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Abstract: Antibiotics are refractory pollutants that have been widely found in various environmen‑
tal media such as soil and surface water. Existing sewage treatments perform poorly at preventing
antibiotics in urban sewage from polluting natural environments. In this study, we designed a bio‑
electrically enhanced bioretention cell system (bioretention cell‑microbial fuel cell, BRC‑MFC) that
utilizes the unique structure of the BRC system to improve the removal of sewage antibiotics. This
new system can efficiently remove antibiotics by using a synergy of plant absorption, filler adsorp‑
tion, filler filtration and microbial degradation. To study the influences of multiple‑antibiotics stress
on the decontamination performance of BRC‑MFC, ofloxacin (OFLX) and tetracycline (TC) were se‑
lected as target antibiotics, and five BRC‑MFCs were built to treat sewage containing antibiotics of
different concentrations. The concentrations of pollutant in the influent and effluent were measured
and the pollutant removal performance of BRC‑MFC was studied. The diversity of rhizosphere mi‑
croorganisms and the abundance of denitrifying functional genes were analyzed. Experimental re‑
sults showed that over 90% of OFLX and TC in each BRC‑MFC were removed, with the removal
rates positively correlating with the concentration of antibiotics. In addition, the removal rates of
chemical oxygen demand (COD) in BRC‑MFC were both over 90%, while the removal rate of total
nitrogen (TN) was around 70%. Meanwhile, antibiotics could significantly improve the removal of
ammonia nitrogen (NH4

+‑N, p < 0.01). The microbial richness decreased, and we found that com‑
bined antibiotic stress on microorganisms was stronger than single antibiotic stress. The abundance
of denitrifying functional genes was reduced by antibiotic stress. The results of this study provide
reference values for other projects focusing on removing various antibiotics from domestic sewage
using BRC‑MFC.

Keywords: bioretention cell; antibiotic removal; denitrifying functional genes; ofloxacin; tetracycline

1. Introduction
Antibiotics are widely used in human production and life. Most cannot be fully me‑

tabolized by humans and animals, and they eventually enter the natural environment
through various means, such as hospital sewage and waste, antibiotic users’ excrement
and wastewater from aquaculture [1]. Ofloxacin (OFLX), the representative antibiotic
of fluoroquinolones (FQs), comes in one of the largest doses of the broad‑spectrum
antibiotics available and is thus one of the most important contaminants in the aquatic
environment [2]. OFLX cannot only be detected in lakes and sewage plants around the
world [3,4] but also often can be found in sediments due to its adsorption [5]. As a typical
broad–spectrum antibiotic, Tetracycline (TC) is a representative antibiotic of tetracyclines
(TCs), which is widely used in aquaculture, animal husbandry, and other industries [6].
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However, tetracycline (TC) is largely left in environmental media [7] due to its strong ad‑
sorption in the environment, which exerts a negative impact on environmental ecology
and human health. Antibiotics were detected in the tailwater of Lanzhou City’s wastewa‑
ter treatment plant in Northwest China’s Gansu Province, with the highest concentration
value reaching 9.78 µg·L−1. It was deduced that the 14 antibiotics continuously discharged
from the wastewater plant to the Lanzhou section of the Yellow River combine to total
about 5.66 kg per day, and the risk to the aquatic environment from long‑cycle antibiotic
exposure cannot be ignored [8].

The bioretention cell‑microbial fuel cell (BRC‑MFC) has been widely used to remove
conventional pollutants fromwastewater in recent years [9], and our group has beenwork‑
ing on its use for a long time [10–14]. BRC‑MFChas a gooddegradation effect on antibiotics
as it can remove pollutants through multiple pathways such as filler adsorption, plant up‑
take, root secretion degradation, andmicrobial decomposition [15–17]. However, when ap‑
plying BRC‑MFC, plants and microorganisms can also be subjected to reverse stress from
antibiotics during the treatment of antibiotic‑containing wastewater [18], which, in turn,
affects the decontamination performance of the BRC‑MFC. For example, TC can inhibit
the growth of plants and toxify their roots by inhibiting the protein synthesis of Micro‑
cystis aeruginosa and green algae [19], as well as by inhibiting the activity of enzymes in
chloroplasts [20,21]. The residues of OFLX (>20 µg·mL−1) showed significant negative
effects on tomato growth, photosynthesis, fluorescence parameters, antioxidant enzyme
activity and transcript‑level expression [22]. Antibiotics can also bind to active sites in soil
enzymemolecules including sulfhydryl groups and imidazole‑containing ligands, forming
more stable complexes that inhibit the active centers of enzymes and reduce the activity of
soil hydrolytic enzymes, thus affecting the conversion of soil nutrients as well as having in‑
direct effects on plant growth [23]. High concentrations of norfloxacin inhibited the phyla
Aspergillus and Actinomycetes [24], with the number of bacteria and fungi in the soil sig‑
nificantly reduced by 10mg·kg−1 TC, marking reductions of 80.67% and 57.20%, while the
maximum reduction rates were 86.91% and 74.01%, respectively [25]. Based on the many
effects of antibiotics on plants and microorganisms in BRC‑MFC systems, further system‑
atic studies on the effects of multiple antibiotics on the decontamination performance of
BRC‑MFC and the response characteristics of rhizosphere microorganisms are warranted.

A microbial fuel cell (MFC) is a device that uses microorganisms to convert chemical
energy in organic matter directly into electrical energy. The MFC is divided into an anode
layer and a cathode layer, with the anode placed in an anaerobic environment in the sub‑
merged layer, the cathode in an aerobic environment in the transition layer and the two
electrodes connected by external wires [26]. The electron‑producing microorganisms in
the submerged layer oxidize organic matter to produce electrons, which are transferred
from the anode to the cathode via an external wire, creating a current to accelerate pollu‑
tant removal [27]. As a biocatalyst, the microbial community plays an important role in
the performance of the MFC. When the MFC degrades antibiotics, the biological compo‑
sition of the electrode surface is divided into two main components: an electrically active
extracellular electricity‑producing colony and an antibiotic‑degrading colony. The com‑
plex interactions between the two are critical to antibiotic degradation and electrical en‑
ergy production in the MFC [28]. Changes in environmental factors, such as the antibiotic
concentration, antibiotic type, pH and temperature, can affect the structure of the micro‑
bial community in the MFC, which, in turn, affects the performance of the BRC‑MFC in
removing contaminants [29].

Based on this, this paper explores the response of the BRC‑MFC system in decontami‑
nation and ecological restoration under multiple‑antibiotics stress, with the aim of provid‑
ing a scientific basis for the practical engineering of BRC‑MFC for the removal of various
types of antibiotics from domestic wastewater.
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2. Materials and Methods
2.1. Experimental Methods

Based on the antibiotic stress response studies conducted by our group on different
plants, the plant with the best resistance to antibiotic stress (Phalaris arundinacea) was se‑
lected as the subject of the study to investigate the fouling removal performance and inter‑
root ecological changes of the BRC‑MFC system of the plant in response to the combined
stress of TC and OFLX. The experiments were conducted in the water supply and drainage
laboratory of LanzhouUniversity of Technology from June to September 2022. The BRC‑MFC
device is shown in Figure 1. It is a UVPC cylinder (diameter 300 mm× height 900 mm) and
the packing in the device follows theAustralian FAWBguidelines [30]. We used a total of 5 de‑
vices, each planted with 5 Phalaris arundinacea seedlings with good growth potential, planted
at a density of 78 plants/m2. Bioparticulate activated carbon (BAC) was used as the electrode
material; furthermore, the volume of both the anode and the cathode was 2.12 dm3. Catalytic
iron was added below the anode area to provide the electron donor for the anaerobic system,
copper wire was used to connect the two electrodes internally, and a 1000 Ω resistor was
connected externally to form the whole circuit.
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Figure 1. Bioretention cell–microbial fuel cell (BRC‑MFC) device diagram.

2.2. Device Operation
The reactorwas operated in 2 stages as follows: OFLX stress stage (I) for 45 day,where no

antibiotics were added to R0 as the control group, while OFLX (0.2, 1.2, 2.4 and 3.6 µg·mL−1)
was added to R1‑4, respectively; OFLX + TC combined stress stage (II) for 45 day, where no
antibiotics were added to R0 as the control group, while OFLX (0.2, 1.2, 2.4 and 3.6 µg·mL−1)
and TC (0.1, 0.6, 1.2 and 1.8 µg·mL−1) was added to R1‑R4, respectively. The test setup used
a downflow water intake with a multi‑channel peristaltic pump (LEAD15–44, Longer, Hebei,
China) for intermittent water intake, a single intake of 1 h, a hydraulic residence time of
7 h and an intake load of 1.0 m3·(m2·day)−1 [31]. The test period was 90 day, the pollu‑
tant indices of total nitrogen (TN), ammonia nitrogen (NH4

+‑N) and chemical oxygen de‑
mand (COD) were tested every 3 day and the antibiotic concentrations of TC and OFLXwere
tested every 7 day. The experimental influent was configured so that each liter of influent con‑
tained 0.225 gC6H12O6, 0.222 gNH4Cl, 0.022 gK2HPO4, 0.087 gNaCO3, 0.048 g FeCl2·4H2O,
0.004 g CoCl2·6H2O, 0.002 g NiCl2·6H2O, 0.000058 g MnCl2·4H2O, 0.000058 g CuSO4,
0.000058 g ZnCl2, 0.00043 CaCl2 and 0.0012 g humic acid.

2.3. Test Method
2.3.1. Pollutant Detection

The influent and effluent of the BRC‑MFC systems were extracted and enriched using
a solid stage extraction column (Infinity Lab Poroshe11 120 EC‑C18). TC and OFLX concen‑
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trations were determined by the ultra‑performance liquid chromatography‑ultraviolet and
visible spectrophotometry (UPLC‑UV) method [32], TN was determined by ultraviolet and
visible spectrophotometry using alkaline potassium persulphate digestion [33], NH4

+‑N was
determined by Nessler’s reagent spectrophotometry [34], COD was determined by the diges‑
tion colorimetry method. We dropped 2 mL of sewage into the HACH COD prefabrication
agent, shook it well and then digested it in the digester (HACHdrb200) for 2 h; after cooling it
to room temperature, we used a UV‑visible spectrophotometer (HACH dr6000) for detection.

2.3.2. High‑Throughput Sequencing of Microbial Community
Genomic DNA was extracted using a Rapid Soil DNA Extraction Kit (Qbiogene, Caarls‑

bad, CA, USA); furthermore, DNA integrity and purity were tested using 1% agarose gel
electrophoresis. Polymerase chain reaction (PCR) amplification and product electrophoresis
were performed using the genomic DNA as the template. What’s more, primers with bar‑
code and PremixTaq (TaKaRa, Beijing, China) were used for PCR amplification depending
on the region selected for sequencing. The PCR products were mixed and sequenced using
the high‑throughput sequencing platform Hiseq or Miseq. The experiment used 25 µL reac‑
tion system: 2 × 12.5 µL SYBR Green Realtime PCR Master Mix, 2.5 µL plus solution, 2 µL
sample DNA (diluted 10 times), 0.75 µL upstream and downstream primers (final concentra‑
tion 0.3 µmol/L), 6.5 µL ddH2O. The cycle conditions were denaturation for 120 s at 95 ◦C,
and annealing for 60 s at 60 ◦C, for a total of 40 cycles [35,36].

2.3.3. Genetic Testing for Denitrification Function
DNA was extracted from the seed mud samples using a rapid soil DNA extraction kit

(Qbiogene, Caarlsbad, CA, USA). Real‑time fluorescence quantitative PCR was used for the
detection of denitrification genes. Five genes were detected: nitrate reductase functional gene
narG, nitrite nitrogen reductase functional gene nirS, NO reductase functional gene norB,
N2O reductase functional gene nosZ and total bacteria (Bacteria) 16S rRNA. The primer se‑
quences are shown in Table 1. PCR conditions: initial denaturation at 95 ◦C for 3 min, fol‑
lowed by holding at 95 ◦C for 30 s, annealing at the desired annealing temperature for 30 s
and final extension at 72 ◦C for 40 s. All steps were cycled 35 times [37]. The sequencing data
were analyzedwith the R Programming Language and theNational Center for Biotechnology
Information database.

Table 1. The sequences of specific primers in real‑time qPCR analysis.

Target Gene Primer Name Primer Sequence

16S rRNA 341F
518R

CCTACGGGAGGCAGCAG
ATTACCGCGGCTGCTGG

narG narG 1960F
narG 2650R

TAYGTSGGSCARGARAA
TTYTCRTACCABGTBGC

nirS cd3aF
R3cd

GTCAACGTGAAGGAAACCGG
GAGTTCGGATGGGTCTTGA

norB Ns‑norB‑454F
Ns‑norB‑710R

TACTAYGARCCCTGGACTTACRA
ATGCGYGGSAWRTAGAAGWAMAMSA

nosZ nosZ‑F
nosZ1622R

CGYTGTTCMTCGACAGCCAG
CGSACCTTSTTGCCSTYGCG

3. Results and Discussion
3.1. Effect of Antibiotics on the Decontamination Performance of BRC‑MFC
3.1.1. Nutrient Removal Performance

In stage I, the COD removal effect of the five groups of reactors (R0~R4) was good, and
theCODremoval rate ofBRC‑MFCunderdifferent concentrationsof antibiotic stress remained
above 90%. Compared with R0, R1, and R2 showed a slight increase in COD removal rate,
while R3 and R4 showed no significant changes. This showed that OFLX stress did not inhibit
the COD removal ability of BRC‑MFC. There was also a positive effect on COD removal at 0.2
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and 1.2 µg·mL−1 OFLX stress. It has been found that antibiotics also have the effect of pro‑
moting microbial metabolic activity and stimulating microbial induction of respiration in the
low concentration range very commonly [38]. Therefore, microbial activity in the reactor un‑
der OFLX loading conditions also increased accordingly, increasing its efficiency in utilizing
COD. As shown in Figure 2a, the COD concentration of effluent was less than 30 µg·mL−1,
meeting the surface water class IV standard. There was no significant difference (p > 0.05)
between the TN removal rate of the test group R1~R4 and the control group R0, and only a
slight inhibition effect was observed. From Figure 2b, it can be seen that the microorganisms
were in the growth and reproduction period in the early operation period (0–10 days), so their
life activities consumed plentiful nutrients. The microorganisms used the nitrogen source to
assimilate nitrate‑nitrogen reduction, so the TN concentration in the effluent was low. Some
scholars point out that the nitrogen source assimilated by themicroorganisms themselves can
account for up to 80% of the nitrogen removal rate [39], which was the result of the joint ac‑
tion of most microorganisms in the system. During operation (10–45 days), the effluent TN
concentrations from R0 to R2 without antibiotics or a low concentration of antibiotic stress
were generally lower than those from R3 to R4 under a high concentration of antibiotic stress,
whichmay be due to the biomass advantage of a low antibiotic concentration, which enhances
the nitrogen removal effect. In the OFLX stress group, the removal of NH4

+‑N in R1~R4 was
increased by 26.57%, 18.35%, 8.63% and 7.44% compared to the control group R0, respectively.
In stage I, the removal of NH4

+‑N by R1 and R2 was significantly enhanced (p < 0.01), which
may be due to the prevalence of resistance genes of fluoroquinolone antibiotics in municipal
wastewater [40]. Nitrifying bacteria carrying resistance genes were already present in the re‑
actor during the biofilm formation stage, so the removal rate of NH4

+‑N was not inhibited by
OFLX. Meanwhile, the presence of antibiotics may promote the activity of nitrifying microor‑
ganisms [41]. While the nitrification and ammonia oxidation reactions mainly occurred in the
surface layer of the BRC‑MFC, the denitrification reactionsmainly occurred in the submerged
layer. Although it was found that the removal of NH4

+‑N was enhanced by iron filings in
the submerged layer under antibiotic stress, the accumulation of more nitrate–nitrogen in the
BRC‑MFC system was detrimental to the removal of TN. This was consistent with the con‑
clusion of this experiment that TN removal was slightly inhibited by exogenous antibiotics.
The approaches consistently taken to enhance TN removal by BRC‑MFC in the academia are
to increase the submerged layer’s depth and design the submerged layer with an anaerobic
environment to enhance the denitrification reaction. When the submerged layer’s depth is
increased from 0 cm to 60 cm, the TN removal rate can be increased from −23% to 62% [42],
which has a better enhancement of TN removal.

In stage II, the COD removal effects on R0~R4 were good, and the COD removal rates
were all maintained above 90%. Compared with the control group R0, there was no signif‑
icant change in the COD removal rates of R1 and R2, while there was a slight decrease in
the COD removal rates of R3 and R4. It can be seen that the COD removal ability of BRC‑
MFC was not inhibited by the low concentration of OFLX + TC stress. Only 2.4 µg·mL−1
OFLX + 1.2 µg·mL−1 TC and 3.6 µg·mL−1 OFLX + 1.8 µg·mL−1 TC created a slight inhi‑
bition of COD removal. This may be due to the prevalence of resistance genes for fluoro‑
quinolone/tetracycline antibiotics in municipal wastewater [40]. The reactor accumulated a
certain amount of resistance‑gene‑carrying bacteria during the start‑up period of the hang‑
ing film; therefore, there is some resistance to shock under antibiotic stress. Under combined
OFLX + TC stress, there was no significant difference (p > 0.05) in the TN removal rate for
each reactor from R1 to R4, but there was a slight decrease relative to the control group R0,
which reached a high level compared to other domestic and international studies (TN removal
rates from−133% to 99%) [43]. In the downflow influent BRC‑MFC, pollutants pass through
the planting layer, filtration layer, electrode layer cathode, transition layer, submerged layer,
electrode layer, and drainage layer from top to bottom. A large amount of root secretions
and microorganisms exist in the inter‑root microenvironment of the planting layer, and some
studies have shown that the organic acid component of root secretions can increase the total
number of bacteria in the soil, as well as increase the percentage of effective state nitrogen
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in the soil [44,45] and promote plant uptake of nitrogen nutrients, which also has a positive
effect on TN removal and explains the reasonwhy planting plants in BRC‑MFC contributes to
TN removal from the perspective of the inter‑root microenvironment. The submerged layer
was supplemented with an additional carbon source by adding 5% wood chips, and the de‑
vice has a high outlet to keep the submerged zone anaerobic at all times, which facilitates
the denitrification reaction. The external wires between the two electrode layers constitute a
complete electron transfer system, and the anode in the submerged layer receives electrons
conducted from the cathode, which are used to replenish the denitrifying microorganisms in
the submerged layer to ensure the balance of nitrogen conversion [46]. Meanwhile, the acti‑
vated carbon felt at the anode of the electrode layer and the iron filings in the submerged layer
act as an electronics shuttle‑like bodywithin the anaerobic environment [47], providing better
conditions for denitrification reactions. The drainage layer can also control the extension of
hydraulic retention time to increase the microbial concentration in the system, which was an
important reason for the high level of TN removal in the effluent. Under the combined stress
of OFLX and TC, the removal rates of NH4

+‑N from R1 to R4 increased by 20.99%, 15.40%,
9.41% and 5.08% compared with the control group R0, especially the removal of NH4

+‑N by
R1 and R2, which increased significantly (p < 0.01). As shown in Figure 2c, the NH4

+‑N con‑
centrations in the effluent fromR1 toR4were lower than the control groupR0. A similar study
pointed out that TC has a significant promotion effect on NH4

+‑N removal, probably because
the process of forming complexes between TC and catalytic iron in the BRC‑MFC submerged
layer consumes some Fe2+, resulting in a weakening of the reduction of nitrate–nitrogen to
NH4

+‑N by catalytic iron [48], leading to a lower effluent concentration of NH4
+‑N. In addi‑

tion, MFC connects the surface layer with the deep layer of the BRC system through a wire,
forming a closed electronic supply loop, which strengthens the electronic migration within
the system and provides additional electrons for the cathode on the surface layer. The nitri‑
fication reaction mainly takes place in the surface layer and is strengthened by the influence
of additional electrons. The more additional electrons there are, the higher the remove rate of
ammonia nitrogen, so NH4

+‑N was gradually consumed and removed.
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Figure 2. (a) Removal performance of chemical oxygen demand (COD). (b) Removal performance
of total nitrogen (TN). (c) Removal performance of ammonia nitrogen (NH4

+‑N).

The comparison of stage I and stage II data showed that the four antibiotic‑stressed re‑
actors did not differ significantly in COD removal, and antibiotics did not have a significant
effect onCOD removal capacity (p > 0.05), probably due to the presence of antibiotic resistance



Appl. Sci. 2023, 13, 2320 8 of 17

geneswithin the BRC‑MFC system so that COD removal did not receivemuch influence from
antibiotic stress. In addition, dehydrogenasewas thought to play an important role in organic
matter degradation. In a study of antibiotic‑stressed microorganisms, it was found that sin‑
gle tetracycline antibiotic stress or a combination with other types of antibiotics will have a
significant stimulating effect on dehydrogenase activity to enhance the removal of organic
matter [49]. The greater decrease in TN removal in stage II compared to stage I throughout
the reactionmay be due to the fact that the addition of TC inhibited the expression ofmicrobial
denitrification functional genes and the inhibition depended on the concentration of TC [50].
However, as shown in Figure 2b, the average TN effluent concentration of each reactor in
both stage I and stage II was less than 20 µg·mL−1, which met the primary B standard for ur‑
ban wastewater treatment plant discharge. The removal rate of NH4

+‑N was lower in stage II
than in stage I. The reasonmay also be that the absolute abundance of denitrification function
genes decreases due to the combined stress of two antibiotics, which weakens the nitrification
reaction in the BRC‑MFC system. However, the NH4

+‑N removal rate is always higher than
the TN removal rate, which proves that nitrification is always stronger than denitrification in
a BRC‑MFC system.

3.1.2. OFLX and TC Removal Performance
The concentrations of OFLX in the influent and effluent in stage I and stage II are shown

in Figure 3a. In stage I, the average removal rates of OFLX by R1~R4 were 93.91%, 98.98%,
99.52%, and 99.57%. In stage II, the average removal rates of OFLX by R1~R4 were 91.69%,
99.08%, 99.40%, and 99.41%. It can be seen that under OFLX stress of different concentra‑
tions, BRC‑MFC has a good removal effect on OFLX, which can be maintained at more than
90%, and the removal rate is proportional to the concentration of OFLX. The degradation
mechanism of OFLX in BRC‑MFC mainly includes electrochemical reduction and biodegra‑
dation reaction. Antibiotics become a carbon source and electron donor in an MFC biolog‑
ical anode [51]. Electrogenerated microorganisms and antibiotic‑degrading functional bac‑
teria attach to the anode to form a biofilm, which can reduce the overpotential required for
the degradation of antibiotics and their metabolites, thus promoting the degradation of
antibiotics [52,53]. The degradation of antibiotics at the bioanode relies mainly on anaerobic
biodegradation and continuous electrical stimulation, and the anaerobic environment formed
at the anode facilitates the mineralization of antibiotics, while continuous electrical stimula‑
tion can provide electrons to the environment, and through direct or indirect electron trans‑
fer to the bacterial cell, the stimulated microorganisms have enhanced metabolism and are
able to rapidly metabolize antibiotics through secreted enzymes [54]. In addition, the cath‑
ode of MFC if modified with modified materials (Fe0/TiO2) can promote cathode production
of –OH [55], which is extremely oxidizing, thus further enhancing the degradation of antibi‑
otics. In terms of biodegradation, plant roots produce more secretions to decompose antibi‑
otics under OFLX stress [56], but there is a limit to plant resistance to OFLX, and overly high
concentrations (30–100 µg·mL−1) of OFLX will cause a decrease in the content of antioxidant
enzymes such as CAT, POD and SOD in plants, accompanied by the accumulation of reactive
oxygen species such as O2

‑, H2O2 and MDA, which poison the plant itself [57].
The concentrations of TC in the influent and effluent in stage II are shown in Figure 3b.

The removal rates of TC by R1~R4 were 95.96%, 99.49%, 99.74%, and 99.60%, respectively.
BRC‑MFC also maintained more than 90% efficient removal rates for TC of different concen‑
trations. The removal of OFLX and TC from the BRC‑MFC reactor mainly depends on the
adsorption of fillers and microbial degradation [58]. Since TC has stronger adsorption in the
ambient medium [59], it can be seen that the removal rate of TC by BRC‑MFC was always
higher than that of OFLX. Each layer of fillers in BRC‑MFC has a larger adsorption capac‑
ity for TC [16], and the maximum adsorption capacity of activated carbon in the electrode
layer for TC reached 212.6 mg·g−1 [60]. In addition, the molecular structure of TC contains
several hydroxyl groups (‑OH) and an amino group (‑NH2) [61], and these groups can coor‑
dinate with heavy metal ions to generate insoluble salts [62]. For example, if a small amount
of iron filings is added to the submerged layer of BRC‑MFC, TC will form a red complex
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with Fe2+ [63]. In terms of microbial degradation, ammonia oxidation and nitrification reac‑
tions mainly occur in the surface layer of BRC‑MFC, in which ammonia‑oxidizing bacteria
(AOB) convert ammonia‑nitrogen to nitrate‑nitrogen by ammonia monooxygenase (AMO),
and some studies have found that AMO can also promote antibiotic degradation [64].
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3.2. Effect of Antibiotics on Ecological Effects of BRC‑MFC
Changes inMicrobialCommunityCharacteristics underCombinedTCandOFLXStresses
The microbial diversity indices in different BRC‑MFC reactors of stage I and stage II are

shown in Table 2. Under antibiotic stress, both richness and chao1 values decreased, indicating
that the microbial richness and total number of species decreased. The decrease in stage II was
greater than that in stage I, indicating that the inhibitory effect of combined antibiotic stress on
microorganisms was stronger than that of single antibiotic stress. The Shannon and Simpson
indices did not show significant regular changes, indicating that the homogeneity anddiversity
of microbial communities did not feel the effect of antibiotic stress.

Table 2. Microbial diversity indices of different BRC‑MFCs.

Sample Richness Chao1 Shannon Simpson

R0 28 88.5 3.38 0.194
I R1 21 36.1 3.49 0.128
I R2 18 84.1 3.22 0.150
I R3 28 28.1 3.35 0.193
I R4 22 22.0 2.92 0.226
II R1 16 18.0 3.27 0.137
II R2 18 68.0 3.19 0.160
II R3 19 21.0 3.32 0.154
II R4 17 29.5 2.88 0.202

Due to different classes of antibiotic stress at different concentrations, the distribution of
microbial communities in different BRC‑MFC reactors also differed. As shown in Figure 4a,
the top 12 bacteria in terms of phylum level were Proteobacteria, Bacteroidetes, Acidobacteria,
Actinobacteria, Planctomycetes, Chloroflexi, Verrucomicrobia, Patescibacteria, Gemmatimonadetes,
Nitrospirae,FirmicutesandCyanobacteria. It hasbeen shown thatProteobacteria (39.49% to58.50%),
Bacteroidetes (15.33% to 29.67%) and Chloroflexi (0.22% to 3.03%) are the dominant phylum in
wetland systems [65,66]. Furthermore, the phylum contains a variety of bacteria that efficiently
degrade organic pollutants [67]. In addition, proteobacteria and Chloroflexi are important mi‑
croorganisms for nitrogen and phosphorus removal [68]. Firmicutes is a nitrifying bacterium
that oxidizes nitrite to nitrate, ranked 11th in terms of abundance (0.14–1.43%). Compared
to R0, there was a significant increase in the abundance of planctomycetes and a decrease
in the abundance of patescibacteria under antibiotic stress. Similar studies by other investi‑
gators have shown that when BRC was under two‑antibiotics stress, the top 10 bacteria in
terms of phylum level are Proteobacteria, Bacteroidetes, Chloroflexi, Patescibacteria, Acidobacteria,
Actinobacteria, Firmicutes, Spirochaetes, VerrucomicrobiaandGemmatimonadetes [13]. Among them,
nine kinds of bacteria in terms of phylum level were consistent in our study.

As shown in Figure 4b, the top 12 bacteria in terms of genus level were Rhodanobac‑
ter, Holophaga, Zoogloea, Aeromonas, Pseudomonas, Nakamurella, Ferrobacterium, Flav‑
ihumibacter, Nitrosospira, Schlesneria, Dechloromonas and Tsukamurella. The abundance
of the dominant genera in the different BRC‑MFC reactors varied widely. In the absence
of antibiotic stress, the dominant genera were Rhodanobacter (7.20%), Tsukamurella (1.76%),
Dechloromonas (1.58%) and Pseudomonas (1.07%). After antibiotic stress, the dominant ho‑
mogeneous genera changed to Rhodanobacter (7.25–28.87%), Holophaga (1.35–11.30%) and
Aeromonas (0.08–15.08%). Only the specific dominant species of Rhodanobacter in BRC‑MFC
did not change, but its abundance increased to 28.87% after coming under antibiotic stress. Ni‑
trosospira belongs to the nitrifying bacteria that oxidize NH4

+‑N to NO2
– [69]. OFLX stress at

2.4 µg·mL−1 and 3.6 µg·mL−1 increased the abundance of Nitrosospira to 2.47% and 2.09%,
respectively, which could enhance the nitrification efficiency. Similar studies by other investi‑
gators have shown thatwhenBRCwasunder two‑antibiotics stress, the top 10 bacteria in terms
of genus level are Blrii41, denitratisoma, Ferrobacterium, Thiobacillus, Saccharimonadales,
Bacteroidetes_vadinHA17, Desulfomicrobium, Sbr1031, Treponema_2 and Subgroup_7 [13].
There were only one kind of bacteria in terms of genus level was consistent in this study.
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different BRC‑MFCs. (c) Clustering heat map of abundance at the genus levels with the 30 highest
abundance levels in different BRC‑MFCs.3.2.2. Response of Functional Genes for Denitrification
under Combined TC and OFLX Stresses.

From the clustering heat map of species abundance at the genus levels, shown in
Figure 4c, it can be seen that themicrobial community composition structures in different BRC‑
MFC reactors differed significantly, with the highest similarity between R0, R3 and R4 in stage
II. Haliangium, Ohtaekwangia, Terrimonas and Sphingomonas all accounted for a high proportion
in R0, II R3 and II R4. In stage �, OFLX single‑stress causedmost growth of Ferruginibacter and
Salinimicrobium. In particular, Salinimicrobiumwas endemic in stage �. It might be particularly
sensitive to TC, explaining why the species died out in stage � with TC stress.

The role of each nitrogen removal functional gene in the denitrification pathway is shown
in Figure 5 [70]. Real‑time fluorescence quantification of the abundance of total bacterial 16S
rRNA genes and denitrifying functional genes narG, nirS, norB, nosZ in the denitrification pro‑
cess showed that the total bacterial 16S rRNA gene copy number was maintained at
108–109 copies·g−1 in the packed soil of the five BRC‑MFC reactors at different experimental
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stages. The absolute copy number of denitrifying functional genes varied at different experi‑
mental stages, as shown in Figure 6a, and the corresponding abundance ratio (the ratio of the
copy number of denitrifying functional genes to the copy number of total bacterial 16S rRNA
genes) is shown in Figure 6b. The absolute abundance levels of denitrifying functional genes
in BRC‑MFC reactors under OFLX and TC stresses all decreased to some extent, with nosZ de‑
creasing themost, R4 decreasing 95.18% in absolute abundance compared to the control group
R0, and R0‑R4 narG absolute abundance levels all greater than 106 copies·g−1, thus still pos‑
sessing a strong nitrate‑reduction capacity under variousconcentrations of antibiotic stress [71].
nirS and nosZ had absolute abundance levels greater than 106 copies·g−1 from R0 to R1, indi‑
cating that the BRC‑MFC system still had a strong nitrite–nitrogen reduction capacity andN2O
reduction capacity under the combined stress of 0.2 µg·mL−1 OFLX + 0.1 µg·mL−1 TC [70].

The abundance ratios of three types of denitrifying functional genes, narG, nirS and norB,
had little change, and no obvious pattern with the concentration of antibiotics, while the abun‑
dance ratio of nosZ showed a significant decrease under the combined stress of two types of
antibiotics and showed a negative correlation with antibiotic concentration. The nosZ abun‑
dance ratios from R0 to R4 were 0.26859%, 0.15757%, 0.10504%, 0.043% and 0.03865%. This
indicates that the antibiotic dosing severely inhibited the conversion of N2O to N2 during den‑
itrification [72], which was detrimental to the denitrification process.
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4. Conclusions
The removal rates of COD in BRC‑MFC system were all maintained above 90%, and an‑

tibiotics had little effect on COD removal (p > 0.05). The removal rate of TN has maintained
at 70%, and there was no significant difference among different BRC‑MFC reactors (p > 0.05).
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The NH4
+‑N removal rate was stable at 74% without antibiotic stress, and the removal rate in‑

creased to 77–93% after adding antibiotics. Antibiotics could significantly promote NH4
+‑N

removal (p < 0.01), but the enhancement rate was inversely proportional to the antibiotic con‑
centration. Under different concentrations of antibiotic stress, the removal rates of OFLX and
TC of each BRC‑MFC system reached more than 90%. The removal rates were proportional to
the antibiotic concentrations. The removal rate of OFLX in stage I was higher than that in stage
II, indicating that the performance of OFLX removal by the BRC‑MFC system was negatively
affected by antibiotic complex stress.

Microbial abundance and the total number of species decreased under antibiotic stress,
and the decrease was greater in stage II than in stage I, indicating that combined antibiotic
stress had a stronger inhibitory effect onmicroorganisms than single antibiotic stress. Proteobac‑
teria and Bacteroideteswere the dominant phylumwithin the BRC‑MFC system,with the highest
abundance levels of 58.50% and 29.67%, respectively. The abundance of denitrifying functional
genes in the BRC‑MFC reactor under antibiotic stress decreased to some extent; furthermore,
the absolute and abundance ratio of nosZ decreased the most, and the absolute abundance of
R4 decreased by 95.18%more compared with that of R0 in the control group.
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