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Abstract: Students’ mental health has always been the focus of social attention, and mental health
prediction can be regarded as a time-series classification task. In this paper, an informer network based
on a two-stream structure (TSIN) is proposed to calculate the interdependence between students’
behaviors and the trend of time cycle, and the intermediate features are integrated layer by layer to
realize the prediction of mental health by a gating mechanism. Through experiments on a real campus
environment dataset (STU) and an open dataset (MTS), it is verified that the proposed algorithm can
obtain higher accuracy than existing methods.

Keywords: two-stream informer; student behavior analysis; time-series classification; intermediate
feature fusion

1. Introduction

The mental health problems of students have been widely and highly concerned by
schools and society. In recent years, there has been an increase in cases of student mental
health problems which affect their grades and lead to drop out or even suicide [1]. The State
Education Commission conducted psychological tests and investigations on 126,000 college
students, and the results showed that 20.23% of those students had obvious psychological
problems [2]. Therefore, it is hoped that by predicting the mental health status of students,
finding students with mental abnormalities in advance, and allowing schools and teachers
to intervene psychologically with students, the occurrence of malignant events could be
reduced and tragedy could be avoided.

Most of the existing methods are based on qualitative research, which use question-
naires and self-evaluations to obtain and analyze students’ mental health data. Because
many students are reluctant to reveal their true psychological conditions, strong subjectivity
is often present in the research results. At the same time, the small sample size and lack of
comprehensive data may also lead to inaccurate and unreliable conclusions.

The main goal of this paper is to associate students’ daily behaviors with their psy-
chological conditions by combining qualitative and quantitative research methods, extract
effective information from massive data generated by students’ daily lives at school, iden-
tify and predict students’ psychological conditions through analysis and mining, and find
students with psychological abnormalities.

With the development of campus intellectualization and digitalization, a large amount
of behavioral data (e.g., meals, travel, study and Internet access) are collected. On the basis
of these data, this paper proposes a TSIN network based on a two-stream informer, with
captures the interdependence between students’ behaviors and the trend of time cycle
through the two-stream structure, and integrates the intermediate features layer by layer.
Finally, a gating mechanism is used for classification prediction. The main contributions of
this paper are summarized as follows:

• An architecture based on a two-stream informer is designed. The Time Encoder
and Behavior Encoder are used to capture the interdependence between students’
behaviors and the time cycle trend, respectively;
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• In order to prevent information loss, the features of the two channels are fused using
an Intermediate Fusion Module;

• A dataset with 8213 students’ behavioral data is made for experimental analysis; the
TSIN is evaluated on this dataset and 11 multivariate time-series benchmark datasets,
and a comprehensive ablation study is conducted with other advanced deep learning
models. The experiments show that the TSIN has good performance.

2. Related Work
2.1. Education Data Mining

In recent years, data mining technologies have been used to analyze and mine data
generated by students at school with remarkable results, and the results of data mining
have been widely applied in education and teaching [3]. These studies analyzed students’
activity habits [4–6] and consumption behavior [7–9], explored the relationship between
students’ activities and grades [10,11], explored poor students [12,13], etc. Yao et al. [14]
collected students’ campus behavior data, designed a prediction framework for academic
performance based on multi-task learning ranking, and experimentally found that student
characteristics such as diligence and regularity were closely related to academic perfor-
mance. Govindasamy et al. [15] predicted the final grades of students in four private
universities through various classification and clustering algorithms in a data mining study.
Li et al. [16] applied a KMeans clustering algorithm to students’ consumption behavior,
and used an Apriori algorithm to explore the correlation between students’ consumption
behavior and consumption performance. Morelli et al. [17] conducted a questionnaire
survey and characterized four university freshman dormitories to study the role of student
happiness and empathy on interpersonal relationships, and to mine and analyze students’
social networks. Ding et al. [18] designed a KMeans clustering algorithm based on density
division and applied it on the Spark framework to divide students into different groups
and formulate corresponding management methods for each group.

The state of students’ mental health has been a problem that cannot be ignored,
and many experts and scholars have analyzed and researched this issue and proposed
related methods. Chen and Jiang [19], in the context of the current situation of college
students’ mental health education, analyzed the factors affecting mental health education
through cognitive calculation. They found that students’ daily lifestyles were positively
correlated with mental health, and proposed corresponding solutions. Pedrelli et al. [20],
through the universality and treatment of students’ psychology and spirit, understood
the developmental stages of students’ psychological abnormalities and the uniqueness
of their environment, and described the persistence of college students’ mental health
problems and their influencing factors. Hokanson et al. [21] conducted a 9-month survey
on inter-personal relationships and other life factors of students with mental problems,
and found that students with mental abnormalities had less communication with others,
tended to ignore the friendly behaviors of others and suffered higher pressure in daily
life and learning processes. These investigations and studies on students’ mental health
provide clear research ideas for the study of students with psychological abnormalities in
this paper.

In summary, researchers have analyzed students’ academic performance and social
relations, and aimed to identify students with deficits through different dimensions of
data and different methods, explored the correlation between students’ behavior and their
mental health and found students with psychological abnormalities with the aim to provide
timely psychological counseling and intervention.

2.2. Time-Series Classification

The recognition and prediction of students with mental health abnormalities can
be regarded as a time-series classification problem. Time-series classification methods
based on machine learning and deep learning are currently the mainstream time-series
classification methods [22,23].
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Some early methods adopted machine learning classifiers, and can achieve satisfactory
results in some specific domains [22]. Jalalian et al. [24] constructed a classifier, GDTW-
P-SVMs, with variable-length input sequences; the DTW method was used to convert
the native time series into feature vectors, which were then used as the input to the SVM
model. Yamada et al. [25] proposed a split detection method for decision tree induction by
exhaustively searching for the optimal time series in the data. Gupta et al. [26] proposed
an early multivariate time-series classification method using a Gaussian process learning
method to estimate the minimum length required by the time series to help construct an
integrated classifier with expected accuracy.

In recent years, methods based on deep learning have been widely used in various do-
mains, including sequential classification tasks. Wang et al. [27] proposed a Multilayer Per-
ceptron (MLP), whose structure consists of multiple fully connected layers, each of which
is followed by a ReLU activation function and finally a Softmax classifier. Wang et al. [27]
proposed a Fully Convolutional Network (FCN). Different from previous convolution, FCN
uses Global Average Pooling (GAP) to replace the final full connection layer, which can
not only reduce the number of parameters, but also improve the experimental accuracy.
Wang et al. [27] proposed a Residual Network (ResNet) to solve the problem of gradient
disappearance in the process of deepening layers through residual links. Cui et al. [28] pro-
posed a Multi-scale Convolutional Neural Network (MCNN) which uses multiple branches
for transformation to obtain features of different frequencies and time scales, and outputs
them through two convolutional layers—a fully connected layer and finally a Softmax layer.
Yi et al. [29] proposed a Multi-Channel Deep Convolutional Neural Network (MCDCNN)
that automatically learns the features of a single univariate time series in each channel,
then combines the output of all channels into the feature representation of the last layer
and finally connects it to the MLP layer for classification. Tanisaro et al. [30] modified the
Time Warping Invariant Echo State Network (TWIESN) applied to time-series prediction
and applied it to time-series classification. Fazle et al. [31] proposed the LSTM-FCN model,
where the time series were respectively passed through LSTM and FCN, and then the
data obtained from the two channels were splintered for the final classification prediction.
Liu et al. [32] introduced a Transformer model into time-series classification and built a
two-tower structure to code time features and channel features, respectively. The model
can visualize the features learned by the model, and has certain interpretability.

3. Proposed Method
3.1. Problem Description

The research objective is to identify students’ mental health status Y according to a
dataset X of students’ daily behaviors. The daily behavior data of the n students is measured
in weeks. In a given t week, the daily behavior data of students Xn =

[
x1

n, x2
n, . . . , xt

n
]
,

and the daily behavior data of all students form a dataset X = [X1, X2, ..., Xn]. The
students’ mental health status was divided into two categories: mental health status
Y = [y1, y2, . . . , yn], where yn = 0 indicated that the students’ mental health status was
normal and yn = 1 indicated that the students’ mental health status was abnormal.

3.2. Overview of the Framework

As shown in Figure 1, the network structure based on the two-stream informer is
divided into three layers: input layer, encoding layer and classification prediction layer.
The input layer makes data embedding and location coding for the original data. In the
encoding layer, a Time Encoder and Behavior Encoder based on multiple attention were
designed to extract each embedded feature, and the features of the two encoders were
fused using the Intermediate Fusion Module. The classification prediction layer uses a
gating mechanism to classify and predict students’ mental health status.
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3.3. Input Layer

The data input layer model requires the data input of dmodel dimension, so the input
data need to be embedded; that is, the full connection layer is used to convert the feature
dimension of the input data into the dmodel dimension. Meanwhile, since it is difficult for
the self-attention mechanism to capture the position relation in the time series, a position
coding needs to be added to the Time Encoder [33], as shown in Equation (1):

PEseq(pos, 2i) = sin
(

pos/10,0002i/dmodel
)

PEseq(pos, 2i + 1) = cos
(

pos/10,0002i/dmodel
) (1)

PEseq is the Time Encoder position coding value; pos represents the position infor-
mation of the embedded vector and i represents the index of each value belonging to the
embedded vector.

3.4. Encoding Layer

In the encoding layer, a new backbone network is proposed that is composed of the
Time Encoder, Behavior Encoder and its Intermediate Fusion Module. The Time Encoder
extracts the sequence feature information from the time dimension and uses the informer
encoder using a mask to obtain the time cycle trend. The Behavior Encoder extracts the
behavior feature information from the behavior dimension and uses the informer encoder to
obtain the behavior dependency. In the Intermediate Fusion Module, the features extracted
by each Time Encoder and the features extracted by the Behavior Encoder are fused, and
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then a convolution layer with convolution kernel of 1 is passed through. After the whole
process is repeated four times, the encoder features of the two channels are fused as the
output of the backbone network.

The key part of the Time Encoder and Behavior Encoder is the self-attention mod-
ule. ProbSparse self-attention [34] is a kind of improved self-attention that can reduce
the quadratic computational complexity of the self-attention mechanism and solve the
classification prediction problem of long sequence data. Its overall architecture is shown in
Figure 2a.
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In the following, qi, ki and vi respectively represent the i-th line in Q, K and V.
According to the equation of Tsai et al. [35], the attention of the i-th query is defined as a
kernel smoother in probabilistic form:

P
(
k j
∣∣qi
)
=

k
(
qi, k j

)
∑l k(qi, kl)

(2)

According to probability P
(
k j
∣∣qi
)

to combine values v and obtain the final output,

π(qi, K, V) = ∑
j

k
(
qi, k j

)
∑l k(qi, kl)

vj = Ep(kj |qi)

[
vj
]

(3)

Based on the long tail property, the key part is to calculate the distance between the
probability distribution and the discrete uniform distribution of the query and key dot
product pairs, so as to screen out the dominant dot product pairs. The Kullback–Leibler

divergence attention is used to calculate the probability distribution P
(
k j
∣∣qi
)
=

k(qi , kj)
∑l k(qi , kl)

with uniform distribution P
(
k j
∣∣qi
)
= 1

Lk
similarity.

M(qi, K) = max
j

{
qikT

j√
d

}
− 1

Lk

Lk

∑
j=1

qikT
j√
d

(4)



Appl. Sci. 2023, 13, 2371 6 of 15

If the case of i-th query increases M(qi, K), its probability distribution and attention
should be more diverse, and have a higher probability in the long tail distribution header
fields contained in the edge of the dot product. For each k value, only the leading query of
top-u is selected:

π(Q, K, V) = So f tmax

(
QKT
√

d

)
V (5)

where Q is a sparse matrix containing only u queries.
Compared with single-head self-attention, multi-head self-attention can capture differ-

ent information through different projection spaces, which enhances the feature extraction
ability of the encoder. The structure of multiple self-attention layers is shown in Fig-
ure 2b. It is sent to each self-attention layer through a linear projection. The information
obtained from the model input via linear projection is sent to the attention layer with the
following output:

hi = π(Q, K, V)
MultiHead(Q, K, V) = Wprojconcat(h1, h2, . . . , hh) + bproj

(6)

3.4.1. Time Encoder

Time-series features are captured by calculating paired attention weights between all
time steps and using masked self-attention to focus at every point on all channels. Like the
Transformer, masking ensures that the current output is only dependent on the previous
input without time leakage. Therefore, attention encoders with masks can better capture
time characteristics.

Frist, a subset of XT is selected from X as the initial input of the Time Encoder,

Xi =

{
XT , i = 1;

Yi−1
T , i = 2, 3, . . . , nT ,

(7)

where Xi represents the input of the Time Encoder, and nT is the number of Time Encoder
layers in the network.

Secondly, query matrix Q, key matrix K and value matrix V are obtained after linear
transformation, and then processed by a ProbSparse self-attention layer.

πi
T(Xi) = So f tmax

(
QKT
√

dk

)
V (8)

πi
T (·) is a time attention function applied to the time dimension, σ is a nonlinear

activation function, which is processed by ReLU function in the model. dq, dk and dv are
the behavior characteristic dimensions of query, key and value.

Finally, a two-layer feedforward neural network is used, and each sub-layer is normal-
ized by one layer,

FFN(x) = ϕ(max(0, ϕ(xW1 + b1))W2 + b2) (9)

where ϕ represents the normalization of layer, and the results obtained in the previous step
are added and normalized again.

The whole Time Encoder process is designed as Equation (10):

Zi
T = ϕ

(
πi

T
(
Xi)+ Xi)

Yi
T = ϕ

(
σ
(

FFN
(
Zi

T
))

+ Zi
T
) (10)

The resulting Yi
T is fed to the next Time Encoder. There are four Time Encoders in the

backbone network. The structure of the Time Encoder is shown in Figure 3a.
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3.4.2. Behavior Encoder

The Behavior Encoder extracts the behavior information in the data by calculating the
attention weights among different channels with all time steps.

First, select a subset XB of the transposed X as input data,

X j =

{
XB, j = 1;

cov(concat
(

Y1
T , . . . , Y j−1

T , Y j−1
B

)
, j = 2, 3, . . . , nB,

(11)

where X j is the input of the Behavior Encoder, the first input is XB, obtained after XT
transpose, the other inputs are the output fusion from the two encoders and nB is the
number of Behavioral Encoder layers in the network.

Secondly, query matrix Q, key matrix K and value matrix V are obtained after linear
transformation, and then after a ProbSparse self-attention layer processing.

π
j
B

(
X j
)
= So f tmax

(
Q·KT
√

dk

)
·V (12)

where π
j
B(·) is the behavior attention function applied to the behavior dimension.

Finally, a two-layer feedforward neural network is used, and each sub-layer is nor-
malized one layer at a time. In this step, the vectors before and after the previous step are
added and normalized again.

The whole process design of the Behavioral Encoder is shown in Equation (13):

Zj
B = ϕ(π

j
B
(
X j)+ X j

Y j
B = ϕ

(
σ
(

FFN
(

Zj
B

))
+ Zj

B

) (13)

The resulting Y j
B is fed to the next Behavior Encoder. There are four Behavior Encoders

in the backbone network. The construction of the behavioral encoder is shown in Figure 3b.

3.5. Intermediate Fusion Module

If the data are processed in parallel between the Time Encoder and the Behavior
Encoder, and the results obtained by the two encoders are ultimately merged, the informa-
tion loss generally occurs when the number of encoder layers is large. In order to reduce
the loss of information, a convolution layer with convolution kernel of 1 is adopted in
the Intermediate Fusion Module to fuse the sequence information extracted by the Time
Encoder with the dependence relationship extracted by the Behavior Encoder. Different
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from Cao et al. [36], in this paper, the temporal features extracted by the previous Time
Encoder are fused with the behavioral features of the current Behavior Encoder in each
layer to further reduce the impact caused by information loss.

3.6. Classification Prediction Module

After the YTime of nT Time Encoder and YBehavior of nB Behavior Encoder, the Gate
Layer [32] method is used in the first step to adaptively fuse the two types of features,
reconstruct the features and splice them into a vector, input them into fully connected layer
and apply Softmax function for processing. The obtained feature-related gating weight is
shown in Equation (14):

gTime, gBehavior = So f tmax(FC([YTime, YBehavior])) (14)

In the second step, the weighted vector is calculated and passed through a fully
connected layer to obtain the final prediction probability vector y of students’ mental health
as in Equation (15):

y = FC([gTimeYTime, gBehaviorYBehavior]) (15)

4. Experimental Results and Analysis
4.1. Basic Settings
4.1.1. Dataset

Two datasets, MTS and STU, were used for the evaluation. Table 1 shows the different
characteristics of the MTS dataset and the STU dataset used in our experiment. The first
dataset, MTS, is a subset of the public data set Baydogan [37], and contains 10 multivariate
time-series datasets such as ArabicDigits and CharacterTrajectories. By default, all datasets
are divided into training and testing parts, while aligning all time-series lengths and
performing normalization. The second dataset, STU, comprises real campus data of a
university in two semesters, in which weekly canteen consumption time, consumption
times and consumption amounts of students were taken as consumption data. Weekly
online times and online duration are used as online data; weekly waking time and rest
time are used as daily routine data. We also obtained a dataset on students’ mental health
status from the university’s counseling center, which contains 6127 general students and
2086 students whose mental health status requires focused attention.

Table 1. The multivariate time-series classification archive.

Dataset Train Cases Test Cases Dimensions Length Classes

AUSLAN 1140 1425 22 45–136 95
ArabicDigits 6600 2200 13 4–93 10

CMUsubject16 29 29 62 127–580 2
CharacterTrajectories 300 2558 3 109–205 20

ECG 100 100 2 39–152 2
JapaneseVowels 270 370 12 7–29 9

Libras 180 180 2 45 15
UWave 20 4278 3 315 8
Wafer 298 896 6 104–198 2

WalkvsRun 28 16 62 128–1918 2
STU 6159 2054 13 32 2

4.1.2. Comparison Methods

We chose the following deep learning models as benchmarks:

• Fully Convolutional Network (FCN) and Residual Network (ResNet) [27], which
are the best deep learning models in multivariate time-series classification tasks [23].
Multilayer Perception (MLP) also serves as a simple baseline.

• Universal Neural Network coder (Encoder) [38].
• Multi-scale Convolutional Neural Network (MCNN) [28].
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• Multi-Channel Deep Convolutional Neural Network (MCDCNN) [29].
• Time Convolutional Neural Network (Time-CNN) [39].
• Time Le-Net (t-LeNet) [40].
• Time Warping Invariant Echo State Network (TWIESN) [30].
• Gated Transformer Network (GTN) for multivariate time-series classification [32].

4.1.3. Parameter Setup and Experimental Support

All experiments were run on ubuntu20.04 OS and supported by a server equipped
with Intel(R) Xeon(R) Platinum 8255C@2.50GHz CPU and NVIDIA GeForce RTX 2080Ti
11GB GPU. Based on the Pytorch 1.11.0 framework, Python 3.8 was used to implement the
TSIN model. The two-stream informer network was trained with Adagrad with learning
rate 0.0008 and dropout 0.2. The classification cross entropy was used as the loss function.
The training set and test set were tested every iteration for a certain number of times,
and the best test results and their hyperparameters were recorded. For the fairness of
comparison, the model with minimum training loss was selected for test accuracy [23].

4.1.4. Evaluation Metric

Following a common practice in temporal classification work [41], the accuracy (the
proportion of correctly identified categories in all predictions) was used as a measure. The
accuracy rate was calculated as in Equation (16):

Auc = Predict the correct number/Total (16)

4.2. Comparison with Representative Works
4.2.1. Accuracy Comparison

We evaluated the performance of the proposed TSIN model for timing classifica-
tion tasks and proved the effectiveness of feature engineering based on the two-stream
informer network.

The experimental results are shown in Table 2. The results were calculated using the
TSIN model in the AUSLAN, CharacterTrajectories, Libras and Wafer data sets for the
10 datasets of MTS. Compared with the best results of the other 10 baselines, the results were
improved by 0.50%, 0.20%, 0.55% and 0.55% in these datasets, respectively. The TSIN model
had the best accuracy of 81.45% in the STU dataset, an improvement of 0.15% compared
with the other best results. FCN had the highest accuracy of 98.77% for ArabicDigits and
91.84% for UWave out of 11 datasets; GTN with the same two-stream structure had the
best accuracy of 98.38% on the JapaneseVowels dataset. On the CMUsubject16 dataset,
both the TSIN model and the GTN model with the same two-stream structure achieved
perfect accuracy.

Table 2. Test accuracy of the TSIN and other benchmark models on the multivariate time-series dataset.

MLP FCN ResNet Encoder MCNN t-LeNet MCDCNN TCN TWIESN GTN TSIN

AUSLAN 93.09 93.54 92.91 67.58 1.05 1.05 80.35 90.60 14.88 92.70 94.04
ArabicDigits 95.82 98.77 98.55 96.36 10.02 10.02 95.9 98.27 66.91 97.82 98.09

CMUsubject16 96.55 93.10 93.10 89.66 53.10 51.07 55.17 62.07 65.52 100.00 100.0
CharacterTrajectories 82.02 96.83 96.68 4.38 5.48 6.79 92.22 96.48 91.79 96.05 97.03

ECG 78.00 86.00 86.00 67.00 67.00 67.00 77.00 87.00 77.00 85.00 87.00
JapaneseVowels 81.62 98.11 97.84 93.24 9.24 23.79 94.59 96.22 78.11 98.38 97.84

Libras 32.22 85.00 86.67 6.67 6.67 6.67 56.11 72.78 52.22 81.67 87.22
UWave 87.31 91.84 89.69 12.48 12.48 12.48 86.21 90.81 51.29 88.69 88.66
Wafer 90.63 97.88 95.76 96.32 89.42 89.42 65.83 98.33 87.52 97.54 98.88

WalkvsRun 70.00 100.00 100.00 100.00 75.00 60.00 45.00 100.00 87.50 100.00 100.0
STU 78.09 71.23 71.86 74.68 80.77 80.32 81.30 80.22 80.72 77.90 81.45

In addition, TCN, ResNet and Encoder also had high accuracy, and TCN and the TSIN
had the highest accuracy of 87.00% on the ECG data set. At the same time, TCN, ResNet,
Encoder, FCN and GTN also had the highest precision of 100.00% on the WalkvsRun data set
alongside the TSIN. The success of ResNet is largely due to its deeply flexible architecture;
the small number of filters in TCN is the main reason for its success on small datasets,
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but this shallow architecture cannot capture the variability of large time-series datasets
efficiently modeled by the FCN and ResNet architectures. MLP also had good performance
in multiple datasets because it contains enough connection layers to fit real-time trends.

The reason that MCDCNN did not have the highest accuracy on any dataset may
be due to the use of a nonlinear FC layer instead of the GAP in FCN and ResNet—this
FC layer reduces the effect of learning time-invariant features. Meanwhile, for the only
TWIESN model in the experiment that uses a cyclic structure, the accuracy was poor in
time series with longer time sequences, such as the AUSLAN, CMUsubject16, UWave and
WalkvsRun datasets, and their predictions were all far from being able to compete with the
best accuracy because the cyclic structure may lose some of the information that appears
early in long time-series information.

The accuracy of the MCNN and t-LeNet architectures was very low, and they had the
worst prediction accuracy of the eight datasets; both of these models augment the training
data by extracting subsequences. Unlike models that classify from the entire subsequence,
they learn features from shorter subsequences and finally assign labels to the time series
using majority voting. The lower accuracy of these two methods suggests that this method
of extracting subsequences from time series does not guarantee that features of the time
series are not lost when they are segmented.

Overall, the results show that the proposed model TSIN was the best architecture with
the highest accuracy achieved on the eight evaluated datasets, followed by FCN and GTN,
both of which had the highest accuracy on three datasets. MCNN and t-LeNet, which
partition the time series into subseries, had the worst prediction results.

4.2.2. Time Complexity Comparison

As the inspiration for our work, the most time-consuming part of the GTN is the
two encoders. Since these two encoders can run in parallel, we can estimate the time
complexity in one of the encoders. The encoder in the GTN consists of a multi-headed
self-attentive layer. We assume that the input data dimension is m × d, where m is the
sequence length and d is the embedding dimension. Then, the time complexity of an
attention layer can be estimated as O

(
m2d + md2), where O

(
m2d

)
is the time complexity of

the multi-headed self-attention and O
(
md2) is the time complexity of the linear mapping

of input and output.
Similar to the estimation of the GTN, we attempt to estimate the time complexity of the

TSIN encoder because we use ProbSparse self-attention to reduce the computational load.
Since the query matrix in ProSparse self-attention includes only the top-u queries, under
the control of a constant sampling factor c, we set u = c·lnm, and then we can estimate
the time complexity of multi-headed self-attention in the encoder as O(md·lnm). The time
complexity of an attention layer can be estimated as O

(
md·lnm + md2).

4.3. Ablation Test

In order to study the performance gains of each module in the TSIN, a comprehensive
ablation experiment was performed as shown in Table 3.

The Behavior Encoder can capture the dependency between various behaviors, but
Time Encoders cannot make good use of the advantages of multivariate time series. The
processing method makes multivariate time series become like univariable time series,
losing the connection between various features. Therefore, the effect of most Behavior
Encoders is better than that of Time Encoders. The gating mechanism can integrate the
features of the two channels well through adaptive weights. If the features encoded by
the two encoders are simply connected, the accuracy of the prediction will be reduced to
varying degrees.

Different time series data may have different propensities towards temporal and
behavioral characteristics. For example, on the dataset UWave, models with only Time
Encoders had superior performance to other models; on the ArabicDigits data set, with
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both Time Encoder and Behavior Encoders, the model without Intermediate Fusion Module
had the highest accuracy.

Table 3. Ablation study of the Time Encoder, Behavior Encoder, Intermediate Fusion Module and
gating in the TSIN.

Time Encoder Behavior Encoder Time Encoder + Behavior
Encoder + Fusion

Step Encoder + Behavior
Encoder + Gate TSIN

AUSLAN 89.05 91.51 87.09 91.51 94.04
ArabicDigits 96.59 98.09 97.82 98.36 98.09

CMUsubject16 96.55 89.66 93.10 89.66 100.00
CharacterTrajectories 91.59 96.25 95.86 96.36 97.03

ECG 83.00 86.00 85.00 85.00 87.00
JapaneseVowels 94.32 96.76 96.49 96.22 97.84

Libras 57.22 86.67 77.78 86.67 87.22
UWave 75.57 89.29 85.55 87.89 88.66
Wafer 91.74 97.99 98.44 97.66 98.88

WalkvsRun 100.00 100.00 100.00 100.00 100.00
STU 81.06 80.43 79.45 78.89 81.45

4.4. Analysis of Attention Map

Note that the matrix represents the correlation of behavior and time steps, respectively.
We selected a sample from the STU data set for visualization of both attention maps.
Figure 4a analyzes the behavior-related attention graph and labels three blocks (b1–b3). For
the attention diagram of the behavioral encoder, Figure 4b shows the calculation of the DTW
distance of the time series on different channels and marks a block (b4). Figure 4c shows an
analysis of the time-dependent attention graph, and Figure 4d shows the calculation of the
Euclidean distance of different behaviors for each time step, since there is no timeline at the
same point in time and thus DTW is not required. In Figure 5, the original time series for
the corresponding channel is plotted. In the later analysis, channel12 is used for student
break time (abbreviated c12).
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From Figure 4a, it can be seen that b2 has a relatively high attention score, that is, c6
(students’ dinner consumption time) is highly correlated with c12 (students’ rest time).
From Figure 5, it can be clearly seen that c6 and c11 have relatively similar shapes and
trends. b1 and b3 have lower attention scores. Both c5 (the amount students spend on lunch)
and c7 (the amount students spend on dinners) show very different and even opposite
trends compared to c12 (students’ rest time). It can be seen that the behavioral attention
learned by the model from the time series can capture similar sequences, which work
together to make the output of the model constantly fit the real label.

Figure 4b shows the DTW of the Time Encoder, where b4 represents a very small
DTW distance between c5 and c12. However, it can be seen from Figure 5 that c12 and c5
are very different in both trend and shape, which indicates that the size of DTW distance
matrix has little influence on the attention calculation of the Behavior Encoder. For the
Behavior Encoder, since the correlation between behaviors is at the same time point, the
special Euclidean distance of DTW at the same time point is used as the distance measure.
Through the analysis of the behavioral attention diagram and the Euclidean distance matrix
in Figure 4c,d, it is found that the distance and shape similarity between time series have an
effect on the calculation of the attention fraction in the TSIN, but the effect is not obvious.

4.5. Analysis of Features

The behavioral characteristics consumption data (e.g., weekly canteen consumption
times, consumption amount and consumption time), online data (e.g., weekly online time
and online duration) and daily routine data (e.g., weekly wake up time and rest time)
predict the mental health status, and the results are shown in Figure 6. The results show
that these three behavior characteristics have a certain influence on students’ psychology.
Among them, consumption data is the most effective, because it is the most accessible data
among students. Compared with online data and daily routine data, the data of students’
consumption of three meals is the most frequently generated data in students’ daily lives.
Moreover, it has a certain accuracy and can obtain higher prediction accuracy.
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At the same time, the accuracy of the daily routine data generated by students is low
because, compared with the consumption data that can be recorded through the campus
card and the online data that can be recorded through the campus network, the students’
daily wake up and work and rest data are not as easy to obtain and process. In this paper,
among the first consumption time of the daily campus card, the first login time of the
campus network, the time of punching in and other data, we chose the earliest one as the
wake-up time. As rest time we chose the latest among the latest consumption time of the
campus card, the latest logout time of the campus network and the time of punching in the
early morning. In spite of this, there are still some deviations in the obtained daily routine
data, which led to low prediction accuracy.

5. Conclusions

In view of the fact that most of the existing studies on predicting students’ mental
health status use qualitative methods and do not adequately collect students’ relevant
characteristics, this paper obtains students’ daily behavior data from three aspects (canteen
consumption, Internet access and daily routine), and proposes an informer network based
on a two-stream structure (TSIN) to analyze students’ daily behavior data to determine
whether they need mental-health-focused attention for classification prediction. This model
uses Time Encoder and Behavior Encoder to capture students’ time cycle trend and behav-
ior dependence, respectively, prevents information loss through an Intermediate Fusion
Module, and uses a gating mechanism for classification prediction. Experimenting with
10 multivariate time series from public datasets, the TSIN obtained the highest accuracy in
seven experiments, and was able to obtain higher accuracy in predicting students’ mental
health status compared to other time-series classification models, verifying the advantages
of the model.

However, the experiments in this paper have the following disadvantages: (1) When
collecting data from students, we only considered some of their behavioral data in daily
life, while in real life students with abnormal mental health conditions often have their
learning affected as well. (2) In making predictions about mental health status, we treated
each student as an individual, and students with abnormal mental health status usually
have some influence on those around them. In the future, we will try to collect more
behavioral characteristics of students, especially in terms of student learning, including
data related to the library and classrooms, to more comprehensively describe students’
daily behaviors. We will also use the graph structure to construct a network of relationships
among students, and give higher weights to students who are closely related to students
with abnormal mental health status in the model to improve the prediction accuracy. Since
each student’s mental health status has abnormalities, we will try to let the model learn



Appl. Sci. 2023, 13, 2371 14 of 15

from psychologists’ ranking of the number of students’ psychological abnormalities so that
schools and teachers can allocate resources more rationally and cover all students who
need psychological counseling as much as possible.
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