
Citation: Du, Y.; Li, Y.; Xu,

M.; Jiang, J.; Wang, W. A Joint

Channel Estimation and

Compression Method Based on GAN

in 6G Communication Systems. Appl.

Sci. 2023, 13, 2319. https://doi.org/

10.3390/app13042319

Academic Editor: Dimitris Mourtzis

Received: 20 October 2022

Revised: 25 January 2023

Accepted: 7 February 2023

Published: 10 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

A Joint Channel Estimation and Compression Method Based
on GAN in 6G Communication Systems
Ying Du 1,2 , Yang Li 2 , Mingfeng Xu 2,*, Jiamo Jiang 2 and Weidong Wang 1

1 Department of Electronic Engineering and Information Science, University of Science and Technology
of China, Hefei 230052, China

2 Mobile Communications Innovation Center, China Academy of Information and Communications
Technology, Beijing 100191, China

* Correspondence: xumingfeng@caict.ac.cn

Abstract: Due to the increasing popularity of communication devices and vehicles, the channel
environment becomes more and more complex, which makes conventional channel estimation
methods further increase the pilot overhead to maintain estimation performance. However, it
declines the throughput of communication networks. In this paper, we provide a novel two-stage
based channel estimation method by using generative adversarial networks (GANs) to handle this
problem in orthogonal frequency division multiplexing (OFDM) systems. Specifically, the first stage
aims to learn the mapping from a low-dimensional latent variable to the real channel sample. During
the second stage, an iterative algorithm method is designed to find the optimal latent variable by
matching the pilot channels of a real channel and generated channel. Then, the data channels are
recovered based on the learned mapping relationship between the latent variable and the real channel
sample. The simulation results show that our proposed method can achieve a performance gain of
more than 2 dB with a pilot reduction by 75% when SNR is 10 dB, by comparing with the widely
used Wiener filter interpolation method. In addition, as the low-dimensional latent variable can be
obtained simultaneously, it can also be used for reducing the feedback overhead.

Keywords: channel estimation; generative adversarial networks

1. Introduction

Channel estimation is a fundamental issue to be addressed in wireless communication
systems since its accuracy has a significant impact on the recovery of the received signals
as well as the management of interference suppression and wireless resource allocation
and other tasks [1]. According to whether prior information is used, the channel estimation
methods can be divided into three categories, which are the blind estimation method,
the pilot-based estimation method, and the semi-blind estimation method, respectively.
In particular, blind estimation methods acquire channel state information (CSI) from the
structure and statistics of the received signals, while pilot-based estimation methods allocate
a part of wireless resource to transmit known signals to obtain CSI. To enable high precision
channel estimation performance, the latter has been widely used [2].

For a future beyond 5G and 6G communication systems, it is more challenging to
acquire channel estimation results with high accuracy since many higher mobility and
denser-connection scenarios will appear [3]. As introduced in [4], the accuracy of channel
estimation can benefit from the increase in the number of pilots. To support the estimation
accuracy to satisfy the requirements of service in a complex channel environment, typical
conventional channel estimation methods, such as the least square (LS) estimator and the
minimum mean square error (MMSE) estimator, have to add many more pilots. However,
it declines the spectral efficiency of communication systems due to more wireless resources
being allocated to transmit pilot signals. In addition, both methods have their own short-
comings [5]. Specifically, the LS estimator cannot be used to estimate data channels directly,
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while the MMSE estimator needs to know the statistical characteristics of both pilot and
data channels in advance and consumes extra computational resources to perform the
matrix inversion operation.

To overcome these bottlenecks, some deep learning-based channel estimation methods
have been developed. According to whether the conventional channel estimation method is
combined, the main idea of these methods can be classified in the following two categories.
On the one side, there are some works focusing on designing neural networks as the
denoising module embedded into existing conventional estimation methods. In [6], the
authors employed two convolutional neural networks (CNNs) connected sequentially
to denoise and smooth the channel matrix obtained by using conventional interpolation
methods. A scheme that denoises the received signals based on CNN model at first and then
estimates channel coefficients by using conventional estimation methods was proposed
in [7]. On the other side, some studies are dedicated to learning the correlation between
pilot channels and data channels by using neural networks. In [8], a CNN model was
trained to learn the time–frequency correlation so that the complete channel matrix can
be obtained by feeding pilot channels into the model. Moreover, Ref. [9] designed a
CNN model to learn the time–frequency–spatial correlation in massive multiple-input–
multiple-output (MIMO) systems. However, it is worth pointing out that although the
performance can be improved significantly by comparing with conventional methods,
most of the designed structure of neural networks is very dependent on the specific pilot
configuration. It means that the model needs to be retrained once the pilot configuration
changes, which cannot provide adaptive deployment.

As a newly emerging neural network structure, GAN has shown powerful perfor-
mance in generating synthetic samples following real data distribution [10], which has been
applied in many aspects, including image generation [11], image restoration [12], dataset
extension [13], communication networks [14] and others. In the wireless communication
domain, the GAN-based channel modeling in complex channel environment has attracted
a lot of attention. In particular, Ref. [15] has studied the feasibility of using the conditional
GAN model to replace the modeling channel transfer function. Therefore, a more precise
parametric backpropagation can be guaranteed during the training process of an end-to-
end communication system. By employing the federated learning framework [16,17], a
distributed conditional GAN framework was proposed in [18] to enable multiple users
to train a global model collaboratively. In terms of the channel estimation problem, some
GAN-based schemes have been proposed to enhance estimation accuracy and reduce pilot
overhead. In [19,20], GAN was employed to learn the distribution of channel correlation
matrix in vehicular millimeter wave systems and frequency division duplex massive MIMO
systems, respectively. Moreover, Ref. [21] provided a scheme aiming to learn the gradient of
any point in high-dimensional channel space, in which any channel to be estimated can be
recovered by following the learned gradient direction. However, consuming a large amount
of storage resource is the shortcoming of this scheme. In addition, Ref. [22] proposed a
virtual pilot generation-based scheme, where GAN is used to learn the correlation between
pilot signals. By combining real pilots with generated virtual pilots, the channel estimation
accuracy can be improved without extra cost of wireless resource. Furthermore, GAN has
been used to learn the correlation between elements of channel matrix directly in [23]. With
the aid of compressed sensing, the channel can be estimated without a significant loss of
accuracy when more than a half of the number of pilots is reduced.

Although the above GAN-based works have explored the ability of GAN to learn the
distribution of multiorder statistics for wireless channels in depth, they mainly focus on
low-speed mobile users and neglect to be compatible with high-speed mobile users. In
this paper, a novel two-stage channel estimation method based on GAN is proposed to
guarantee flexible channel estimation under any pilot configuration and the performance
evaluation is extended into the medium- and high-speed mobile scenario for OFDM
systems. In particular, a GAN model is designed to learn the correlation between elements
of the channel matrix in the first stage. During the second stage, a channel recovery method
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is given to achieve channel estimation via using the pretrained GAN model. In particular,
our proposed scheme can estimate data channels directly via the given pilots without
generating extra virtual pilots at first and then using the conventional interpolation method
as introduced in [22], which facilitates the efficiency of channel estimation. Moreover,
compared with [23], our proposed scheme does not need to find a measurement matrix that
is necessary for compressed sensing. The main contribution of this paper is summarized
as follows:

• Firstly, a novel GAN-based channel estimation method is proposed, in which the
coefficients over all data channels are obtained by matching the coefficients of real
channels and generated channels at pilot positions. Meanwhile, the compressed low-
dimensional latent variable is obtained simultaneously, which can be used to support
the CSI feedback service with a low communication overhead.

• Secondly, the simulation results are provided to show the performance gain obtained
by using our proposed method. In particular, by comparing with the conventional
Wiener filtering interpolation method, our proposed method can improve the accuracy
performance by more than 2 dB with a 75% reduction of the number pilots when the
signal-to-noise (SNR) is 10 dB. It shows the potential to reduce the pilots overhead
drastically. The achieved compression ratio in this experiment is 2.4%.

2. System Model and Problem Formulation

In this section, the wireless system model in consideration is provided at first, followed
by the illustration of the studied channel estimation problem.

2.1. System Model

Consider the channel estimation scenario in the orthogonal frequency division multi-
plexing (OFDM) system over the frequency selective fast fading channel, and the structure
of an OFDM block with Ns symbols in the time domain and N f subcarriers in the frequency
domain is depicted in Figure 1. In the case of frequency selective fast fading, the channel
environment keeps constant within each element during transmission but varies among
elements. Then the received OFDM symbols y(i, j) at the receiver can be expressed as

y(i, j) = h(i, j)s(i, j) + w(i, j), 1 ≤ i ≤ Ns, 1 ≤ j ≤ N f , (1)

where s(i, j) denotes the transmitted symbols at the i-th symbol and j-th subcarrier, h(i, j)
denotes the channel coefficient of the wireless link between transceiver and receiver, and
w(i, j) is the additive white Gaussian noise with 0 mean and σ2 variance.
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Data Element
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Figure 1. The structure of an OFDM block.

As shown in Figure 1, an OFDM block contains two types of elements, named pilot
element and data element, respectively. In particular, prior known symbols are transmitted
in the pilot elements to obtain the partial instantaneous channel state of the entire OFDM
block, while the data symbols are delivered in the data elements. Define αp(i, j) as the
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position indicator of pilot elements, αp(i, j) = 0 or 1. Specifically, if αp(i, j) = 1, it indicates
that the OFDM element located at i-th symbol and j-th subcarrier is used to transmit pilot
symbols; otherwise, it means that the OFDM element belongs to the data element set. Then
y(i, j) in (1) can be divided into two parts, which are the received pilot symbols yp(i, j) and
data symbols yd(i, j). Their expressions can be written as:

yp(i, j) = αp(i, j)y(i, j), (2a)

yd(i, j) = (1− αp(i, j))y(i, j). (2b)

Similarly, h(i, j), s(i, j) and w(i, j) can also be divided into the pilot and data terms
with the same form of (2a) and (2b), respectively.

2.2. Problem Illustration

Before concentrating on the studied problem, the conventional channel estimation
procedure of data elements is summarized. Generally, it consists of the following two steps:

• Firstly, the channel coefficients of pilot elements are determined via using the received
pilot symbols yp(i, j) and the transmitted pilot symbols sp(i, j) = αp(i, j)s(i, j). The LS
estimator [24] is an efficient method to solve this problem, and its optimal solution
can be written as

ĥp(i, j) = yp(i, j)/sp(i, j). (3)

Note that if the block fading channel is considered within an OFDM block, the channel
coefficients of data elements can be estimated directly by averaging all estimated re-
sults of pilot channels since the channel coefficient remains constant during the whole
OFDM block transmission. However, in the case of frequency selective fast fading
assumption, the channel with fast variation makes the above scheme impractical. To
acquire the channel coefficients of data elements more precise, the following step
needs to be implemented.

• Secondly, based on the estimated results of pilot channels ĥp(i, j), the remaining
channel coefficients of data elements can be obtained by using two dimensional inter-
polation methods, which include nearest neighbor interpolation, linear interpolation,
bicubic interpolation and other methods [25]. In addition, the MMSE estimator [26]
is a competitive method to achieve high accuracy estimation with extra cost of com-
putation complexity. Its optimal solution can be found by multiplying a filtering
matrix AMMSE with the pilot channel coefficient matrix ĥp, which is denoted as
ĥd = AMMSEĥp. By minimizing the gap between ĥd and the ideal channel coeffi-
cient hideal, the optimal AMMSE can be derived as [6]

AMMSE = Rhd ,hp(Rhp ,hp + σ2(ssH)−1)−1, (4)

where Rhd ,hp = E{hdhH
p } denotes the cross-correlation matrix between hd and hp,

Rhp ,hp = E{hphH
p } denotes the self-correlation matrix of hp, (·)H denotes the conjugate

transpose operator, and (·)−1 denotes the inversion operator.

The expression of AMMSE given by (4) shows that the usage of MMSE estimator relies
on the acquirement of a complete channel correlation matrix, which is challenging to be
determined in real time. Besides, the calculation of the matrix inversion leads to a large cost
of computational consumption. To avoid these disadvantages, we provide a novel GAN-
based channel estimation scheme in this paper. The key idea is to employ GAN to learn the
correlation between elements within an OFDM block. Next, the data channel coefficients
can be recovered by using the learned correlation between pilot and data channels instead
of calculating AMMSE. The optimization problem can be formulated as

P1 = minE
{
‖hideal −H(M, ĥp)‖2}, (5)
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whereM denotes the trained GAN model, and H(·) denotes the interpolation function
that uses ĥp withM to infer ĥd.

3. A GAN Based Channel Estimation Scheme

In this section, a novel channel estimation method based on GAN is provided. The
pipeline of our proposed channel estimation scheme is illustrated in Figure 2. As shown
in Figure 2, the procedure contains two stages, which are the model training and model
usage stages, respectively. During the model training stage, a designed GAN model is
trained to be capable of producing synthetic OFDM channel samples that are similar to
the real OFDM channel samples. In particular, the model training stage can be conducted
offline or online. For the offline training case, the model can be trained with pre-collected
channel samples so that it can be applied directly during communications. In the case
of online training, the model is trained with samples collected in the current channel
environment, which makes the learned characteristic distribution of channels more in
line with the current scenario. Hence, there is a trade-off about deployment latency and
synthetic channel samples similarity between offline and online modes. The selection of an
appropriate training mode is customized according to different requirements of services.
In addition, the joint utilization of both modes is feasible, which can be done by training a
preset model offline and fine-tuning it online. During the model usage stage, the already
trained GAN model combined with the estimated pilot channel coefficients ĥp is imported
into a designed interpolation function H to obtain the data channel coefficients ĥd. The
details of these two stages are presented in the following two subsections.

Received Pilot Symbols pypyReceived Pilot Symbols py Estimated Pilot Channel Coefficients ˆphEstimated Pilot Channel Coefficients ˆph

Trained GAN ModelTrained GAN ModelGAN Model TrainingGAN Model TrainingTraining Channel Samples

Interpolation Function

Input Output

Output
Input

LS Estimator

Model Training Stage Model Usage Stage

Estimated Data Channel Coefficients ˆ
dhEstimated Data Channel Coefficients ˆ
dh

Input

Figure 2. The procedure of the proposed GAN-based channel estimation scheme.

3.1. Model Training Stage: Training A GAN Model to Capture the Distribution of Real Channel

In this subsection, the procedure of generating synthetic channel samples with high
similarity to real channel samples by training a GAN model is illustrated in detail. Firstly,
the basic concept of GAN is provided as follows.

3.1.1. Basic Framework of GAN

As shown in Figure 3, the general structure of GAN is depicted. It consists of two
independent neural networks, which are named generator G and discriminator D [10],
respectively. In particular, the generator aims to learn the mapping relationship from a latent
variable z in low-dimensional space to the real data samples in high-dimensional space.
In the ideal case, the trained generator can produce a large variety of different synthetic
channel samples that follow the real data distribution. The key goal of discriminator is to
distinguish whether the input data come from the real dataset. Generally, to achieve this
goal, the output layer of the discriminator network is designed to be a sigmoid function
such that a probability value ps labeling the input data can be obtained, ps ∈ [0, 1]. When
ps approaches 1, it means that the input data sample is most likely to be a real data sample,
while when ps approaches 0, it means that the input data sample, with high probability,
belongs to the synthetic sample set.
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Figure 3. The structure of GAN.

Since the generator tries to generate data samples capable of confusing the discrimi-
nator while the discriminator aims to distinguish synthetic data samples produced by the
generator from the real data samples, the key objectives of the generator and discriminator
are in conflict. Therefore, a min-max game problem for training the GAN model can be
formulated, which is expressed as [10]

P2 = min
θg

max
θd

Ex∼pr{log D(x; θd)}+Ez∼pz{log(1− D(G(z; θg); θd))}, (6)

where θg and θd denote the parameters of generator and discriminator, respectively, G(·)
and D(·) are the output of the generator and discriminator, respectively, and pz and pr are
the probability distribution of the latent variable z and real dataset, respectively.

3.1.2. Training Procedure of a GAN Model

The specific procedure of training a GAN model that generates synthetic channel
samples is depicted in Figure 4. As shown in this figure, the training of the generator and
discriminator are conducted iteratively. The training procedure can be divided into two
cases based on the types of data samples fed into the discriminator. In particular, when
real channel data samples are inputted, only the parameters of discriminator need to be
updated. The discriminator tries to maximize the output probability ps(x) so that every
real sample can be identified well, and its training objective can be expressed as

max
θd
Od,r = Ex∼pr{log D(x; θd)}. (7)

Moreover, when synthetic channel data samples generated by the generator are fed
into the discriminator, both the parameters of the generator and discriminator are ready to
be updated. Specifically, in terms of the discriminator, its training objective is to minimize
the output probability ps(x) so that the synthetic samples can be distinguished, which is
written as

min
θd
Od,s = Ez∼pz{log D(G(z; θg); θd)}. (8)

As for the generator, its training objective is to maximize the output probability
ps(G(z; θg)) so that the produced synthetic samples can deceive the discriminator to regard
themselves as real samples, which is expressed as

max
θg
Og = Ez∼pz{log D(G(z; θg); θd)}. (9)
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Figure 4. Training procedure of a GAN model.

Based on the training objectives Od,r in (7), Od,s in (8) and Og in (9), the procedure of
training a GAN model to generate synthetic channel samples is summarized in Algorithm 1.
In Algorithm 1, the generator is trained once when the parameters of the discriminator have
finished R times updates, which is of benefit for balancing the performance between the
generator and discriminator during the training procedure and avoiding the mode collapse
issue [27]. The parameters can be updated via using gradient descent methods. In addition,
the widely used cross entropy function is usually selected as the loss function for training
the GAN model. After the GAN model is converged, stable synthetic channel samples can
be generated.

Algorithm 1 GAN-based synthetic channel samples generation.
Initialization: θd(0), θg(0), the maximum number of iterations K, the ratio of training
rounds between the discriminator and generator r, batch size NB, learning rate λ, the form
of loss function FT(·), and the convergence threshold δ.
Repeat: For k-th iterations, 1 ≤ k ≤ K
1. Sample NB real channel samples;
2. Generate NB synthetic channel samples by feeding NB sampled latent variables z

independently into the generator;
3. Feed real samples and synthetic samples into the discriminator, then calculate the

loss function with respect to real samples as Ld,r = FT(Od,r), and calculate the loss
function with respect to synthetic samples as Ld,s = FT(Od,s);

4. Update θd(k) by following θd(k) = θd(k− 1) + 1
NB

∑NB
n=1 λ∇θd(Ld,r − Ld,s);

If k mod r = 0, do generator training:
5. Generate another NB synthetic channel samples and feed into discriminator;
6. Calculate the loss function Lg = FT(Og);
7. Update θg by following θg(bk/rc) = θg(bk/rc − 1)− λ∇θg Lg.

Termination: When k > K or ‖θd(k)− θd(k− 1)‖ ≤ δ and ‖θg(bk/rc)− θg(bk/rc− 1)‖ ≤ δ.
Output: Trained discriminator with parameters θ∗d and generator with parameters θ∗g .

3.2. Model Usage Stage: Using Generator Model to Achieve Data Channel Estimation

In this subsection, the trained GAN model is used to estimate the data channels with
the pilot channels known. The channel recovery problem is similar to the image completion
problem in the computer vision domain [12]. This problem can be solved based on the
premise condition that any channel images following the real data distribution can be
generated if the generator is well trained. Since there is a one-to-one correspondence
between the latent variable and the channel matrix, there is potential to find the target
entire channel with the partial pilot channels information known by adjusting the latent
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variable z. Thus, the original channel recovery problem P1 given by (5) can be transformed
into the search problem of an optimal latent variable z∗, which is expressed as

P3 = arg min
z∗

1
Np

∑Ns
i=1 ∑

N f
j=1 ‖ĥp(i, j)− αp(i, j)G(z; θg)‖, 1 ≤ i ≤ Ns, 1 ≤ j ≤ N f , (10)

where Np = ∑Ns
i=1 ∑

N f
j=1 αp(i, j).

The procedure of recovering data channels to solve P3 is presented in Figure 5. Note
that only the generator model is involved in channel estimation. During the searching
process, the trained generator is used without parameter modification. The entire process
can be regarded as the interpolation functionH defined in (5). As shown in Figure 5, the
comparison between the real channels and the generated channels over all pilot positions
is conducted to determine the gap between each other. Afterward, the value of latent
variable z can be updated by using gradient descent methods, which makes the new output
generated channels at pilot positions closer to the real ones. Once the gap is minimized,
an optimal latent variable z∗ that reconstructs the pilot channels faithfully can be found.
Hence, the channels over all data positions will be recovered well due to the learned strong
correlations among elements. The corresponding algorithm is provided in Algorithm 2.
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Figure 5. Procedure of recovering data channels with trained generator.

Algorithm 2 Generator based Channel Estimation.
Initialization: Trained generator model θ∗g , latent variable z(0), learning rate η, the form of
loss function Fu(·), the maximum number of iterations L and the convergence threshold ε.
Input: The position indicator of pilot channels αp(i, j), 1 ≤ i ≤ Ns, 1 ≤ j ≤ N f .

1. Obtain the estimated channel coefficients of all pilot elements ĥp(i, j) based on (3);
Repeat: For l-th iterations, 1 ≤ l ≤ L

2. Generate a synthetic channel sample G(z(l − 1); θ∗g) with latent variable z(l − 1);
3. Calculate the gap ∆p(l− 1) between ĥp and G(z(l− 1); θ∗g) over all pilot channels;
4. Feed ∆p(l − 1) into the loss function Fu(·);
5. Update z(l) by following z(l) = z(l − 1)− η∇zFu(∆p(l − 1)).

Termination: When l > L or ‖z(l)− z(l − 1)‖ ≤ ε.
Output: The recovered entire channel matrix G(z∗; θ∗g).

In Algorithm 2, the optional loss function Fu(·) has a wide range, including L1-norm
and L2-norm and others. When the updating process of latent variable z is terminated,
the final version of recovered entire channel matrix G(z∗; θ∗g) with both pilot and data
channels can be obtained. Note that the proposed algorithm is available for supporting the
implement of any pilot configuration without retraining the neural network since there is
no reliance on pilot information during the training process of the GAN model. Therefore,
the proposed scheme does not require additional training cost if the pilot configuration
changes, which is beneficial for flexible deployment.
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4. Simulation Settings and Results

In this section, simulation results are provided to show the performance gain of
our proposed GAN-based channel estimation scheme. In particular, the OFDM channel
dataset containing N = 20, 000 samples is generated by following the TDL-C channel
model [28], which characterizes the Rayleigh fading channel environment in the urban
macrocell scenario under the non-line of sight (NLOS) condition. The ratio of the training
samples to the total samples is set as 0.8. Power normalization is operated for all samples.
The number of subcarriers and symbols within each OFDM block are set as N f = 48 and
Ns = 14, respectively. The carrier frequency is set as f = 3.5 GHz, and the bandwidth
of each subcarrier is set as B f = 30 kHz. The time interval of an OFDM block is set as
T = 0.5 ms. To avoid the inter symbol interference, the cyclic prefix accounting for 6%
of the symbol length is added to the front of each symbol. In addition, to ensure that the
maximal propagation delay is not larger than the duration of cyclic prefix, the root mean
square (RMS) delay spread is considered to be set as Td = 300 ns. Moreover, the scenario
that the terminal user moving with high speed is also considered, in which two speed cases
are simulated, which are v1 = 150 km/h and v2 = 300 km/h, respectively.

As shown in Figure 6, three types of pilot configurations with different numbers of
pilots are considered in the evaluation of the channel estimation performance. To reduce
the cost of pilots and ensure the efficiency of data transmission, the maximum number
of pilot elements is limited to 96. In particular, the pilot positions are designed on the
same columns for all three configuration schemes, which are the 3, 6, 9, and 12-th columns.
The aim of configuring the sparse pilot pattern is to capture the fast-changing trend of the
channel environment. The only difference between these three schemes is the row positions
of pilots. Specifically, in the cases of pilot configurations (a), (b) and (c), the pilots are
inserted every two rows, every four rows, and every eight rows, respectively.

To evaluate the accuracy of the channel estimation, the performance metric needs to
be determined at first. The normalized mean square error (NMSE) that has also been used
in [6,7,23] is selected as the metric in this paper, and its definition can be expressed as

NMSEh =
1
N ∑N

n=1

‖hideal,n − G(z∗n; θ∗g)‖2

‖hideal,n‖2 , (11)

where n denotes the index of test sample.
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Figure 6. Pilot configuration schemes.

Next, the architecture of the GAN model used in this experiment is shown in detail.
The subsequent subsection gives the simulation results.



Appl. Sci. 2023, 13, 2319 10 of 14

4.1. GAN Model Architecture

The architectures of discriminator and generator are illustrated in Figure 7a,b, respec-
tively. As shown in this figure, both models are designed as fully connected networks with
five linear layers. In the case of the discriminator, the input channel sample is flattened
into a vector from the original matrix. Considering that the coefficient of the channel is
with a complex form, an efficient way to handle this is to split it into the real and imaginary
parts. In this experiment, the real part and the imaginary part are treated as two different
samples. Hence, the input layer is still designed with Ns × N f = 672 neurons. The hid-
den layer consists of three downsampling layers, which contain 512, 256 and 64 neurons,
respectively. The first four layers are each followed by a LeakyReLU active function and
a LayerNorm normalized function. Finally, the output layer contains only one neuron
followed by a sigmoid function, which outputs a probability ps to judge the authenticity of
the input samples.
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Figure 7. Illustration of used GAN model architecture.

In the case of the generator, the input latent variable z is designed as a standard
Gaussian vector with Nz = 16 dimensions. To evaluate the compression degree of the
original channel matrix by the generator, the compression ratio is defined as the ratio of the
dimension of z to the dimension of h, which is expressed as

ζ =
Nz

Ns × N f
. (12)

Based on (12), the compression ratio in this experiment is ζ = 2.4%. It means that the
proposed method can also be used for CSI feedback services to reduce the communication
overhead drastically. The hidden layer consists of three upsampling layers that are sym-
metric to the downsampling layers of the discriminator. Similar active and normalized
functions are inserted between the first four layers. In the end, the output layer contains
672 neurons connected with the Tanh activation function.

Other hyperparameters are summarized as follows. The ratio of training rounds
between discriminator and generator is set as r = 2. To generate synthetic channel samples
with high quality, it is recommended to train the GAN model with a large number of
epoches [23,29]. Thus, the parameters of the GAN model are updated by using the RMSprop
optimizer with learning rate λ = 0.0001 for up to 1000 epoches. The loss function FT is set
as the binary cross entropy function. In addition, the loss function Fu in Algorithm 2 is set
as the L1-norm function.

4.2. Simulation Results

In Figure 8, the comparisons between the magnitude of channel coefficients estimated
by our proposed GAN based method and those of the ground truth channel samples
in both medium- and high-speed mobile scenarios are provided. In particular, the pilot
configuration setting follows the scheme shown in Figure 6a. As shown in this figure, the
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channel changes more dramatically in the high-speed scenario than that in the medium-
speed scenario. The channel variation trends of the estimated results in both scenarios
coincide well with those of the ground truth results from both the two-dimensional and
three-dimensional perspectives. Moreover, Figure 8b,d show that the estimated results are
only with a limited error, which verifies the feasibility of our proposed method.

(a) (b)

(c) (d)

(a) (b)

(c) (d)

Figure 8. Comparison of GAN-based estimated channel samples and ideal channel samples (ground
truth results) when SNR is set as 20 dB. In (a,b), the speed of terminal user is set as 150 km/h, while
that in (c,d) is set as 300 km/h. Moreover, (a,c) show the channel magnitude from a two-dimensional
perspective, while (b,d) show that from a three-dimensional perspective.

As shown in Figure 9, the evaluation for the accuracy performance of our proposed
GAN-based channel estimation method is provided, where two mobile scenarios with
speeds of 150 km/h and 300 km/h are considered in Figure 9a,b, respectively. In addi-
tion, the pilot configuration settings are given in Figure 6. In particular, the widely used
conventional Wiener filtering interpolation method [30], a method that can achieve the
MMSE criteria when SNR is high enough, is selected as the benchmark. The estimated data
channels after Wiener filtering can be expressed as

ĥd,w = Awĥp, (13)

where Aw = Rhd ,hp R−1
hp ,hp

denotes the filtering matrix, which is pre-estimated in the link-
level simulation platform. In the mobile scenario with speed of 150 km/h shown in
Figure 9a, compared with the conventional method, the GAN-based methods always
outperform, even with a fewer number of pilots. However, when SNR is low, neither the
conventional method nor the proposed GAN-based method can achieve good performance
due to the existence of non-negligible error for the channel coefficients at pilot positions
estimated by the LS method. The maximum gain can be obtained when SNR is 10 dB.
Specifically, the performance gain is 3.4 dB, 3.0 dB and 2.7 dB when the number of pilot is 96,
48 and 24, respectively. It shows that the proposed method can reduce the pilot overhead
by 75% with only 0.7 dB performance loss. As the SNR increases, the performance of the
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proposed method will converge to a stable level due to the learning ability being limited by
the experimental model structure. By re-designing a more complicated network structure,
the error will converge to a smaller value.

(a) The mobile scenario with speed of 150 km/h (b) The mobile scenario with speed of 300 km/h

Figure 9. NMSE evaluation of our proposed GAN-based channel estimation scheme.

Moreover, in the mobile scenario with a speed of 300 km/h shown in Figure 9b, the
performance curves follow a similar trend with those in the mobile scenario with a speed of
150 km/h. In particular, the achieved accuracy performance is lower than that in Figure 9a
due to the more variable channel environment. The maximum gain also appears in the case
that SNR is 10 dB, where the performance gains under 96, 48 and 24 pilots conditions are
3.4 dB, 2.8 dB and 2.4 dB, respectively. It shows that the estimation error of the proposed
method increases 1 dB when 75% pilots are removed. It can be observed that as the number
of pilots decreases, the performance gain decays faster in the high speed scenario than that
in the medium-speed scenario; as a result, the accurate acquisition of channel correlation in
a complex channel environment needs sufficient pilots.

5. Conclusions

In this paper, we studied the feasibility of using the GAN model to address the
channel estimation problem in the scenarios where the channel varies dramatically toward
future 6G communication systems. Specifically, the entire estimation process contains
two stages, which are the model training stage and the model usage stage. In the model
training stage, a pre-designed GAN model is used to learn the channel distribution. In
the model usage stage, based on the learned correlation between elements in channel
matrix, the data channel coefficients are recovered via matching the generated pilot channel
coefficients by the trained GAN model and real pilot channel coefficients by the LS method.
Hence, the proposed GAN-based scheme can support the channel estimation for any
pilot configuration. Simulation results show that our proposed method can improve the
estimation accuracy with a large reduction in the pilots overhead in both medium- and
high-speed mobile scenarios. Meanwhile, the corresponding channel matrix is compressed
to a low dimension, which is also useful for dramatically reducing the feedback overhead
in the CSI feedback service. For future works, the pilot channels’ denoised scheme can be
considered to combine with the proposed method to further improve the channel estimation
performance, especially in the low SNR cases.
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