4 10 5 10 2 10 2 10

Oslo

RCP 4.5

MRF 4 20 2 20 3 20 2 20 0 0 0 0 2 10 2 10 3 10
eLM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

Furniture 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10
Sculpture 0 0 0 0 0 0 0 0 2.0 2.0 0 0 0 0 0 0 0 0
Base layer 2 20 2 20 2 20 2 20 2.3 5.0 2 10 2 10 2 10 2 10
Pictorial

layer 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0

RCP 8.5

MRF 5 20 2 20 3 20 2 20 0 0 2 10 2 10 2 10 3 10
eLM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

Furniture 2 20 2 20 2 20 2 20 1.5 5.0 2 10 2 10 2 10 2 10
Sculpture 0 0 0 0 0 0 0 0 2.0 2.0 0 0 0 0 0 0 0 0
Base layer 2 20 2 20 2 20 2 20 1.8 5.0 2 10 2 10 2 10 2 10
Pictorial

layer 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3.2. Application of the Time-Saving Methodology

The study shown in the previous section, which is complemented by studies presented
in Refs [34,39], corresponds to the thorough analysis of the application of passive retrofit
measures in historic buildings that house artifacts while considering climate change. The
effect of each of the selected passive retrofit measures was assessed in terms of artifacts’
conservation metrics to see if they could mitigate the changes caused by climate change. In
total, the study includes five climates and two of the newest IPCC scenarios: RCP 4.5 and
RCP 8.5.
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Overall, 1350 simulations were run in WUFI®Plus to perform this analysis (Figure 8),
which would take ca. 1485 h to run in PC#1, i.e., almost 62 days of continuous simulation.
Instead, the simulations were subdivided by 20 PC#2, which resulted in a decrease of 62%
of the simulation run time since it dropped from 1485 to 567 h.
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For assessing the effects of the selected passive retrofit measures, the results-processing
stage is important because the numerical processes included in this example are more
complex (e.g., Figure A1 for assessing the biological decay) than simply sum values (e.g.,
Figure A2 [28]). The indoor climate was assessed using three different analyses [29]: i.e.,
biological decay using the isopleth method, chemical decay using the equivalent lifetime
concept, and mechanical decay in which the method varies according to the material.
Secondly, in this example, the obtained values are compared against sets of values for each
timestep, which takes much more time to perform.

Instead of taking ca. 34 h to process the obtained data using the traditional methodol-
ogy, the data were assessed and presented in the form of the figures shown in Section 3.1
under 17 h using MATLAB. The benefits of using this type of software are more obvious
when performing similar analyses in which the necessary adaptations will only take a few
minutes to perform, whereas, in the traditional methodology, this could take up to several
hours, depending on the complexity of the analysis. In addition, the use of MATLAB
has the advantage of performing the work independently from the user, contrary to the
traditional methodology, in which the updates have to be performed manually. This means
that while MATLAB is assessing data, the user can develop other tasks.

Another problem that gained emphasis due to the subdivision of the simulations
among several computers was the time taken to set up the simulations to run. This
procedure is normally performed manually, which takes a considerable amount of time
to perform, and it will depend on the number of simulations that are assigned to each
computer. For instance, if each of the 20 PC#2 were assigned 20 simulations to run, then the
time spent to set up all the 400 simulations would be almost 7 h. It took around 20 min to
set each computer in Ref. [34] since this included the inputting of the necessary data for the
model to run properly, as well as checking if the inputs were well introduced in the model.

In order to decrease the amount of time taken by this procedure, an original code that
automatically sets the inputs in the WUFI model was written in XML language. The WUFI
model is saved as an xml file instead of the typical mwp file, and then it is changed using
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either MATLAB or OCTAVE. This procedure allows for saving a large amount of time
when performing changes in existing simulations and facilitates the process of creating new
simulations considerably, which is fundamental for large-sized hygrothermal simulation
studies. Furthermore, this development decreases the possibility of human error since the
software user no longer has to perform the same monotonous procedure for a large number
of simulations.

Instead of taking 20 min to set up each computer, the simulations were set up in
2.5 s. The time it would take to set up the 400 simulations will decrease from ca. 7 h to
ca. 50 s. Overall, this means that the time it would take to set up the 1350 simulations
manually would be ca. 23 h. Since the XML code cuts this time to 3 min, the simulation’s
overall run and setup time would drop 62%, i.e., from 1542 to 584 h. The larger the number
of simulations included in the performed analysis is, the more effective becomes this
time-saving procedure.

In order to show the advantages of the methodology presented herein more straight-
forwardly, the time savings discussed throughout this section of the paper are summarized
in Table 3. Based on the values presented in this table, it is visible that setting up the
simulations becomes negligible in terms of time consumption. A task that takes almost
a day to perform manually only takes at most 3 min to perform using software such as
MATLAB.

Table 3. Time savings achieved using the developed methodology for the examples presented in
Section 3.2.

Number of Simulations 1350

Step 1 Simulation setup
duration

Manually 23 h
MATLAB 3 min

Time savings 99.8%

Step 2 Simulation run time
PC#1 1485 h

20 PC#2 567 h
Time savings 61.8%

Step 3 Data assessment
duration

Excel 34 h
MATLAB 17 h

Time savings 51.1%

Overall duration
Traditional 1542 h

New 584 h
Time savings 62%

The data processing becomes almost non-time-consuming, although the extent of the
time savings will depend on the analysis that has been performed [34]. By replacing the
traditional way of processing the data for software such as MATLAB, the data processing
in Section 3.2 drops from taking 34 hours to complete to only ca. 17 hours (i.e., a 51% drop).
The data processing in this type of software is independent once it starts, so the time it
takes to perform this task can be used to develop other tasks. Finally, the simulation run
time also decreases substantially, i.e., 62%, but this decrease will greatly depend on the
aims of the analysis, more specifically, in terms of outdoor climates [34].

4. Conclusions

In order to safeguard artifacts housed in historic buildings from the effects that climate
change will have on the indoor climate of these types of buildings, several passive retrofit
measures were tested in this study. To achieve this goal, the following tools were used:
(1) a calibrated whole-building hygrothermal model of a high thermal inertia building; (2)
future weather files: RCP 4.5 and RCP 8.5; and (3) decay assessment models: biological,
chemical, and mechanical. Moreover, to determine how the mitigation potential of the
retrofit measures would vary in accordance with the location, two different types of climates
were tested: a Mediterranean climate (Seville, Spain) and a humid continental climate (Oslo,
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Norway). In addition, insulation layer thicknesses range for the tested wall assemblies and
ceilings/roofs are also recommended. Lastly, the benefits of the therein methodology that
aims to reduce the overall simulation time of whole-building hygrothermal studies are also
presented in terms of time savings.

Overall, it was visible that the retrofit measures can mitigate, to a certain extent, the
effects that climate change will have in terms of the increase in the risk of mechanical,
biological, and chemical decay. It was also shown that the passive retrofit potential would
vary in accordance with the climate. In addition, it is the authors’ belief that their mitigation
potential can even be heightened if they are properly combined (e.g., using multi-objective
optimization). In accordance with the building type and use, but also the constitution of the
building assemblies and ventilation rates, the outdoor climate, and eventually the climate
change, can have a very significant influence on the indoor climate and, consequently,
on the preservation of historical artifacts. In contrast, if the artifacts are kept in more
recent buildings, which were built for the purpose of safekeeping artifacts and, due to
today’s regulations in the construction sector, are more airtight, then the artifacts will be
less prone to the attacks caused by the outdoor climate. Finally, it is safe to assume that the
influence of the outdoor climate on the preservation metrics is largely dependent on the
building specifications.

The tested retrofit measures reduce the increased risk of biological decay caused by
climate change in Seville and Oslo, especially for RCP 8.5 in the far future. For example,
the mold risk factor (MRF) decreases considerably and leaves the risk region for the
preservation of the artifacts (i.e., values higher than 1.0) for a wall calcium silicate board
system thicker than 7.3 cm for Seville and 15.7 cm for Oslo.

Climate change is also responsible for an increase in the risk of chemical decay since
the equivalent lifetime multiplier (eLM) decreases considerably. For example, the eLM is
0.68 for Seville in the far future for RCP 8.5, i.e., a decrease of 39% when compared with the
reference climate value (1.12). However, the tested retrofit measures manage to mitigate this
increase to a certain extent. Due to the climate particularities, chemical decay-susceptible
artifacts are unaffected by this type of decay in Oslo. In truth, climate change is responsible
for the decrease in the eLM in Oslo, but as the values are quite high (e.g., 3.49 for the PUR
boards retrofit for the reference climate), they do not reach the danger region, i.e., eLM
below 1.0, for the analyzed RCP scenarios and time frames.

Climate change is also responsible for the increase in the risk of mechanical decay for the
base layer of panel paintings for both analyzed climates. However, the retrofit measures
manage to mitigate this occurrence considerably. For instance, the time the reference
indoor climate for Seville is under elastic behavior increases from 95.1% to 99.4% with the
application of a 20 cm of calcium silicate board insulation system. For Oslo, the application
of the retrofit measures even enables the indoor climate to reach the 100%-limit in some of
the analyzed scenarios and time frames.

In terms of the pictorial layer, the tested retrofit measures mitigate the effects of climate
change in Seville for most of the analyzed cases, with the exception being the far future
for RCP 8.5. On the other hand, the retrofit measures are responsible for increasing the
maximum fluctuation, i.e., they are responsible for the worsening of the preservation
conditions, but most of the analyzed cases are below the safety limit, with once again the
exception being the RCP 8.5 far future. In contrast, climate change does not endanger
furniture, nor does it significantly endanger sculptures.

Finally, a table with recommended thickness ranges that withstand future conditions
for the parameter that is being analyzed is presented for wall assemblies and ceilings/roofs
for both Seville and Oslo. This goal is achieved by comparing the results of the cases
with retrofits against the values for the case that does not have any retrofit measure. This
analysis enables us to choose an efficient retrofit measure for a specific case in which the
indoor conditions are better than the case without retrofits. Ultimately, it was shown that
in some cases, the application of a given retrofit measure is not recommended for a specific
goal or that it is only worth applying it from a certain thickness onward.



Appl. Sci. 2023, 13, 2382 17 of 21

In addition, this paper presents several strategies that aim to reduce the amount of time
needed to perform large-sized hygrothermal simulation studies. All proposed strategies
were organized in a methodology that makes this type of study more time efficient. This
will allow the use of powerful tools, such as simulation software, to optimize buildings
more frequently and straightforwardly. This methodology has been applied in several
cases, which are briefly presented in this paper, and the amount of time saved by following
this methodology is quite substantial.

The use of this methodology leads to substantial time savings at the several steps that
incorporate the typical building simulation studies. By using MATLAB in the simulation
setup, a task that would take ca. 23 h to perform manually only takes 3 min to perform,
i.e., a time saving of almost 100%. Secondly, by dividing the simulations by 20 PCs, the
overall simulation time decreased by 62%. This decrease has a key importance since it
corresponds to the task that conditions this type of study because it is the one that takes
longer to complete. Lastly, the data processing using MATLAB also has a substantial time
reduction of ca. 51%, i.e., transforming a task that would take hours to complete into a
task that can be performed in a matter of seconds. This task duration is greatly dependent
on the complexity of the performed analysis. However, since it performs independently
from the user, the drawback of its longer duration associated with more complex analysis
is somehow lessened.

In addition, the automatic insertion of inputs in WUFI®Plus is a key advantage in
simulation studies since it enables the development of an algorithm that updates the
model’s inputs according to the model’s corresponding outputs until the termination
criteria set by the authors are met. This procedure can have numerous applications, such
as the development of a setpoint strategy for the HVAC system that adapts according to
the number of people inside the building and their consequent effect on the conservation
of artifacts.
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