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Abstract: In modern medical diagnosis, the karyotype analysis for human chromosome is clinically
significant for the diagnosis and treatment of genetic diseases. In such an analysis, it is critically
important to segment the banded chromosomes. Chromosome segmentation, however, is technically
challenging due to the variable chromosome features, the complex background noise, and the
uneven image quality of the chromosome images. Owing to these technical challenges, the existing
deep-learning-based algorithms would have severe overfitting problems and are ineffective in the
segmentation task. In this paper, we propose a novel chromosome segmentation model with our
enhanced chromosome processing, namely ChroSegNet. First, we develop enhanced chromosome
processing techniques to realize the quality and quantity enhancement of the chromosome data,
leading to the chromosome segmentation dataset for our subsequent network training. Second, we
propose our novel chromosome segmentation model “ChroSegNet" based on U-Net. According to
the characteristics of chromosome data, we have not only improved the baseline structure but also
incorporate the hybrid attention module to ChroSegNet, which can extract the key feature information
and location information of chromosome. Finally, we evaluated ChroSegNet on our chromosome
segmentation dataset and obtained the MPA of 93.31% and the F1-score of 92.99%. Experimental
results show that ChroSegNet not only outperforms the representative segmentation models in
chromosome segmentation performance but also has a lightweight model structure. We believe
that our proposed ChroSegNet is highly promising in future applications of genetic measurement
and diagnosis.

Keywords: deep learning; chromosome segmentation; U-Net; attention mechanism; enhanced processing

1. Introduction

A healthy human cell has 46 chromosomes, which usually occur in pairs, including
22 pairs of autosomes and one pair of sex chromosomes. Chromosomes are rodlike struc-
tures formed by the polymerization of chromatin during mitosis or meiosis. They contain
important material required for human genetics and their morphology and structure are
closely related to human health. Karyotyping is one of the most important techniques in the
field of genetic measurement and diagnosis [1]. Its applications include prenatal screening
for chromosomal abnormalities, screening for genetic diseases, etc. Generally, chromosome
karyotyping is done on the midterm chromosome micrographs [2], where the number,
morphology, and structure of these chromosomes are analyzed and compared by a doctor
or specialist, resulting in a karyotype map to help doctors quickly diagnose and predict
congenital defects, human genetic diseases, cancers, etc. Therefore, karyotype analysis is of
great significance in both research and application. Chromosome karyotyping is divided
into three main steps. First of all, the chromosomes are captured and stained with a light
microscope. Then, each chromosome was segmented and extracted from the microscopic
image of metaphase chromosome. Finally, the extracted chromosomes are classified and
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sorted to form a karyotype image with 24 types of chromosomes [3]. For example, Figure 1a
shows an image of the 46 types of chromosomes under a 100×microscope and Figure 1b
shows the karyotype image of these chromosomes in pairs.

(a) The microscopic image (b) The karyotype image

Figure 1. A chromosome microscopic image (a) and the corresponding karyotyping image (b).

In early manual karyotyping, doctors would be required to manually extract and clas-
sify the chromosomes for analysis, which was not only time-consuming and labor-intensive
but also prone to human errors due to its tedious process [4]. Fortunately, the emergence
of automatic karyotype analysis system has greatly reduced the workload of karyotype
analysis for doctors. It can automatically complete the operations such as chromosome
segmentation and classification and finally generate a karyotype map for medical diagnosis.
At present, most existing karyotyping systems employ traditional karyotyping methods,
which mainly rely on the manual features to complete the chromosome segmentation and
classification. For instance, the mainstream traditional chromosome segmentation meth-
ods include threshold-based segmentation methods [5], watershed-based segmentation
methods [6], fuzzy-clustering-based segmentation methods [7], geometric feature-based
segmentation methods [8], etc. The above methods are highly dependent on the manual
features and preset parameters thus being limited in their scope of applications. For ex-
ample, the threshold-based segmentation algorithms rely heavily on the pixel’s grayscale
information and do not consider the spatial information between pixels. However, due to
the strong variability of the chromosome morphological structure and complex distribution,
traditional rule-based segmentation methods cannot adapt to such complex situations.
In addition, traditional methods still require a lot of manual intervention, which is time-
consuming and labor-intensive. Therefore, traditional image segmentation methods still
cannot solve the problem of chromosome segmentation well.

With rapid technological advancement, deep learning technology has achieved re-
markable results in various fields including computer vision and image processing [9].
Convolutional Neural Network (CNN) is a class of deep neural networks with convolu-
tional structure, which has excellent feature extraction ability, self-learning ability, and
low computational cost. In the past decade, CNNs have excelled in various fields of
computer vision. Several CNNs including AlexNet [10], Resnet [11], and VggNet [12]
have been applied to image classification, image segmentation, and achieved advanced
superior performance. In the literature of medical image segmentation, a large number of
CNN-based medical image segmentation models have been proposed. Most such models
are designed for semantic segmentation [13], e.g., segmenting the cell contours. The task
of chromosome image segmentation in this work, however, is to segment (and classify)
each chromosome instance. In fact, there is a pressing need to develop the instance-level
segmentation models in the field of chromosome segmentation because of its significant
applications as discussed earlier.



Appl. Sci. 2023, 13, 2308 3 of 16

Specifically, the challenge of chromosome instance segmentation stems from four main
points [14]: (1) chromosome data belongs to medical privacy data, which is difficult to
obtain, limited in quantity and quality; (2) the chromosomes are prone to distortion, and
the same type of chromosomes still have deformation differences; (3) each chromosome
image contains a large number of chromosomes, and (4) contacts and overlaps between
chromosomes are easy to occur. Because of the above challenges, the existing segmentation
networks cannot efficiently complete the task of instance-level chromosome segmentation.
In view of the lack of data sources, we worked with the National Engineering Laboratory
of Key Technologies for Birth Defect Prevention and Control to obtain chromosome data.
However, the quantity and quality of the original chromosome data are far from enough
for the experimental standards. Therefore, we designed an enhanced processing pipeline to
chromosome data, which assists in our construction of a large-scale chromosome segmenta-
tion dataset. To overcome the limitation of the existing segmentation networks, we propose
in this paper a novel convolutional neural network for chromosome segmentation, called
ChroSegNet. In this network, we designed a new hybrid attention module combining
channel attention and spatial attention to extract key feature information and location
information of chromosome instances. The channel attention mechanism helps the network
to extract key feature information of the target chromosome, while the spatial attention
mechanism helps the network to focus on more important spatial information, such as the
position relationship between each chromosome. In addition, we carry on the appropriate
deepening of the network structure, so that our network can obtain more multidimensional
feature information. These improvements would lead to improved feature extraction capa-
bility and segmentation accuracy of ChroSegNet, demonstrated in our experimental results
reported later.

The main contributions of this paper are summarized as follows.

• We process the chromosome data with particular techniques to realize the quality
and quantity enhancement of the chromosome data. Based on the processed data,
we constructed our chromosome segmentation dataset containing 13,096 pairs of
chromosome data ready for the training of not only our ChroSegNet but also any other
CNN models for chromosome processing.

• We propose our end-to-end chromosome segmentation network, i.e., ChroSegNet.
ChroSegNet can focus on key feature information and location information of each
chromosome through the attention module proposed by us. In addition, the deep-
level feature fusion further improves the ability of the network to extract chromosome
feature information.

The rest of this paper is organized as follows. In Section 2, we present the related
work. In Section 3, we introduce the construction of our enhanced dataset, our enhanced
processing, and the structure of ChroSegNet. In Section 4, we evaluate ChroSegNet with
3 evaluation metrics and discuss the experimental results. In Section 5, we conclude our
work and discuss the future improvements to our research.

2. Related Works

Chromosome segmentation is a branch in the field of medical image segmentation
and one of the most critical stages in the process of karyotype analysis. The purpose of
chromosome segmentation is to separate the chromosome instances from the complex
microscopic chromosome images. Different from other medical images, chromosome mi-
croscopic images are susceptible to sensor noises, staining noises, and uneven illumination
noises. These noises are due to the irresistible factors in the process of image preparation
and acquisition. In addition, chromosomes have the variability of morphological structure
and the diversity of contact overlap, which is difficult to identify by traditional meth-
ods. The need for hospitals to protect patient privacy has led to difficulties in obtaining
chromosome microscopy images; thus, there is a severe lack of data volume. The above
problems impose significant challenge in chromosome segmentation. In the early years,
many researchers proposed traditional segmentation methods based on specific rules to
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segment chromosomes. Ji et al. [15] proposed a rule based on geometric contour analysis
to extract chromosomes. Shen [16] and Karvelis [17] proposed segmentation methods
based on the watershed algorithm, which are too sensitive to noise thus often leading to
oversegmentation. Cao et al. [18] proposed a method based on adaptive fuzzy c-means
clustering, which better overcomes the problem of uneven illumination caused by micro-
scope imaging systems and can segment overlapping adjacent chromosomes in different
illumination areas. A segmentation method based on spatial variable thresholding was
proposed by Grisan et al. [19], which selects the best region for segmentation based on
geometric features and pixel distribution. The above traditional segmentation methods,
however, have limited performance and are time-consuming and labor-intensive.

In recent years, the excellent performance of deep learning has made it widely utilized
in the field of medical images processings. One category of such representative methods
is the chromosome segmentation based on convolutional neural network. For example,
Esteban et al. [20] proposed an overlapping chromosome segmentation method for MFISH
(Multicolor Fluorescence In Situ Hybridization) images, which employs fully convolutional
networks [21] (FCN), using spatial and spectral information in an end-to-end manner.
Xie et al. [13] proposed a chromosome segmentation model combining Mask-RCNN [22]
and geometric correction algorithm. This research achieved the instance segmentation of
chromosome microscopic images for the first time. Although this model achieved a high
accuracy, its structure is too complicated. When the scale of the real chromosome images is
small, the segmentation accuracy of this model drops drastically. Ronneberger et al. [23]
proposed U-Net in 2015, which is a network designed based on FCN [21]. Because of
the simple structure of the network and the effective use of high and low dimensional
feature information, it is suitable for the medical image segmentation with the lack of
data and complex image features. Hariyanti et al. [24] proposed a method for semantic
segmentation of overlapping chromosomes based on U-Net [23]. This study not only
made structural improvements based on the original network such as adding an appro-
priate number of layers but also used Test Time Augmentation (TTA) to overcome the
overfitting problem that occurred during the training process. Compared with previous
similar work, the segmentation accuracy is improved, but it is still low due to the lack of
improvement for chromosome characteristics. Altinsoy et al. [25] proposed a primitive
G-band chromosome image segmentation method based on U-Net. Bai et al. [26] proposed
a G-band chromosome segmentation method combining U-Net and YOLOv3. The method
consists of two stages. In the first stage, YOLOv3 detects chromosome instances and obtains
multiple detection boxes containing one or more chromosome instances. In the second
stage, U-Net accurately extracts the single chromosome instance in each detection box.
This method has achieved a high segmentation accuracy. However, it still falls into the
category of semantic segmentation, and its implementation process is complicated. The
huge number of parameters of its dual-network structure lead to a significant increase in
the computational cost.

To sum up, the existing deep-learning-based chromosome segmentation methods are
still unable give a good balance between scale and accuracy. Based on our chromosome
segmentation dataset, we propose ChroSegNet based on lightweight segmentation model,
U-Net. U-Net [23] is a fast and accurate network for medical image segmentation, which
has been widely applied in various subfields in medical image segmentation [27,28]. For ex-
ample, it has been applied to segment ultrasound images by various organizations [29–31]
and so far has been the best structure for this task [32]. We designed a new attention
module according to the characteristics of chromosome instances and incorporated it into
U-Net to realize the key information extraction of chromosome instances. In addition, we
optimize the network structure on the basis of U-Net [23] to expand the perceptual field,
which further improves the segmentation performance.
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3. Method

In this work, our main focuses are on (1) the construction of a chromosome segmentation
dataset and (2) the design of our ChroSegNet model with an effective attention mechanism.

We work with genetic disease laboratory professionals to obtain raw chromosome
data. High-quality biomarker slides are prepared by professionals. Then, we use optical
microscope camera (including high-resolution camera, optical microscope, and image frame
storage board), three-dimensional object loading platform, three-dimensional platform
automatic controller, objective lens switching controller, slide glass replacement controller,
and computer platform to form a high-level view. The precise three-dimensional optical
platform is used to capture and photograph the metaphase chromosomes on the film, and
the image data is stored by computer. Again, we used the annotation tool to annotate the
46 chromosomes in each image one by one to obtain label data. Finally, we obtained about
430 RGB microscopic images with a resolution of 1280 × 1024 and the corresponding label
data in json format.

Since deep learning needs to be driven by large data, and the original image data
has problems such as complex noise and insignificant chromosome features, we designed
an enhanced processing to convert the limited original data into the expected Enhanced
dataset to ensure that the obtained segmentation model has High precision and robustness
(see Section 3.1). Based on the Enhanced dataset, we then propose our ChroSegNet for fine
chromosome instance segmentation. On the one hand, the hybrid attention mechanism is
introduced into ChroSegNet to achieve efficient extraction of chromosome characteristics
and location information. On the other hand, we deepen the network structure on the
basis of the baseline, in order to obtain more rich multiscale information, which allows the
model to be more quickly adapted to microscopic image data with a large number of tiny
chromosomes (see Section 3.2).

3.1. Enhanced Dataset and Enhanced Processing

The chromosome data we used in this research were obtained from the National
Engineering Laboratory of Key Technologies for Birth Defect Prevention and Control. After
the steps of chromosome extraction, slide preparation, staining, and digital microscope
camera acquisition, the lab’s geneticists provided us a total of 430 microscopic images of
real G-band chromosomes. Meanwhile, we also obtained the corresponding karyotype
images to the chromosomes. All the chromosome images were manually annotated. Subse-
quently, the original dataset was fed into our enhanced preprocessing module to obtain the
chromosome segmentation dataset, as illustrated in Figure 2.

Figure 2. Schematic diagram of enhanced processing pipeline.
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3.1.1. Image Enhancement Processing

During the chromosome image acquisition, sensor noise, uneven illumination, and
various cellular debris can severely degrade the quality of the chromosome images, result-
ing in a significant impact on the chromosome contours and the banding characteristics.
This would affect not only the expert recognition of chromosomes but also the performance
of the subsequent chromosome segmentation. The chromosome images provided by ge-
neticists are black and white images since other color features does not help the subsequent
chromosome segmentation but increasing the computation. Therefore, we applied gray
value adjustment for the initial processing of microscopic images. As there are many impu-
rities and glass slide noises in the chromosome images, we adopted a processing technique
combining contrast adjustment and Contrast Limited Adaptive Histogram Equalization
(CLAHE) to eliminate the impurities and noises. Meanwhile, the chromosome edges and
band features in the image were enhanced. Specifically, the steps of the image enhancement
are as follows.

Step-1 Grayscale Conversion: Converting all the chromosome microscopic images from
RGB to grayscale can reduce the computational dimensionality and the processing time
without affecting the image feature extractions. We adopt floating-point arithmetic to
replace the R, G, and B channels of original images with the operation results, so as to
obtain the grayscale images.
Step-2 Contrast Stretching: Due to the unique characteristics of chromosomes such as
uneven illumination and blurred imaging, the chromosomes in the original image often
lose characteristic information. In addition, irresistible factors, e.g., imaging interference,
during the chromosome slide preparation can make chromosome images dark and blurry.
Image contrast refers to the difference between the brightest part and the darkest part in
an image. In our processing, the contrast stretching operation is performed to map all
the pixels in the image to a larger range in the grayscale space. This operation not only
effectively reduces the noise interference but also makes the contour and band features of
chromosomes more prominent. This operation is formulated in (1):{

yg + b > 255 , yc = 255
yg + b 6 255 , yc = yg

(1)

where yg represents the grayscale image, yc represents the contrast-stretched image, and
b represents a quantitative value. Since excessive contrast stretching can wash out saturated
region of images, we divided the images into two categories: low-light-intensity images
and high-light-intensity images. For low-light-intensity images, we set b to 50 for a large
stretch. For images with high light intensity, the gray value of the whole image will be
higher due to high illumination intensity, so we set b as 20 for fine tuning. Moderate
contrast stretching allows further clarification of the image and initial elimination of a large
amount of background noise.
Step-3 Contrast Limited Adaptive Histogram Equalization (CLAHE): CLAHE was ap-
plied after the contrast stretching to ensure further enhancement of the chromosome bands
and contouring without amplifying noise. CLAHE is a modified version of adaptive his-
togram equalization (AHE), which tends to amplify contrast in near-constant areas of the
image because of the high concentration of histograms in such areas. This can cause the
noise to be amplified in a near-constant region. In CLAHE, the contrast amplification in the
vicinity of a given pixel value is given by the slope of the transformation function. This is
proportional to the slope of the neighborhood cumulative distribution function (CDF) and
therefore to the value of the histogram at that pixel value. CLAHE clipped the histogram to
a predetermined value before calculating the CDF. This limits the slope of the CDF and thus
the slope of the transform function, both limiting the contrast amplification and therefore
reducing the noise amplification problems.
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3.1.2. Data Augmentation Step

As described in previous section, in this research only 430 pieces of real chromosome
data can be obtained, which cannot meet the training requirements of deep-learning-
based model. Therefore, to train a model that is more flexible and can better cope with
various disturbances, we combine a series of data augmentation algorithms to generate
chromosome data and labels in batches for further augmenting the chromosome data.
Specifically, the data augmentation techniques employed include random panning, random
flipping, brightness adjustment, introducing salt and pepper noise, etc.

After the above processing, an chromosome segmentation dataset in both scale and
diversity containing 13,096 pairs of chromosome data was obtained. Each pair of the
chromosome data includes a chromosomal microscopic image (JPG file) and a mask la-
bel (PNG file) of each chromosome in the corresponding image. Our dataset is divided
proportionally, 80% as training set and 20% as testing set.

3.2. Network Architecture

ChroSegNet is designed based on U-Net [23] as we reviewed in Section 2. On the
one hand, compared with U-Net, in order to take into account the segmentation of small
chromosomes, we constructed more subsampling layers and convolutional layers to expand
the receptive field. On the other hand, the traditional attention-based U-Net only pays
attention to the feature information of a certain dimension (for example, attention gate [33]
only pays attention to the spatial dimension.), which is easy to cause the feature information
obtained is not comprehensive enough, especially when segmenting images with complex
feature information such as electron microscopic images. In contrast, the hybrid attention
module we designed focuses on both channel and spatial feature information. The network
structure of ChroSegNet is shown in Figure 3.

Figure 3. ChroSegNet network structure diagram.

ChroSegNet is an encoder–decoder structure. The encoding part is a backbone feature
extraction network, which is mainly composed of the convolution layers consisted of 3 × 3
convolution kernels, 2 × 2 maximum pooling layer, and ReLU activation function. Instead
of directly adding attention modules to the original network, we designed more subsam-
pling layers and convolutional layers for ChroSegNet (the newly added parts are shown in
bold) to further expand the receptive field and integrate more comprehensive multiscale
feature information. The decoding part is an enhanced feature extraction network, which
consists of jump connections, upsampling layers, convolution layers, and hybrid attention
modules. The hybrid attention modules are incorporated at the end of the skip connec-
tions in layers 2, 3, and 4 to generate the multiscale attention information. The attention
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information is then input into the feature fusion layer to promote the combination of the
high-dimensional key features and the low-dimensional features. This would help the
network focuses on more meaningful target regions and suppresses the activation values
of the background and the irrelevant regions. The hybrid attention module are mainly
responsible for extracting the key parts of the high-dimensional features. However, the first
layer of the skip link only contains shallow features and does not involve the information
fusion of the high and the low dimensions. Hence, the hybrid attention module is not
incorporated in this layer.

The structure of the hybrid attention module is shown in Figure 4, where S represents
the feature map of the current jump-connected input, X represents the feature map of the
current input, X′ represents the output value of the channel attention module, X′′ represents
the output of the hybrid attention module, α represents the attention coefficient, and
β represents the spatial attention coefficient.

Figure 4. Diagram of the hybrid attention module.

The feature map of the encoder input through the jump connection layer and the
current input feature map of the decoder first enter the channel attention module to extract
the channel attention information. The process of the channel attention module is as
follows: the average pooling layer and the maximum pooling layer are used to compress
the spatial dimension of the input feature mapping. Among them, the average pooling
layer is a commonly used means of spatial information aggregation, and the maximum
pooling layer has been proved to be able to collect the key clues of the features of different
objects [34]. Therefore, we adopt the combination of the two pooling methods to obtain
more representative information. Then, the descriptor information after secondary fusion
is input into Multilayer Perceptron (MLP) including convolution layer and ReLU layer to
obtain channel attention mapping. Finally, Sigmod is used to change it into the channel
attention coefficient (α) between 0 and 1 and multiply with the current input feature map
to obtain the feature map with the channel attention information (X′). Next, the feature
map with channel attention information (X′) and the encoder feature map are input into
the spatial attention module. The process of the spatial attention module is as follows: The
1 × 1 convolution layer is used to compress the channel dimension of the input feature
map, and then the activation function ReLU and the 1 × 1 convolution layer are used to
obtain the spatial attention map. Finally, Sigmod is used to obtain the spatial attention
coefficient (β) and multiply with the current input feature map to obtain the feature map
with spatial attention information (X′′). In conclusion, the hybrid attention module that we
designed can focus on both “what” and “where” questions of chromosome instance.

4. Experiments and Results
4.1. The Experimental Details
4.1.1. The Experiment Setup

The experiments were run on the computer platform with AMD Ryzen 7 3700X proces-
sor and NVIDIA RTX3090 GPU. The operating system used is Windows 10. The network is
coded with PyTorch 1.6.0, and the enhanced processing part of the chromosome dataset
is implemented based on opencv-python 4.5.2. First, the proposed image enhancement is
performed on all the original images. Then, data augmentation is applied to the enhanced
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images to obtain our chromosome segmentation dataset containing 13,096 pairs of chromo-
some data. Next, 10,477 pairs of data were randomly selected from the dataset at the ratio of
80% and 20% as the training set, and 2619 pairs of data were used as the testing set. Table 1
lists the training and testing hyperparameter settings, where Epoch is set to 100 times and
Batch size is set to 4 images per batch. The gradient descent optimizer selected is Adam.
Since this model is trained from scratch, the learning rate is adjusted to 0.000001 to ensure
better convergence. We used our computer platform to train iteration of 100 epochs on
ChroSegNet, which took 36 h in total. In addition, in order to test the implementation time,
we used ChroSegNet to segment 30 chromosome microscopic images, and the operation
time was 48 seconds, with an average of 1.60 s per image.

Table 1. Hyperparameter setting.

Hyperparameters Details

Epoch 100
Batch size 4
Optimizer Adam

Learning rate 0.00001
Threads number 4

4.1.2. Loss Function

Cross-entropy can enable the network to learn the similarity between the predicted
value and the ground truth more quickly. Specifically, compared with loss functions such
as Mean Square Error (MSE), the gradient updating amplitude is faster, and the problem of
gradient dispersion will not occur. Meanwhile, since chromosome instance segmentation
involves multiclassification, we use multivariate cross-entropy as the loss function of the
network instead of binary cross-entropy. The multivariate cross-entropy loss function is
calculated as follows (2):

CEloss(x, class) = −log

(
exp(x[class])
∑j exp(x[j])

)
(2)

where x represents the output of the last layer of the network, class represents the label of a
chromosome class to be calculated, and x[j] represents the predicted value of the output of
all chromosome classes. Specifically, softmax converts the final output value of the network
into a value between 0 and 1 (the sum of the predicted probabilities of all the categories
is 1). Then, it extracts the corresponding value according to the label index to calculate the
final losses.

4.2. Enhancement Processing

As described in Section 3.1, the original chromosome images (430 in total) were
processed for quality and quantity enhancement. A sample chromosome image is shown
in Figure 5a. First, we convert the original RGB image to a grayscale image with a size
of 516 × 516, as shown in Figure 5b. It can be observed that the image well remains its
structural information after the conversion. Second, the image contrast stretching operation
is performed to stretch the image contrast to the range of [0, 255]. As shown in Figure 5c,
we can see that the contours of the chromosomes in the image become clearer, and some
impurities in the background are eliminated or attenuated. Finally, CLAHE is performed
to further enhance chromosome structural features without amplifying background noise,
especially the strip feature. Our proposed method includes the above steps, and the final
result is shown shown in Figure 5d. The originally blurred band features in the chromosome
image become clearer and more distinguishable, with distinct outline features for each
chromosome instance. At the same time, the background noise is well suppressed.
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(a) (b)

(c) (d)

Figure 5. Schematic diagram of image enhancement processing results. (a) Original; (b) grayscale;
(c) contrast stretched; (d) proposed method.

The data after image enhancement is sent to our proposed data augmentation step,
which mix the various methods including random translation, random brightness adjust-
ment, random scaling, etc. to process the input data and generate new generated data. In
the first stage, the data augmentation is carried out on 430 pieces of data, and 30 pieces of
generated data are generated for each pieces of data. At this time, a total of 12,900 new data
are generated. In the second stage, we manually screened the new data generated, removed
the generated data with low quality (excessive noise generation, excessive translation,
etc.), and finally obtained 12,666 generated data. The generated data and the original data
constitute the chromosome segmentation dataset containing 13,096 pieces of data. The
generated data includes generating images and corresponding label files.The new sample
obtained by data augmentation is shown in Figure 6.

Figure 6. Schematic diagram of data augmentation to generate new samples.

4.3. Evaluation Metrics and Chromosome Segmentation Results
4.3.1. Evaluation Metrics

In this research, we evaluate the performance of the chromosome segmentation with
three metrics: IoU, PA, and F1-score. IoU, which stands for Intersection over Union,
represents the ratio of the intersection and union of the prediction result of a certain
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category and the ground truth. In other words, it is the ratio of the intersection and union
between the predicted mask and the real mask. PA stands for Pixel Accuracy, which
reflects the ratio of the number of pixels that correctly predicted to belong to a chromosome
category to the total number of pixels in the image. F1-score is the harmonic mean of
accuracy and recall. It combines the results of accuracy and recall and can better measure
the comprehensive performance of a model.

4.3.2. Chromosome Segmentation Results

Since there are no publicly available chromosome datasets, we trained our proposed
model on the chromosome segmentation dataset we constructed. As there is no publicly
available code on chromosome segmentation, we compare the chromosome segmentation
performance of ChroSegNet with representative segmentation models in recent years to
demonstrate its effectiveness. Furthermore, we conducted separate ablation experiments
to verify the effectiveness of our enhanced processing and model improvements. Table 2
shows the segmentation results by ChroSegNet for 24 categories of chromosome instances
based on the above three metrics. Classes 1–22 denote chromosome classes 1–22, and classes
x and y correspond to the two sex chromosomes, respectively. It can be observed from the
table that ChroSegNet achieves the best IoU and F1-score on class 1, reaching 90.17% and
94.83%, respectively. As for class 2, our model achieves the best PA reaching 95.29%. The
segmentation results for smaller chromosomes, e.g., class 22 and class Y, are not that high
but the lowest IoU score can still reach more than 80%, and the lowest F1-score can reach
more than 88%. The results show that ChroSegNet can achieve high precision and robust
segmentation for each category of chromosome.

Table 2. Segmentation performance of ChroSegNet for various chromosome instances.

Class (No.) IoU (%) PA (%) F1 (%)

1 90.17 95.23 94.83
2 90.04 95.29 94.76
3 89.90 95.26 94.68
4 89.27 94.87 94.33
5 89.11 94.64 94.24
6 89.40 95.01 94.40
7 88.23 94.05 93.75
8 87.86 93.98 93.54
9 87.26 93.61 93.19
10 88.32 94.46 93.80
11 88.19 94.28 93.72
12 88.23 94.44 93.75
13 86.72 93.20 92.89
14 85.55 92.61 92.21
15 86.37 92.42 92.69
16 84.85 92.70 91.80
17 85.21 92.03 92.01
18 85.15 91.91 91.98
19 81.64 90.81 89.89
20 82.90 91.22 90.65
21 80.67 88.18 88.68
22 80.42 88.23 89.15
X 88.47 94.23 93.88
Y 82.33 90.54 90.31

Bold represents the best performance value for each class.

We compare and analyze ChroSegNet with other segmentation models in terms of
segmentation performance and model parameters shown in Table 3.
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Table 3. Segmentation performance analysis of different segmentation models with ChroSegNet.

Models MIoU (%) MPA (%) F1 (%)

Mask-RCNN 79.91 83.49 85.27
PSP-Net 69.84 75.02 74.77

DeepLabV3 64.95 69.55 71.34
ChroSegNet 86.97 93.31 92.99

Bold represents the best performance value for each model.

Obviously, ChroSegNet achieves the best performance on every evaluation metric
while the DeepLabV3’s performance is the lowest. We think that the poor performance
of DeepLabV3 is due to its hollow convolution structure and noncontinuous convolution
kernel. In fact, the microscopy images of chromosome contain a large number of small
chromosomes, and the DeepLabV3’s discontinuous convolutional structure can easily lead
to the loss of small target features. Although the segmentation performance of Mask-RCNN
is better than that of DeepLabV3 and PSP-Net, it still significantly underperforms compared
to ChroSegNet. We believe this is caused by the large size of Mask-RCNN, which cannot
be fully trained on small-scale datasets due to its complex structure and huge number
of parameters. In summary, although the above benchmarking networks can have good
segmentation performance in their respective fields, they still cannot achieve high-precision
instance segmentation for chromosomes. In contrast, we can see that ChroSegNet shows
not only a significantly higher segmentation accuracy as 93.31% but also an F1 value as
high as 92.99%, which indicates that it can well balance segmentation accuracy and recall
rate. This indicates that ChroSegNet is more suitable for chromosome segmentation than
other models. Table 4 shows the number of parameters for each segmentation model, which
reflect the computing resources that a model needs to occupy. It can be seen from Table 4 that
Mask-RCNN requires the most computing resources. PSP-Net has the fewest parameters
due to its simple structure. Although ChroSegNet adopts hybrid attention modules and
further deepens the network structure, the number of parameters of ChroSegNet remains
at a low level, i.e., only 2.89 M more parameters than PSP-Net. This data shows that our
model is more lightweight and can be considered for practical application in the future.

Table 4. Comparison of parameters of different models and ChroSegNet.

Models Total Params

Mask-RCNN 65.121 M
PSP-Net 46.718 M

DeepLabV3 54.715 M
ChroSegNet 49.608 M

Table 5 shows the effect of our enhanced processing by comparing segmentation
results of U-Net on the original dataset and our chromosome segmentation dataset. It
can be observed from the table that the final result of U-Net training on the chromosome
segmentation dataset has a huge improvement compared with the results obtained on the
original dataset. Specifically, the MIoU has increased by 11.35%, the MPA has increased by
7.89%, and the F1-score has increased by 7.80%. This proves that our enhanced processing
effectively improves the quality, quantity, and the diversity of the original chromosome
dataset, which can promote the model to learn the target features more efficiently. Due to
the lack of publicly available large-scale datasets in the field of chromosome segmentation,
the chromosome segmentation dataset that we constructed lays a foundation for future
research on chromosome segmentation or relevant processing.
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Table 5. Enhanced processing effect comparison.

Dataset MIoU (%) MPA (%) F1 (%)

Original 66.79 79.25 79.78
Enhanced 78.14 87.14 87.58

Bold represents the best performance value for each Dateset.

Table 6 shows the performance comparison of U-Net, U-Net+ATT (U-Net with hybrid
attention module), U-Net* (U-Net with improved backbone network), and ChroSegNet
on our enhanced dataset mentioned above (all three indicators are the average of the
corresponding metrics for all categories). It can be observed that the MIoU, MPA, and F1 of
the two improved baseline models (U-Net+ATT and U-Net*) are significantly improved,
especially U-Net with hybrid attention module. ChroSegNet achieved the best results by
combining the two improvements, which confirms the effectiveness of the combination of
the two improvements.

Table 6. Segmentation performance of different modules based on the baseline model (U-Net).

Models MIoU (%) MPA (%) F1 (%)

U-Net 78.14 82.14 80.09
U-Net+ATT 85.50 92.60 92.13

U-Net* 80.73 85.56 83.07
ChroSegNet 86.97 93.31 92.99

Bold represents the best performance value for each model.

Figure 7 shows the segmentation mask comparison between ChroSegNet and U-
Net on multiple chromosomal microscope images. It can be observed from the compar-
ison of Group A that U-Net still segmented part of the background as chromosome in-
stances by mistake. In contrast, no background was misclassified as chromosome instances
by ChroSegNet.

In the Group B comparison, a large number of single chromosomes are divided into
multiple chromosomes by mistakes in the segmentation mask of U-Net, and some adjacent
chromosomes are not effectively segmented. On the contrary, these errors rarely occur
in ChroSegNet’s mask because ChroSegNet can obtain more critical chromosomal char-
acteristics and location information. In Group C, due to the denser chromosomes, U-Net
has yielded more incorrect segmentation masks, including wrongly classifying the entire
chromosome or part of the chromosome, and unsegmenting overlapping chromosomes.
On the contrary, the segmentation mask of ChroSegNet is more accurate, which benefits
from its deep structure and attention information acquisition. In summary, compared with
the original U-Net model, ChroSegNet has higher chromosome segmentation accuracy and
better robustness.
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(a)

(b)

(c)

Figure 7. Comparison of segmentation masks between ChroSegNet and U-Net on chromosome
microscopy images. From left to right are the original image, the U-Net segmentation mask, and
the ChroSegNet segmentation mask. (a) Group A comparison; (b) Group B comparison; (c) Group
C comparison.

5. Conclusions

In this paper, we design our ChroSegNet model with an effective attention mechanism
for accurate chromosome segmentation. On the basis of considering the lightweight
model, our ChroSegNet not only has a deep network structure but also has the hybrid
attention structure, which is responsible for simultaneously extracting key features and
position information of chromosomes. Experimental results show that ChroSegNet is more
suitable than most CNN models to deal with chromosomes with complex structure and
changeable position. To construct a dataset for our modeling training, we cooperated with
the laboratory to acquire chromosome data and proposed enhanced processing to enhance
the quality and quantity of chromosome data, resulting in the chromosome segmentation
dataset which with large scale and high quality. Our experimental results show that the
performance of the segmentation model trained with our dataset is better than that trained
with the original dataset.

However, the current ChroSegNet is still limited in the following aspects. On the
one hand, the segmentation performance of ChroSegNet is relatively limited for the same
class of chromosomes with large deformation. For this limitation, we plan to design and
incorporate additional branches in ChroSegNet to learn and utilize the chromosome shape
information for improved segmentation accuracy in our future work. On the other hand,
the segmentation performance of ChroSegNet for overlapping chromosomes still needs
to be improved. We plan to further optimize the network structure in future work, such
as attempting to model ROI as multiple layers and detecting overlapping chromosomes
separately during segmentation.
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