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Abstract: In the scope of smart cities, the sensors scattered throughout the city generate information
that supplies intelligence mechanisms to learn the city’s mobility patterns. These patterns are used
in machine learning (ML) applications, such as traffic estimation, that allow for improvement in
the quality of experience in the city. Owing to the Internet-of-Things (IoT) evolution, the city’s
monitoring points are always growing, and the transmission of the mass of data generated from
edge devices to the cloud, required by centralized ML solutions, brings great challenges in terms
of communication, thus negatively impacting the response time and, consequently, compromising
the reaction in improving the flow of vehicles. In addition, when moving between the edge and the
cloud, data are exposed, compromising privacy. Federated learning (FL) has emerged as an option
for these challenges: (1) It has lower latency and communication overhead when performing most of
the processing on the edge devices; (2) it improves privacy, as data do not travel over the network;
and (3) it facilitates the handling of heterogeneous data sources and expands scalability. To assess
how FL can effectively contribute to smart city scenarios, we present an FL framework, for which we
built a testbed that integrated the components of the city infrastructure, where edge devices such as
NVIDIA Jetson were connected to a cloud server. We deployed our lightweight container-based FL
framework in this testbed, and we evaluated the performance of devices, the effectiveness of ML and
aggregation algorithms, the impact on the communication between the edge and the server, and the
consumption of resources. To carry out the evaluation, we opted for a scenario in which we estimated
vehicle mobility inside and outside the city, using real data collected by the Aveiro Tech City Living
Lab communication and sensing infrastructure in the city of Aveiro, Portugal.

Keywords: federated learning; distributed forecasting; smart city; FL on edge devices

1. Introduction

In the scope of smart cities, the sensors scattered throughout the city generate infor-
mation that can be used to supply intelligence mechanisms to learn the city’s mobility
patterns. These patterns are used in applications such as traffic estimation, which allow for
improvement in the quality of experience in the city. However, current solutions are based
on centralized approaches that generate high latency and increase data transmission. In ad-
dition, the mobility patterns based on the information from across the city are not suitable
for medium/large cities, where regionalization of habits directly interferes with mobility.

With the increased importance of the Internet of Things (IoT), monitoring points in the
cities are always growing, and the transmission of their data from the end-node devices to
the cloud brings great challenges, thus increasing the load on the network, which negatively
impacts the response time and, consequently, compromises the reaction time to improve
the flow of vehicles [1]. Furthermore, traditional cloud-centric solutions suffer from loss of
privacy as data (messages, images, videos, and personal information) must be sent to the
cloud to be processed.

One of the options to improve the problems mentioned above is the support of
distributed architectures that enable the use of machine learning (ML) on edge devices
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where learning is achieved. In this way, there is no movement of data, which guarantees
privacy. Among the distributed options, the new paradigm based on federated learning (FL)
emerges as a great option [2]. Federated learning (FL) is a machine learning method that
uses the datasets hosted on edge devices to train machine learning (ML) models locally and
thus be prepared to meet regional demand. However, still, it is important to maintain the
global scope view, and to do so, federated learning (FL) operates in a federated way; that is,
the edge devices send their models to be aggregated globally. Since only model parameters
are transacted, federated learning (FL) naturally ensures data privacy. By sending only the
parameters, it has the benefits of lower latency and lower network overhead, in addition to
being potentially faster than the centralized options.

To evaluate how federated learning (FL) can effectively contribute, we present a feder-
ated learning (FL) framework, FedFramework [3], for which we built a testbed where edge
devices, such as NVIDIA Jetson, were connected to a cloud server, that is, a typical solution
used in communication infrastructures for smart cities. In this testbed, we implemented
the FedFramework to estimate the mobility of vehicles inside and outside the city, using
real data collected by the communication and sensing infrastructure of the Aveiro Tech City
Living Lab in the city of Aveiro [4]. In this testbed, machine learning (ML) algorithms were
distributed in the city’s 52 road-side units (RSUs)—FL client containers hosted in the edge
device units—that capture the traffic that feeds the algorithms. Periodically, the param-
eters of all these distributed models were sent to a centralized unit (server installed in a
virtual machine), where a refinement process was applied through aggregation algorithms
and then returned to the federated learning (FL) clients. Using this lab test environment,
we evaluated the devices’ performance, the effectiveness of machine learning (ML) and
aggregation algorithms, the impact on end-to-server communication, and the resource
consumption of the devices.

In summary, the main contributions of this work are the following features:

• An exploration of several federated algorithms to decide which one best fits the
vehicle data;

• Performance evaluation and resource consumption on edge devices;
• A performance assessment of the network in the presence of multiple federated clients

and multiple federated learning predictors;
• Scalability evaluation of the user-friendly federated learning (FL) framework on edge

devices used in the infrastructure of smart cities.

The remainder of this paper is organized as follows: In Section 2, the related work
associated with FL-based solutions on edge devices is discussed, and in Section 3, we
briefly present the FedFramework. Section 4 presents the deployed testbed and shows the
details of the evaluated use case. Section 5 presents and discusses the performance of the
FL-based solution on edge devices, the communication overhead, the performance of the
aggregation algorithms, the performance of the entire federated process, and the scalability
of the system components. Finally, Section 6 concludes the paper and presents future work.

2. Related Work

Federated learning (FL) is a recent paradigm in which machine learning (ML) process-
ing is distributed, allowing several decentralized clients to cooperatively train a shared
model globally [2]. Despite being recent, it is a topic of great interest, with a significant
amount of work on distributed and federated learning [5–9]. Due to the scope of this work,
we focused our assessment on the work related to the deployment of distributed/federated
learning solutions on edge devices that are somehow used in intelligent transportation
system (ITS) solutions within the scope of smart cities.

Chen et al. [1] proposed a vehicle detection algorithm based on the YOLOv3 model
trained with a large volume of traffic data. This solution uses images to identify vehicles
that generate a dataset used to train the model for flow detection. The model is trained on a
centralized server and then migrated to the devices that use NVIDIA Jetson to perform the
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discovery work on edge devices. Despite using edge devices to carry out the identification,
the entire training process is centralized.

The work in [10] described a testbed assembled with Intel Movidius Neural Compute
Stick and Raspberry Pi 3 Model B. The testbed hosts convolutional neural network (CNN)
algorithms used to analyze objects in real-time videos for vehicular edge computing.
The authors show a small performance evaluation of the algorithms in Raspberry-Pi-
based devices.

The authors of [11] proposed a communication-efficient FL framework, the goal
of which is to improve FL convergence time. The authors used a probabilistic device
selection scheme that aims to choose the most efficient ones in transmitting the model
for aggregation. The authors formalized their schemes for probabilistic device selection
and network resource management and analyzed their performance through simulation.
Therefore, no evaluation was carried out with real devices.

In [12], Rahman et al. presented a lightweight hybrid FL framework that uses
blockchain smart contracts to add security to the edge training plane, manage the trust
and authentication of the participating federated nodes, and distribute the trained models
globally or locally based on the reputation of edge nodes and their loaded datasets or
models. To evaluate the proposed solution, they used a hybrid testbed with various types
of devices such as Jetson, Raspberry Pi, and others. The focus of this work and evaluation
was the security added with the use of the blockchain-based solution, and therefore, they
did not deepen their evaluation in other directions.

Vita et al. [13] presented an extension of Stack4Things [14], a cloud platform, adapting
its functionalities to edge devices in order to provide a federated learning (FL) platform.
To evaluate the new platform and demonstrate the efficiency of the federated approach,
a heterogeneous testbed was set up with different types of clients, a laptop, three Raspberry
Pi 3s, and an NVIDIA Jetson Nano, distributed on a university campus so that they were
not in the same network, thus emulating a distributed deployment. In this testbed, a smart
city application was deployed that exploits deep learning techniques to classify the vehicles
crossing the intersection for traffic analysis purposes. In this scenario, they measured the
loss of the federated model, training time, accuracy, and acceleration; that is, they focused
their evaluation on the performance of the federated option and did not evaluate scalability,
consumption of edge devices, or network overhead.

Süzen et al. [15] presented a study in which they compared the performance of single-
board computers on NVIDIA Jetson Nano, NVIDIA Jetson TX2, and Raspberry Pi 4. In this
comparative study, the authors used CNN algorithms applied to the datasets of fashion
product images. In the benchmark work, they evaluated basic points such as memory and
CPU consumption but did not evaluate scalability, the concurrent use of multiple instances,
processing times, or the aspects related to communication.

In [16], the authors compared the most popular deep learning (DL) models for multi-
leaf disease detection to assess which model is best suited for actual deployment. They used
a real-world large-scale dataset and a Raspberry Pi 3 to evaluate the accuracy, memory
usage, number of parameters, model sizes, and training time, among others. It is an
interesting work, directly focused on the performance of DL models, but the authors
evaluated machine learning models for a specific purpose: multi-leaf diseases. Moreover,
they did not address distributed or federated learning.

The work in [17] presented a benchmark of a Pi Spark cluster used to process dis-
tributed inference built with TensorFlow. The authors compared the performance between
a two-node Pi 4B Spark cluster and other systems, including a single Pi 4B and a mid-
range desktop computer. To perform the analysis, they used image classification and
face detection, that is, all the experiments related to image processing. Although inter-
esting, the testbed was restricted, since it did not use real data and did not assess scal-
ability. Furthermore, it was very ingrained in Spark-aligned applications. By contrast,
our solution is not limited to any type of application and has a native design aimed at
distributed/federated processing.



Appl. Sci. 2023, 13, 2329 4 of 17

Baghersalimi et al. [18] presented and evaluated a standard federated learning (FL)
framework in the context of epileptic seizure detection using a deep-learning-based ap-
proach, which operates on a cluster of NVIDIA Jetson Nanomachines. They evaluated the
accuracy and performance of the proposed approach with epilepsiae, a seizure detection
database. The authors evaluated the performance of the proposed platform in terms of the
effectiveness, accuracy, and convergence of the federated learning option, and they also
included an assessment of energy consumption. The work is interesting, but it had a
specific focus (neurological disorders), and scalability and platform heterogeneity were not
assessed.

Zhang et al. [19] presented a solution for an evaluation of federated learning (FL) in
IoT devices and a platform for anomaly detection. They also established the FedDetect
algorithm for anomaly identification. To evaluate the solution, the authors used a platform
with Raspberry PI, the N-BaIoT, and LANDER datasets, and a GPU server. In their evalua-
tion, they used precision and epoch and discussed memory cost and end-to-end training
time on constrained IoT devices. However, the proposed solution was specific for anomaly
detection, not offering options regarding ML models or aggregation strategy. Moreover,
the evaluation made is considered very preliminary, and a more thorough analysis is
needed.

In [20], the authors proposed the communication-efficient FedAvg (CE-FedAvg),
a modified FedAvg algorithm that incorporates a distributed variant of Adam’s opti-
mization. CE-FedAvg’s objective is to reduce the total number of rounds required for
convergence. To test the real-time convergence of CE-FedAvg over FedAvg, they used
an RPi-based testbed to simulate a heterogeneous low-power edge computing scenario.
The testbed uses 5 RPi 2Bs, 5 RPi 3Bs, and 1 desktop as a server on a wireless network used
to emulate lower bandwidth networks. However, as expected, the evaluation exclusively
focused on CE-FedAvg’s performance and was, therefore, restricted in relation to other
evaluation criteria.

Gao et al. [21] compared the learning performance of federated learning (FL) and
split neural networks in terms of model accuracy and confluence speed. They focused
on unbalanced, non-independent, and identically distributed data that are best suited for
IoT applications. To evaluate the proposed solution, they set up a testbed composed of
Raspberry Pi (IoT gateway) as a server to aggregate the models and IoT sensors (Arduino,
RFID, etc.) that interacted with the server to perform distributed learning. They used this
testbed to evaluate the model overhead, including training time, communication overhead,
power consumption, and memory usage.

In [22], Kim et al. developed a federated learning (FL) platform, called KubeFL, based
on Kubernetes technology. KubeFL hosts client models in Docker and Kubernetes contain-
ers that connect to a server. The authors deployed their platform to NVIDIA Jetson TX2
devices, where they performed several performance tests. The proposed solution seems
to have the potential to face challenges related to environments that require distributed
ML. However, the testbed was very simple, and so was the evaluation carried out. For ex-
ample, there was no assessment of scalability, communication overhead, device overhead,
or heterogeneity between client devices.

Jiang et al. [23] proposed a federated learning (FL) approach with adaptive and
distributed parameter pruning (PruneFL), which adapts the model’s size during feder-
ated learning (FL) rounds to reduce both communication and computation overhead and
minimize the overall training time. To evaluate the performance of their approach, they con-
ducted experiments with real edge computing prototypes (notebook as a server and clients
hosted in Raspberry Pi devices) used to simulate multiple clients and a server. In their
experiments, computation and communication times were analyzed, and some measure-
ments involving either Raspberry Pi devices were performed. However, their evaluation
was restricted to the proposed PruneFL; other works such as [24–26] also used the pruning
strategy to minimize communication time and training rounds.
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Our work stands out for evaluating solutions based on federated learning (FL) in its
different features, namely the performance of edge devices, the communication overhead,
and the impact of aggregation algorithms. In addition, by using the data directly collected
from a communication and sensing infrastructure in current use, the ATCLL, we provide
system designers with field information that can speed up the design of solutions for
smart cities.

3. FedFramework: Federated Learning Framework

The main component of our platform is the federated learning (FL) framework, called
FedFramework. This framework was first proposed in [3], and this section only provides a
very brief overview to understand the evaluation and the obtained results. As shown in
Figure 1, FedFramework is composed of two main services: Edge FL Service (EFLS) and
Cloud FL Service (CFLS).

The Edge FL Service (EFLS) runs on edge devices where local data are used for the
continuous training of the learning model to prepare it to deliver on-demand predictions
to users that are within edge device (RSU) coverage. An important part of Edge FL Service
(EFLS) is the Edge Aggregator, a component that interacts with Cloud FL Service (CFLS) in
which local machine learning (ML) models send their parameters to be aggregated in the
global service.

The Cloud FL Service (CFLS), commonly hosted in the cloud, manages the aggregation
process of edge models. It receives the parameters from machine learning (ML) models
installed at the edge, coordinates their aggregation into a global model, and controls the
aggregation process of these parameters until the desired accuracy is identified.

In an overview of using the framework, when installed on edge devices, Edge FL
Service (EFLS) trains the base models using local data made available by Data Gather-
ing Emulator Service (DGES). With this initial training, they are now available to make
predictions through the prediction interfaces. When identifying the moment to refine the
local models (aggregation rule), Cloud FL Service (CFLS) notifies the Edge FL Service (EFLS)
so that they can send their parameters. Upon receiving all the edge models, Cloud FL
Service (CFLS) applies the aggregation algorithm and sends the new aggregated model
to the Edge FL Service (EFLS). They retrain using their local data and check for accuracy.
This aggregation cycle, called federated learning round (FLR), runs continuously until the
accuracy of the local models reaches the expected result.

Figure 1. FedFramework architecture.

The Data Gathering Emulator Service (DGES) is an emulator that produces real data
and allows offline testing. To use it, we only need to include the desired dataset in the
corresponding folder in the container. In our tests, we supplied Data Gathering Emulator
Service (DGES) with the data collected directly from ATCLL, thereby ensuring that our
algorithms work with the real data of vehicle mobility in the city of Aveiro.
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One of our concerns when designing a framework was the “ease of use”. With the
design and implementation based on Docker, FastAPI (https://fastapi.tiangolo.com/,
accessed on 22 November 2022), and Flower tools (https://flower.dev/, accessed on
22 November 2022), it offers a simplified installation process starting with the deployment
of a Restful API in all methods for operation and use, and the deployment of two Docker
images, one related with Cloud FL Service (CFLS) and another for creating Edge FL Service
(EFLS) instances.

4. Distributed Learning Laboratory Testbed

This section presents the laboratory testbed. The testbed included a hardware platform
where edge devices are connected to the server over a local area network, and the collected
data are used in the evaluation experiments. These elements are presented below.

4.1. Hardware Platform

There are several embedded device options for edge devices that can house AI so-
lutions [27–29]. They can be specific solutions such as Titan RTX (NVIDIA) [30], Cloud
TPU (Google) [31], or Xeon D-2100 (Intel) [32], or they can be single-board computers
(SBCs), such as Data Box Edge (Microsoft) [33], Movidus Neural Compute Stick (Intel) [34],
or Jetson (NVIDIA) [35]. Motivated by the experience gained through ATCLL, we chose
NVIDIA Jetson Nano [36] and NVIDIA Jetson Xavier [37] as edge devices to assemble our
laboratory testbed. These embedded board units, widely used in IoT installations in smart
cities [18], are detailed in Table 1.

Table 1. Equipment characteristics.

Server Jetson Nano Jetson NX Xavier

Processor Intel(R) Xeon(R) 4215 Arm(R) Cortex(R)-A57 ARMv8 rev 0 (v8l)
Architecture x86_64 aarch64 aarch64

CPUs 4 4 6
Memory 8 GB 2 GB LPDDR4 8 GB LPDDR4
Storage 64 GB 128 GB 128 GB

Operation System Ubuntu 18.04.6 LTS Ubuntu 18.04.5 LTS Ubuntu 18.04.6 LTS
Linux Kernel 4.15.0-197-generic 4.9.140-tegra 4.9.253-tegra

The testbed was composed of four Jetsons Nano and one Jetson Xavier connected
to the data center through a 1 Gbps wired network. The data center contained virtual
machines that hosted the servers responsible for aggregating the machine learning (ML)
models distributed at the edge (Figure 2).

Figure 2. Distributed Learning Laboratory Testbed.

One of the main objectives was to provide AI services for applications within the
scope of the ATCLL project [4]. In this way, we developed a framework through which it is
possible to develop, test, and generate the most varied machine learning (ML) algorithms,
and in addition, to offer an option to work with federated learning (FL) when this option
is the most suitable for an application. Our strategy for building the framework was to
virtualize it through containers to isolate the different services. This isolation would ensure

https://fastapi.tiangolo.com/
https://flower.dev/
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that tasks such as updating, shutting down, crashing, and consuming resources from a
single service would not affect the others. In addition, we were also able to configure
several network options easily.

4.2. ATCLL Overview and Its Datasets

The datasets used in the evaluation were collected from the infrastructure in the
city of Aveiro, the ATCLL. The ATCLL comprises a large number of Internet-of-Things
(IoT) devices with communication, sensing, and computing capabilities constituting a
smart city infrastructure [4]. The 44 communication points of access in the city are con-
nected through fiber and millimeter-wave (mmWave) links and integrate radio terminals
(WiFi, ITS-G5, C-V2X, 5G, and LoRa). All these points combine and interconnect a set
of sensors, such as mobility sensors (radars, LiDARs, and video cameras) and environ-
mental sensors. The RSUs, indicated on the map as smart lamp posts P1, P30, P33, and
P35, combine communication and computing devices such as PCEngines APU2 units
(https://www.pcengines.ch/apu2.htm, accessed on 22 November 2022) and NVIDIA
Jetsons. APUs use AMD GX-412TC with 4 CPU cores, 4GB of DRAM, 256GB of SSD,
and Debian GNU/Linux 11.

As illustrated in the left side of Figure 3, network nodes are also installed in the vehicles
and local boats to transmit the mobility and environment data to the data-processing center.
In the vehicular network supported by the ATCLL, the vehicles are equipped with on-
board units (OBUs) to establish a connection with the RSU and with the other vehicles,
over ITS-G5 and 5G. One of the main objectives of the ATCLL is to provide a range of
services that can make the city smarter by offering, for example, services to support the
management of urban mobility or emergency and safety applications. To achieve this
purpose, the ATCLL hosts a base software platform capable of hosting services at three
levels of operation: on mobile devices (OBUs), on edge devices (RSUs), and on the central
processing (cloud). Among the services hosted on mobile devices, it is possible to highlight
the identification of the mobility of each vehicle (position, speed, etc.) and also the collection
of sensing information, such as temperature, humidity, etc. In the edge devices, in addition
to collecting and processing sensing information and performing data collection from
mobile devices, the various types of activity identification stand out, such as the number
and type of vehicles that pass through the coverage perimeter, the capture and evaluation
of pictures, etc. Most of the information collected by mobile and edge devices is sent to a
central unit, where it is analyzed to gain a strategic overview of the city “behavior”.

Figure 3. ATCLL infrastructure.

To perform the evaluation of the FedFramework deployed at edge devices, we opted
for a simple system to predict the number of vehicles entering the city, and to do so, we

https://www.pcengines.ch/apu2.htm
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used the time series datasets from the radars. Each dataset contains the number of vehicles
that entered the city, identified at the collection points (RSU/Client) installed in strategic
locations in the city of Aveiro. More specifically, we selected a period of four weeks, from
22 April 2022 to 22 May 2022. In this period, we considered the vehicles that passed through
RSU in P1, P30, P33, and P35, as shown in Figure 4. Vehicle accounting was closed hourly,
generating 24 sets of accounts each day. During this period of four weeks, we used three
weeks to train the models and used the trained models and compared their predictions
with the data from the fourth week to identify the accuracy of the models.

Figure 4. All vehicles that entered Aveiro through the four roads.

5. Results

In the assembled testbed, we performed experiments with the objective to evaluate the
performance of FedFramework in real devices. We began by evaluating the performance of
the federated learning (FL) solution in a smart city environment. To do so, we measured
(1) the time for training on edge devices (Jetsons); (2) the time for sending the edge models
to the centralized aggregator; (3) the time for aggregating the models and generating
the new aggregated model; (4) the time for sending the aggregated model for the edge
devices; and (5) the time involved in the aggregation process as a whole. This detailed
assessment not only allowed the illustration of the functionalities and performance of our
solution but also served as a parameter for choosing between the federated option and the
centralized option in relation to the use of machine learning. In addition, we evaluated the
progressive resource consumption of these devices (CPU, RAM), analyzed the scalability of
the hardware and software set with 1 to 70 clients, and measured the network overhead.

Our framework can work with the most used machine learning models, such as
recurrent neural networks (RNNs), gated recurrent units (GRUs), convolutional neural
networks (CNNs), and long 277 short-term memory (LSTM). For the evaluation part of
our framework, we selected a vehicular use case and the prediction of the number of
vehicles entering a city. In accordance with state-of-the-art research, convolutional neural
networks (CNNs) and long 277 short-term memory (LSTM) work well for regression
problems with time series predictions [38,39]. Taking this into account, we decided to focus
our performance tests by benchmarking convolutional neural networks (CNNs) and long
277 short-term memory (LSTM) in our framework. In this preliminary evaluation, we used
two convolution layers, both with eight filters, one kernel size, and rectified linear unit
(ReLU) for the activation of the convolutional neural network (CNN) option. For long
277 short-term memory (LSTM), we chose one long 277 short-term memory (LSTM) layer,
with eight units and rectified linear unit (ReLU) for the activation setting. These are the best
parameters according to [38]. Moreover, we chose three metrics to evaluate the regression
model: MSE [40], MAE [41], and R-Squared (R2) [42].
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As shown in Table 2, knowing that 0 in MSE and MAE values means that the model
is perfect, and R2 should have a score close to 1, all edge clients had better results with
a convolutional neural network (CNN). Thus, the convolutional neural network (CNN)
model was our choice. For all the tests, the convolutional neural network (CNN) model
was established with the execution of 10 rounds for aggregation and 5 epochs in the local
training of each client (edge device).

Table 2. CNN versus LSTM.

CNN LSTM

Client MSE MAE R2 MSE MAE R2

1 0.004 0.033 0.782 0.006 0.045 0.644

2 0.011 0.058 0.742 0.013 0.062 0.710

3 0.012 0.069 0.862 0.018 0.083 0.793

4 0.013 0.065 0.789 0.018 0.086 0.680

The strategy used in the evaluation was to progressively add more clients to each
edge device and then add more devices. During the initial tests, with the increase in the
number of clients on the same device, it was noticed that the Jetsons became exponentially
slower until they were no longer able to run the containers, thus becoming completely
blocked. In Jetson Nano, this was more noticeable, because, with 14 clients installed, it was
excessively slow, ending up blocking without recovery. With that in mind, it was assumed
that 14 clients would be the maximum number that this type of device can support for
operations with FedFramework. The complete sequence of tests was as follows:

• One Jetson Nano with only one client (a total of one client);
• One Jetson NX Xavier with only one client (a total of one client);
• Four Jetson Nanos with one client and one Jetson NX Xavier with one client (a total of

five clients);
• Four Jetsons Nano with five clients and one Jetson NX Xavier with five clients (a total

of twenty-five clients);
• Four Jetsons Nano with ten clients and one Jetson NX Xavier with ten clients (a total

of fifty clients);
• Four Jetsons Nano with fourteen clients and one Jetson NX Xavier with fourteen

clients (a total of seventy clients).

Figure 5 illustrates the testbed configuration with all devices and shows the configu-
ration details (IP, ports, etc.), where each federated learning (FL) client was deployed in
a container.

Figure 5. FL client distribution and its connection with server.
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Figure 6 depicts the strategic points where measurements were taken. In the figure,
signaled by the letters from a to e, all the stages of a federated learning round (FLR) are
shown. The following times were evaluated during one round: training the local model
(arrow a), sending that model to the server (arrow b), aggregating the local models (arrow c),
downloading the aggregated model to the clients (arrow d), and finally, evaluating the
global model with the client’s local data (arrow e). As mentioned earlier, the data for each
test were averaged from the 10 results obtained from 10 repetitions for the same test.

Figure 6. Steps of FLR observed during the tests.

The next sub-sections discuss several tests and results. We start with an overview of
the aggregation process, followed by an evaluation of the training time and communication
delay of the machine learning (ML) model. After evaluating the performance of the solution
based on federated learning (FL), we analyze the direct consumption of resources. In this
way, we assess the server and Jetsons resource overloads.

5.1. Overall Performance of the Federated Learning (FL) Application

We start by evaluating the behavior of federated learning (FL) from a broader perspec-
tive, that is, how long it takes for the federated process to reach the best accuracy. All the
tests were executed 10 times, and the time necessary to connect all clients to the server,
the average time for a round, and the total time until the server had the global model after
10 aggregation rounds were considered. Table 3 summarizes the obtained results.

Table 3. Runtimes of the six tests previously described.

Total of Clients Connection Time 1 Round Total Time

1 client Nano 12.36 seg. 1.22 seg. 25.81 seg.

1 client Xavier 12.26 seg. 1.40 seg. 26.75 seg.

5 clients 38.02 seg. 1.41 seg. 52.56 seg.

25 clients 69.27 seg. 4.78 seg. 118.02 seg.

50 clients 161.67 seg. 10.32 seg. 265.61 seg.

70 clients 418.19 seg. 23.83 seg. 657.72 seg.

Through the analysis of the times in Table 3, we can observe that the client’s connection
time to the server increased when there was more than one client. For 70 clients, the con-
nection time increased excessively because, from a certain number of clients, the edge
devices had difficulty in creating other clients (containers), delaying the connection process
of all clients to the server. Regarding the average time for each round, we can observe that,
in the first three tests, the time was the lowest because there was only one client (container)
on the same edge device. When we increased the number of clients on the same edge
device, the time per round increased because the device had more resource consumption.
Consequently, with the increase in the connection time and the time of each round, the total
time of the test also increased.
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In the following sections, we will take a closer look at the relationship between the
increase in the number of clients and resource consumption.

5.2. ML Model Training Time

Figure 7 shows the time for the model aggregation on the server for a specific number
of rounds and the number of clients used in the testbed. With the number of clients
increasing, it is possible to observe a slight increase in the time it takes to aggregate the
models. For 70 clients, the average time was 0.14 s, which is quite fast, but for cases in
which we need to scale the federated system to thousands of clients, the aggregation time
will already be relevant for the total system time.

Figure 7. Model aggregation time for each round at the server.

Since we used two different types of devices for the tests on the client side, Figure 8
shows the results for a client on the Jetson Nano and a client on the Jetson NX Xavier. On
each device, a client was selected, and the training time was evaluated. With the increase in
the number of clients on the same device, the time increased significantly for the selected
client. This occurred because the device was overloaded with the processes of several
clients. As shown in Figures 8 and 9, the first round was removed due to the fact that the
Jetsons had memory problems and yielded false values. When comparing the behavior of
both Jetsons (Figure 8), we can observe that the Jetson NX Xavier performed better when
the number of customers increased. This is because the Jetson Xavier is a device with a
better processor and more CPUs than the Jetson Nano.

Figure 8. Model training time for each round for the client.

Regarding the time required to evaluate the model on the client side for both devices,
the same conclusion as above holds (Figure 9). Therefore, comparing both Jetsons, the Jetson
NX Xavier performed better than the Jetson Nano when scaling the number of customers.
Later on, we will show the performance of the Jetsons relative to the percentage of Central
Processing Unit (CPU) and Random 351 Access Memory (RAM) used by the Jetson during
the experiments.
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Figure 9. Model evaluation time for each round for the client.

5.3. Communication Delay Evaluation

In the evaluation of the model transfer times between the client and the server, a system
with only one server and one client was created. On the left side of Figure 10, we can
observe the result for a system with one client on a Jetson Nano and on the right side
a system with one client on a Jetson NX Xavier. In this specific case, since the figures
only contain two curves, we show the mean and 95% confidence intervals of the ten runs.
When comparing the results for the two Jetsons, we can observe that both had a fairly fast
upload and download time of only a few milliseconds; we can also observe a slightly better
performance on the Jetson Nano.

Figure 10. Model upload and download times.

After evaluating the performance of the federated learning (FL) solution itself, we
now take a closer look at the resource consumption of the edge and server devices.

5.4. Server Resource Overhead

To better understand how Jetsons and Server performance behaved, we measured
each device’s Random 351 Access Memory (RAM) and Central Processing Unit (CPU)
usage over several tests. To gain more information about the Central Processing Unit (CPU)
and Random 351 Access Memory (RAM) used on the server, the Python library ’psutil’
(https://psutil.readthedocs.io/en/latest/, accessed on 22 November 2022) was used. This
library provides an API for obtaining information about operating systems, such as Central
Processing Unit (CPU) usage, memory usage, processes, etc.

In Figure 11, below, it is possible to observe that the Random 351 Access Memory
(RAM) usage values on the server with the addition of more clients to the system do
not interfere with the performance of the machine; in the use of one client or 70 clients,
the percentage of Random 351 Access Memory (RAM) used is always about 5.5%. The only
difference with the addition of clients is the increase in the emulation time. Regarding the
analysis of the percentage of Central Processing Unit (CPU) used in the server (Figure 12),
we can observe that at the beginning, when the clients are connected to the server, there is
a large peak, and then there are only some smaller peaks when the aggregation of the client
models happens, these peaks are around 30%. This means that the server has no difficulty

https://psutil.readthedocs.io/en/latest/
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in running the processes, and even with the addition of new clients, it does not interfere
with the performance of the server.

Figure 11. Server RAM consumption.

Figure 12. Server CPU consumption.

5.5. Jetson’s RAM Consumption

We now discuss the performance of the edge devices used in our testbed, NVIDIA
Jetson Nano e Xavier. We start by analyzing the Random 351 Access Memory (RAM)
consumption. To do so, we used the ’free -t -m’ command line available on the Linux-based
operating systems, in our case the Ubuntu distribution.

In Figure 13a, the percentage usage of Random 351 Access Memory (RAM) is shown.
The Jetson Nano had difficulty in terminating the connection with the server when it had
14 clients connected because a vertical line normally indicates that all clients are terminated
simultaneously, but instead of a vertical line, it shows a gradual decrease in the percentage
with many ups and downs. When analyzing the containers during this time, it is also
possible to observe that the client containers were being disconnected one at a time over a
long time.

Considering the Jetson NX Xavier (Figure 13b), on the other hand, the performance
was much better, when compared to the Jetson Nano. The percentage of the Random 351
Access Memory (RAM) used during the tests was 40% instead of 62% for the same number
of clients created on the device (14 clients). After the end of the 10 rounds of aggregation,
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the clients on the Jetsons closed the server connection. We can observe that the display of
the vertical line means that it instantaneously terminated the connection of the 14 clients. It
can also be observed that Jetson NX Xavier terminated all client connections to the server
before 700 s, while in the Jetson Nano, all connections were only disconnected after 700 s.

(a) Jetson Nano. (b) Jetson NX Xavier.
Figure 13. RAM consumption.

5.6. Jetson’s CPU Consumption

The results obtained with the Jetson Nano showed that the device’s performance
became critical, reaching very high values in the percentage of Central Processing Unit
(CPU) used, as shown in Figure 14a. To measure the CPU utilization, we used the ’/proc/stat’
script located in the /proc directory of the Linux-based distributions. In the Jetson Nano,
the usage percentage of the Central Processing Unit (CPU) often came close to 100%, even
staying at 100% for quite some time when various clients were being created on the device.
These high values led to a low-performance value of the Jetson Nano, so the maximum
number of clients that can be created was 14 clients because, after this number, the Jetson
Nano became excessively slow and eventually locked up.

(a) Jetson Nano.
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(b) Jetson NX Xavier.
Figure 14. Jetson’s CPU consumption.

Comparing the Central Processing Unit (CPU) performance of the two models of
Jetsons, we can observe that it was better and more stable in Jetson NX Xavier (Figure 14b).
Our tests confirmed what was expected. Due to its more robust configuration, the Jetson
Xavier outperformed the Jetson Nano when scaling the number of clients on the edge
device. This reinforced that, in our case study, the client should be seen as a federated
learning (FL) service running on the edge device.

6. Conclusions

Federated learning is a promising candidate to address the gap in centralized ML
solutions. It has lower latency and communication overhead when performing most of the
processing on the edge devices; it improves privacy, as data do not travel over the network;
and it facilitates the handling of heterogeneous data sources and expands scalability. To
assess how federated learning (FL) can effectively contribute to smart city scenarios, we
presented FedFramework and built a testbed that integrates the components of the city
infrastructure, where edge devices such as NVIDIA Jetsons were connected to a cloud
server. We deployed our lightweight container-based federated learning (FL) framework in
this testbed where we evaluated the performance of devices, the effectiveness of machine
learning and aggregation algorithms, the impact on the communication between the edge
and the server, and the consumption of resources. To carry out the evaluation, we opted for
the scenario in which we estimated vehicle mobility inside and outside the city, using the
real data collected from the Aveiro Tech City Living Lab infrastructure in the city of Aveiro.

In the context of smart cities, several services are used in edge devices, where great
diversity is expected in relation to the consumption of resources by these services. Taking
into account the scale of a smart city, the important thing is to properly assess the scope of
use in each one of them to have the best cost/benefit ratio, thus reaching an ideal project.
In this way, our study contributes to the field by showing the limits of each of these options,
facilitating the adequacy of services × devices. The better performance of Jetson Xavier
compared with the Nano has its price; thus, the Nano can meet several situations where
services with softer requirements can be used.
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In future work, we aim to scale our framework to more edge devices and to mobile
nodes such as OBUs.
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