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Abstract: The synchronization error of a dual-motor system will seriously affect the motion profile
accuracy. To solve this problem, an adaptive fractional-order anti-saturation synchronous control
method based on fractional-order frequency-domain control theory is proposed in this paper. On
the one hand, the proposed method performs a compensation on the closed-loop feedback control
loop to unify the frequency-domain characteristics for a dual-motor system. With the frequency-
domain characteristics’ unification module, the dual-motor system will have the same response
performance regarding the input signal. On the other hand, considering that the nonlinear problem
of control voltage saturation will also cause the asynchronization problem of the dual-motor system,
the proposed method involves an adaptive fractional-order anti-saturation module to prevent voltage
saturation and eliminate the nonlinear effects. The experimental results verify that the proposed
method can accurately avoid the saturation effect and effectively reduce the synchronization error of
the dual-motor system, with a root-mean-square synchronization error reduction of 80.974%. Hence,
the proposed method provides an effective solution for the high-precision synchronous motion of a
dual-motor system.

Keywords: dual-motor system; synchronous motion; fractional-order frequency-domain control
theory; saturation effect

1. Introduction

With the development of power electronics technology and high-performance perma-
nent magnet materials, the permanent magnet linear synchronous motor (PMLSM) has
gained significant attention. Because its structure has no mechanical friction problem, a
large thrust force, and small volume, the PMLSM is widely used in transportation systems,
machine tools, precision positioning platforms, and other fields [1,2]. In addition, the
market demand for chip semiconductors has increased in recent years, leading to the rapid
development of the semiconductor manufacturing industry; therefore, the high-speed
and high-acceleration motion platform built by the PMLSM has gradually become an
essential part of the equipment [3]. However, the performance requirements are becoming
increasingly stringent, and the single-motor driving method can no longer meet the high-
acceleration requirement. To overcome the thrust force limit of the PMLSM and further
improve the efficiency of semiconductor manufacturing equipment, a dual-motor driving
method has been designed and widely used [4,5]. A redundant direct-drive gantry plat-
form is a common application of the dual-motor driving method. The Y-degree-of-motion
freedom is driven by two PMLSMs simultaneously, and the rigid connection between the
PMLSMs ensures that the thrust force can act on the beam together, realizing high speed,
high acceleration, and a large stroke motion [6].
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A dual-actuator system can usually achieve a higher acceleration motion, but it also
introduces the asynchronous motion problem, which will cause tension in the connection
structure and decrease the service life or even seriously damage the mechanical structure [7].
Scholars have proposed a variety of control methods for the synchronous motion of a dual-
motor system, including the series synchronous control method [8], parallel synchro-nous
control method [9], and cross-coupling synchronous control method [10]. Because the
cross-coupling synchronous control method can adjust the control voltage of each motor
in real time according to the synchronization error, it has certain advantages in ensuring
the synchronous motion of the dual-motor system [11,12]. The control structure of the
cross-coupling synchronous control method is simple; therefore, the accuracy of the control
parameter selection is the key factor that determines the synchronous motion performance
of the dual-motor system. Some scholars improved the synchronous control method by
considering cross-coupling, such as the variable-gain cross-coupling synchronous control
method [13], fuzzy neural network cross-coupling synchronous control method [14], and
self-tuning cross-coupling synchro-nous control method [15]. These methods can improve
the real-time adjustment ability of the parameters of the cross-coupling controller, thereby
ensuring the adaptability of the control parameters under different synchronization er-
rors. However, accurately establishing the parameter adjustment law of the cross-coupling
synchronous control method requires long-term pre-learning, and the control parameter
adjustment algorithm has a high degree of complexity, making it difficult for practical appli-
cations. Considering that the characteristics of the PMLSM system can be obtained through
system identification, several methods were studied, for example, a model-based feed-back-
feedforward decoupling control method [16], model-based adaptive synchronous control
method [17], robust immersion and invariance adaptive coordinated control method [18],
adaptive thrust-allocation based synchronous control method [19], and other related meth-
ods [20–22]. The introduction of model information can reduce the design complexity of
the parameter adjustment method and provide a basis for control parameter selection,
thus effectively suppressing the dual-motor system’s synchronization error. However,
these synchronous control methods adjust the control voltage of the PMLSM through
position compensation or force compensation when synchronization error is observed.
Since there is a time delay, the methods will have difficulty eliminating the synchronization
error completely.

Through investigation, we found that the synchronization error is caused by the
characteristic difference in the dynamic response of the dual-motor system, and, because
the fractional-order deferential operator can accurately describe the control frequency-
domain characteristics required by the controlled object, there are several control methods
based on fractional-order control theory [23–25]. In literature [26], the authors developed
a feedforward control method for PMLSM based on the fractional-order control theory.
Through the accurate description of the system’s control frequency-domain characteristics,
the fractional-order feedforward control method improved the PMLSM tracking accu-
racy effectively for a single-motor system. However, for a dual-motor system, besides
the tracking accuracy of each motor, the synchronization accuracy of the two motors is
the key issue and needs to be further studied. Therefore, considering the advantage of
the fractional-order control theory, this paper proposes an adaptive fractional-order anti-
saturation synchronous control method to improve the synchronization accuracy of the
dual-motor system. Through compensation, we unified the frequency-domain characteris-
tics of the motors in a dual-motor system to ensure they have the same dynamic response
characteristics. With the design of the frequency-domain characteristics’ unification module
(FDC-UM), the dynamic response characteristics of the two motors were adjusted to be
consistent. Then, the adaptive fractional-order anti-saturation module (AFOAM) was
designed to avoid the saturation effect of the control voltage. By calculating the theoretical
peak voltage, the parameters of the AFOAM were determined by the relationship between
the parameter selection and the FDC adjustment of the fractional-order lead-lag controller
(FOLLC). Through the AFOAM, the dual-motor system can prevent the control voltage
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from reaching the voltage limitation and thus guarantee the suppression of the FDC-UM for
the synchronization error. Therefore, the proposed adaptive fractional-order anti-saturation
synchronous method can actively suppress the generation of the synchronization error and
avoid the saturation effect, ensuring a dual-motor system with high-precision synchronous
motion performance.

The remainder of this paper is organized as follows. Section 2 introduces the kinetic
model of the dual-motor system and the proposed adaptive fractional-order anti-saturation
synchronous control method in detail. In Section 3, based on the established relationship
between the FDC and the dynamic response characteristics of the motor systems, the
FDC-UM and the AFOAM are designed and finalized with the required parameters. In
Section 4, the experimental setup is described, and experimental work is performed to
verify the effectiveness and superiority of the proposed method. Section 5 presents the
discussion, and Section 6 presents the conclusions.

2. The Proposed Synchronous Control Method for the Dual-Motor System
2.1. Kinetic Model of the Dual-Motor System

A schematic of the redundant direct-drive gantry platform is shown in Figure 1. A
cross beam was installed on two linear guides arranged in parallel and jointly driven by
two PMLSMs. Motors Y1 and Y2 were rigidly connected to the beam, and the stators were
installed on the base where the two linear guides were located. For the sake of simplicity,
this study only focused on the synchronous control of the Y-axis, and it is assumed that the
motor X is rigidly connected to the cross-beam. Therefore, from Figure 1 and the dynamic
analysis in literature [27], the kinetic model of the dual-motor system can be obtained
as follows: {

M1
..
y1 + c1

.
y1 + k1ξ1 = Fm1 − Fr1 − Fc1

M2
..
y2 + c2

.
y2 + k2ξ2 = Fm2 − Fr2 + Fc2

, (1)

where Fci = f (y1, y2) is the coupling force, which is related to the displacements of motors
Y1 and Y2, and i = 1, 2. Fmi is the thrust force, Fri is the friction, Mi is the mass, ci is
the viscosity coefficient, ki is the elasticity coefficient, yi is the displacement of the motor,
and ξi is the deformation between the mover and slider. The control method typically
adopted by a dual-motor system is also shown in Figure 1. Each motor has an independent
feedback controller (FBC); by designing the reasonable friction compensator (FC) and the
synchronous control method, the synchronous motion performance of the dual-motor
system is guaranteed.
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The relationship between the motor thrust force and control system characteristics can
be obtained as follows: {

Fm1 = Ku1u1 = Ku1sat{uFC1 + uFBC1}
Fm2 = Ku2u2 = Ku2sat{uFC2 + uFBC2}

, (2)

where Kui is the thrust force constant of the motor, sat {} is the saturation function, and uFCi
and uFBCi are the control voltages of FC and FBC, respectively. Because the coupling force
is related to the displacements of motors Y1 and Y2, it appears with the generation of the
synchronization error. When the synchronization error is eliminated, the influence of the
coupling force on the motor movement will also be negligible, so the kinetic model can be
re-expressed as follows: {

M1
..
y1 + c1

.
y1 + k1ξ1 = Fm1

M2
..
y2 + c2

.
y2 + k2ξ2 = Fm2

. (3)

We can establish the following transfer function of each motor system according to
Equation (3):

gyi(s) =
b0ismi + b1is(m−1)i + · · ·+ bmi

sni + a1is(n−1)i + · · ·+ ani
, (4)

where ani and bmi are the parameters of the denominator and numerator polynomials,
respectively, and ni and mi are the orders of the denominator and numerator polynomials,
respectively. By designing a proper feedback controller ci(s), the transfer function between
the input signal r and output signal yi is as follows:

Gi(s) =
yi(s)
r(s)

=
ci(s)gyi(s)

1 + ci(s)gyi(s)
. (5)

From Equation (5), we can calculate the amplitude and phase characteristics of each
closed-loop feedback control loop in the dual-motor system, and these characteristics
determine the dynamic response characteristics of the motor system. Therefore, we can
know when the dual-motor system is in a synchronous-state, and the motion of the motor
system is mainly affected by its electric characteristic, structure, and control system, leading
to the differences in the dynamic response characteristics between the motor systems.

2.2. Description of the Proposed Method

To make the dual-motor system have consistent dynamic response characteristics and
realize the two motors’ synchronous motion, we proposed a frequency-domain character-
istic compensation-based adaptive fractional-order anti-saturation synchronous control
method, which contains two modules: the FDC unification module (FDC-UM), which can
adjust the dynamic response characteristics of the two motors to be consistent, and the
adaptive fractional-order anti-saturation module (AFOAM), which can avoid the satura-
tion effect of the control voltage adaptively. Figure 2 illustrates the working principle of
the proposed synchronous control method. The FDC-UM performs the FDC unification
through compensation in the feedback control loops. With the FDC-UM, the FDC of the
dual-motor system can be unified. We have{

A1 = A2 = A f
ϕ1 = ϕ2 = ϕ f

, (6)

where A1, A2 are the amplitude characteristics of the Equation (5), and ϕ1, ϕ2 are the phase
characteristics. Af, ϕf are the amplitude and phase characteristics unified by the FDC-UM.
In addition to the FDC-UM, the AFOAM is designed to prevent the peak voltage of the
motion from reaching the voltage limitation. With these modules, the amplitude and phase
characteristics are determined to be Aa and ϕa according to the input signal spectrum and
theoretical calculation of the peak voltage. With the FDC unification and the elimination
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of the nonlinear saturation effect, the dual-motor system will possess consistent dynamic
response characteristics for the two motors and thus ensure their synchronous motion.
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3. Adaptive Fractional-Order Anti-Saturation Synchronous Control Method
3.1. FDC Unification Module (FDC-UM)

According to the frequency-domain control theory, the dynamic response characteris-
tics of the LTI system are determined by the FDC of the control system. In literature [28],
the relationship between the input and output signals of the control system was analyzed
in detail, and the output signal corresponding to the input signal r = sin(ωrt) was obtained
as follows:

y = K sin(ωr(t− ∆t)). (7)

The signals have the same frequency (f = ωr/2π), but there is a certain time delay ∆ti
and an amplitude ratio Ki between them. Therefore, the synchronization error expression
of the dual-motor system can be defined as follows:

esyn = K1 sin(ωr(t− ∆t1))− K2 sin(ωr(t− ∆t2)), (8)

∆ti = ϕi/ωr, (9)

Ki = 10Ai/20, (10)

where ϕi(ω) = arctan (Im [Gi(ω)]/Re [Gi(ω)]) and Ai(ω) = 20log10|Gi(ω)| are the phase
and amplitude characteristics of the transfer function shown in Equation (5), respectively.
According to Equations (8)–(10), to achieve high-synchronous motion performance of the
dual-motor system, both feedback control systems must have consistent FDC. That is, the
dual-motor system must satisfy the following condition:

C(s)F(s)GY(s)KF = 0, (11)

where C(s) = [c1(s), c2(s)], GY(s) = diag(gy1(s), gy2(s)). F(s) = diag(f 1(s), f 2(s)), in which fi(s) is
the transfer function of the FDC-UM. KF = [kf1, −kf2]T is the gain matrix used to adjust the
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control performance of the system. According to Equations (5) and (11), we can derive the
following when ϕ1 ≥ ϕ2 in the main frequency domain.{

f1(s) =
(

k f 1c1(s)gy1(s)
)−1

k f 2c2(s)gy2(s)
f2(s) = 1

, (12)

When ϕ1 < ϕ2 in the main frequency domain,{
f1(s) = 1

f2(s) =
(

k f 2c2(s)gy2(s)
)−1

k f 1c1(s)gy1(s)
. (13)

After the compensation, the transfer function of the feedback control system is as follows:

G f i(s) =
yi(s)
r(s)

=
k f i fi(s)ci(s)gyi(s)

1 + k f i fi(s)ci(s)gyi(s)
. (14)

Based on the analysis performed above, we know that the dynamic response charac-
teristics of the control system are related to the frequency of the control signal. Through
compensation, the dual-motor system meets the requirements of Af 1(ω) = Af 2(ω) and
ϕf 1(ω) = ϕf 2(ω), so the two motor systems possess a unified dynamic response characteris-
tic and thus can achieve a synchronous motion. To verify the effectiveness of the FDC-UM,
we used the chirp signal for the experiments. Figure 3 shows the working principle of the
FDC-UM and the synchronization error comparison by the control methods of the PID
feedback control method (Method 1 in Figure 3a), the force compensation cross-coupling
synchronous control method (Method 2 in Figure 3b), and the FDC-UM based synchronous
control method (Method 3 in Figure 3c). Figure 3d shows that both Method 2 and Method
3 can ensure excellent synchronous-motion performance of the dual-motor system, and the
FDC-UM-based synchronous control method achieves the best performance, which can
avoid the effects of control signal variation in frequency.
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Since the proposed FDC-UM is used for the LTI system, when the control voltage
overpasses the voltage limitation, the control voltage will induce a nonlinear behavior
and affect the dynamic response characteristics of the dual-motor system, as shown in
Equation (15). When the total control voltage of the feedback control system uFBC and the
friction compensator uFC are beyond the voltage limitation, the control voltage u is limited
to the highest (lowest) voltage umax (−umax).

u =


−umax, f or (uFBC + uFC) ≤ −umax,
uFBC + uFC,
umax, f or (uFBC + uFC) ≥ umax.

, (15)

Figure 4 shows the influence of the saturation effect on the synchronization error of
the dual-motor system. In Figure 4a, the synchronization errors of the dual-motor system
are compared with the PID feedback control method and the FDC-UM-based synchronous
control method. Figure 4b shows the control voltage of the motor system in the range of
[−umax, umax]. We can see that the saturation effect influences the synchronization errors
of the two control methods and deteriorates the performance of the FDC-UM. Therefore,
to ensure the synchronous motion performance of the dual-motor system, the saturation
effect needs to be eliminated.
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3.2. Adaptive Fractional-Order Anti-Saturation Module (AFOAM)
3.2.1. Peak Voltage Calculation and Amplitude Characteristic Adjustment
Value Determination

To avoid the nonlinear problem caused by the saturation effect, it is necessary to
recognize the determinants of the control voltage in the feedback control loop and calculate
the required suppression value of the control voltage. According to the dynamic response
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characteristics of the control system and Equations (4) and (14), the transfer function from
the input signal r to the feedback control voltage uFBCi is as follows:

Gui(s) =
uFBCi(s)

r(s)
=

k f i fi(s)ci(s)
1 + k f i fi(s)ci(s)gyi(s)

. (16)

In the frequency domain, s = jω, so the amplitude characteristic Aui(ω) of Equation (16)
is 20log10(|Gui(ω)|). Because the input signal amplitude in the frequency domain can be
obtained by spectrum analysis, the calculation expression of the theoretical peak voltage of
the control system can be expressed as

umax
i =

∣∣sp(ωk)
∣∣10Aui(ωk)/20 + uFCi, (17)

where |sp(ωk)| is the amplitude spectrum of the input signal when ω = ωk, and uFCi is the
friction compensation voltage. Therefore, the amount by which the theoretical peak voltage
exceeds the voltage limitation can be calculated as follows:

ũi = sgni(u)|u
max
i − umax|, (18)

in which the symbolic function for determining whether the theoretical peak voltage
exceeds the voltage limitation is defined as follows:

sgni(u) =
{

1, f or umax
i > umax,

0, f or umax
i ≤ umax.

. (19)

According to Equation (17), we know that the control voltage can be changed by
adjusting the spectrum of the input signal or the amplitude characteristic of the control
system. Since the main work of this paper is the design of the synchronous control system,
the adjustment of the input signal will directly affect the trajectory of the dual-motor system.
Therefore, in order to avoid the saturation effect, the amplitude characteristic Aui(ω) at ωk
must be adjusted to be the value as shown in Equation (20).

Aui(ωk) = 20 log10

∣∣∣10Aui(ωk)/20 − ũi/
∣∣sp(ωk)

∣∣∣∣∣. (20)

The amplitude characteristic adjustment value of each motor system is

∆Ai = Aui(ωk)− Aui(ωk). (21)

To ensure that the adjustment of the amplitude characteristic does not affect the
unification of the dynamic response characteristics of the dual-motor system, it is necessary
to unify the adjustment value to a smaller value ∆A, so that the anti-saturation module can
satisfy the adjustment requirements of both feedback control loops simultaneously. The
amplitude characteristic adjustment value can be determined as follows:

∆A = −MAX{|∆A1|, |∆A2|}. (22)

3.2.2. AFOAM Design and Implementation

A. AFOAM design

Combined with the above theoretical peak voltage calculation, we can obtain the
saturation situation of the control voltage by analyzing the input signal when the frequency
domain characteristics of the dual-motor system are determined. On this basis, we devel-
oped an AFOAM based on fractional-order frequency-domain control theory to realize the
specific amplitude characteristic adjustment in which the saturation status of the control
voltage is determined by analyzing the input signal when the frequency-domain charac-
teristics of the dual-motor system are determined. The implementation block diagram
of AFOAM is shown in Figure 5. When the input signal is determined, the controller
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calculates the peak voltage according to Equation (17) to adjust the control system to avoid
the saturation effect, i.e., not adjust the control parameters in real time during motion.
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As shown in Equation (20), we only need to adjust the amplitude characteristic at ωk.
Since the adjustment at a specific frequency will affect the amplitude and phase charac-
teristics of the surrounding frequency and will further influence the dynamic response
performance of the feedback control system, we propose the AFOAM in this paper to
adjust the specific FDC accurately and flexibly by introducing the fractional-order lead-lag
controller (FOLLC) as the fractional-order FDC planning target. The expression for the
FOLLC is described as follows:

C f (s) = KC

(
1 + λxsα

1 + λsα

)
, (23)

where KC, λ, and x are coefficients. The order α can be any real number in the range
(0, 2), which enables the FOLLC to accurately describe the specified FDC at the specified
frequency through accurate parameter selection. The transfer function from the input signal
r to the feedback control voltage uFBCi with the AFOAM is as follows:

Gui(s) =
k f i fi(s)ci(s)Ta(s)

1 + k f i fi(s)ci(s)gyi(s)Ta(s)
, (24)

where Ta(s) represents the transfer function of the AFOAM. With the AFOAM, the voltage
amplitude characteristic of the feedback control system is changed as

Aui(ω) = Aui(ω) + A f (ω), (25)

where Af (ω) is the amplitude characteristic of the FOLLC. According to the transfer block
diagram of the proposed adaptive fractional-order anti-saturation synchronous control
method, the transfer function of AFOAM can be expressed as follows:

Ta(s) =
KC(1 + λxsα)

(1 + λsα − KC(1 + λxsα))k f i fi(s)ci(s)gyi(s) + λsα+1
. (26)

B. Parameter determination

It can be seen from Equation (26) that the parameters of the AFOAM can be deter-
mined by selecting the parameters of the FOLLC. Therefore, we first need to establish the
relationship between the parameters of the FOLLC and the FDC adjustment. Equation (23)
can be rewritten as

C f (jω) = KC

(
1 + xλ(jω)α

1 + λ(jω)α

)
. (27)

The amplitude and phase characteristics of the FOLLC can be calculated as follows:

A f (ω) = 20 log10

(
KC

√
1 + x2λ2ω2α + 2xλωα cos(απ/2)

1 + λ2ω2α + 2λωα cos(απ/2)

)
, (28)
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ϕ f (ω) = tan−1
[

(x− 1)λωα sin(απ/2)
1 + (x + 1)xλ2ω2α cos(απ/2)

]
, (29)

Let

g(ω) = KC

√
1 + x2λ2ω2α + 2xλωα cos(απ/2)

1 + λ2ω2α + 2λωα cos(απ/2)
. (30)

The logarithmic function is monotonic, and thus, g(ω) represents the trend of Af
(ω). Because the FOLLC has equal-order properties, that is, the orders of the differen-
tial operator in the numerator and denominator polynomials are the same, we can de-
duce that the FOLLC has the following properties: (1) Af (ω)|ω→0 = 20log10(KC) and
Af (ω)|ω→+∞ = 20log10(KCx); (2) ϕf (ω)|ω→0 = ϕf (ω)|ω→+∞ = 0; (3) when ω = ωm, the
FOLLC reaches its extreme phase characteristic value. By deriving Equation (29), we obtain

ωm =
(
λ
√

x
)−1/α, (31)

The parameter λ can be obtained by Equation (32).

λ =
(√

xωα
m
)−1, (32)

Because the middle- and low-frequency domains are the main control-frequency
domains of the motor system, the FDC adjustment should avoid excessive influence on
the amplitude and phase characteristics in these areas. However, owing to the continuity
of the FDC adjustment, this influence cannot be completely avoided. To minimize the
influence of the FDC adjustment caused by the AFOAM on the outer area of the specified
angular frequency, especially the middle- and low-frequency domains, we need to let KC = 1.
According to the above analysis, to minimize the influence range of the FDC adjustment, we
determine Af (ω)|ω→+∞ = ∆A and |Af (ωk) + ∆A| ≤ ε1. Because the logarithmic function
is a monotonic function, Af (ωk) satisfies

∣∣ .
g(ωk)

∣∣ ≤ ε2 simultaneously, where ε1 and ε2
represent the minimum values. Thus, parameter x can be calculated by Equation (33).

x = 10∆A/20, (33)

To simplify the calculation, we let Af (ωk) ≈ ∆A and substitute it into Equation (28),
and then we can obtain the relationship between ωj and α by the following expression:

ωj = ωk
(
−2
√

x cos(απ/2)/(x + 1)
)2/α, (34)

where ωj satisfies the condition ωm = (ωkωj)1/2, and (ωk–ωj) is the range of the FDC
adjustment. Since the variables x, ωk, and ωj are not less than zero, the order α should be in
the range of [1, 2). We can see that when the order α = 1, ωj = 0, which means that the FDC
adjustment of the AFOAM will influence the amplitude and phase characteristics at all
frequencies. Under this condition, because ωm = (ωkωj)1/2, ωm will be zero by calculation,
so the parameters of the AFOAM cannot be determined uniquely and adaptively. Therefore,
to reduce the influence of the FDC adjustment, the order must be in the range of (1, 2).

Through the derivation of Equation (30), we obtain

.
g(ωk) =

(
1 + ωα

k
ωα

j
+ 2 ωα/2

k√
xωα/2

j
cos(απ/2)

)1/2(
(x− 1)α

ω
(α/2−1)
k√
xωα/2

j
cos(απ/2) +

ωα/2
k√

xωα/2
j

+
√

x ωα/2
k

ωα/2
j

+
ωα

k
ωα

j
cos(απ/2)

)
(

1 + x ωα
k

ωα
j
+ 2
√

x ωα/2
k

ωα/2
j

cos(απ/2)
)1/2(

1 + ωα
k

xωα
j
+ 2 ωα/2

k√
xωα/2

j
cos(απ/2)

)2 , (35)

For Equation (35),
∣∣ .
g(ωk)

∣∣ ≤ ε2, so there is a minimum value ε, making
∣∣ .
g(ωk)− ε

∣∣ = 0.
Combining Equations (34) and (35), and the above conditions, the optimal model for
parameter α can be deduced as follows:
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
min Z(α) = ωk −ωk

(
−2
√

x cos(απ/2)/(x + 1)
)2/α

s.t. 1 < α < 2.∣∣∣A f (ωk) + ∆A
∣∣∣ ≤ ε1.∣∣ .

g(ωk)− ε
∣∣ = 0.

, (36)

Through Equation (36), parameter α can be solved and determined. Then, parameters λ
and ωm can be calculated by combining Equations (31)–(33), and ωm = (ωkωj)1/2. Therefore,
through the establishment of the relationship between the FOLLC and FDC adjustment,
the parameters K, x, λ, and α of the AFOAM can be determined properly.

4. Experiment
4.1. Experimental System

Based on the above theoretical analysis and derivation, we implemented the proposed
adaptive anti-saturation synchronous control system using a dSPACE prototyping system
and conducted experiments on the redundant direct-drive gantry platform to verify the
improvement in the synchronous motion performance of the proposed method. Figure 6
shows the experimental setup. The Y-direction motion of the redundant direct-drive gantry
platform was driven by AUM3 PMLSMs from Akribis. Each motor was equipped with
RGS20-S grating from Renishaw, with a resolution of 0.1 µm.
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Figure 6. Experimental system.

The beam had a length of 836 mm, and its weight exceeded 25 kg, which caused the
synchronous motion performance of the dual-motor system to be significantly affected by
the synchronous control method. During the experiments, the dSPACE system controlled
the PMLSMs in real time, and the feedback signals were provided by the gratings. By
establishing the mathematical model of the motor system and using a frequency sweep
experiment to identify the model parameters, the transfer functions of the motor systems
were calculated as follows:

gy1(s) =
0.9183s3 + 5.994s2 + 8959s + 8499

s5 + 16.92s4 + 1.061e04s3 + 7.916e04s2 + 5.448e04s

gy2(s) =
0.8818s3 + 8.583s2 + 8918s + 2.223e04

s5 + 12.51s4 + 1.104e04s3 + 3.237e04s2 + 4.215e04s

, (37)

The dual-motor system adopted a proportional–integral–derivative (PID) feedback
control method. According to the controlled object models shown in Equation (37), the
Ziegler–Nichols tuning rules were used to obtain a set of PID parameters that were more
consistent with the synchronous-motion requirements of the dual-motor system. The PID
controller and its parameters are as follows:{

c1(s) =
(
27.41s2 + 388.52s + 1.05

)
/s

c2(s) =
(
28.12s2 + 275.44s + 1.12

)
/s

, (38)
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According to Equations (37) and (38), the FDC diagrams of the dual-motor system
under the open-loop, closed-loop, and control methods in this study were obtained, as
shown in Figure 7. As seen in the figure, even if the FDC values of the motor systems are
significantly different, the closed-loop FDC of the motor systems can be guaranteed to be
relatively consistent through the adjustment of the PID feedback controllers. However, there
is still a large difference in the amplitude and phase characteristics around ω = 1 rad/s.
Because the phase characteristic of Motor Y2 is ahead of that of Motor Y1, the FDC-UM
can be calculated using Equation (13). When KF = [1, −1]T, the FDC-UM is given by
Equation (39). With the FDC-UM, the FDC of the two motor systems can be made consistent,
as shown in Figure 7c.

f11(s) = 1

f22(s) =

25.17s11 + 836s10 + 5.323e05s9 + 1.33e07s8+

2.804e09s7 + 4.909e10s + 1.672e11s5 + 2.638e11s4+

1.399e11s3 + 3.761e08s2

24.8s11 + 903.8s10 + 5.244e05s9 + 1.447e07s8+

2.784e09s7 + 5.286e10s6 + 3.228e11s5 + 6.536e11s4+

3.361e11s3 + 1.356e09s2

, (39)
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According to Equation (17), it is necessary to obtain the friction compensation voltage
to accurately calculate the adaptive gain adjustment value. The Stribeck friction model
is a commonly used friction model that can more comprehensively reflect the change
in the friction of the guide when the PMLSM moves continuously [29]. Based on the
Stribeck friction model, the functions of the friction compensation voltage are shown in
Equations (40) and (41), and the curves are shown in Figure 8. From Figure 8, we can see
the high nonlinearity and complexity of friction, and there is a sudden change in friction
during the low-speed period, which seriously deteriorates the accuracy of the motor system.
However, when the speed reaches a certain value, the friction remains within a certain
range. At this time, the friction changes very little; therefore, the friction compensation
voltage used in the calculation of Equation (17) can be clearly obtained.

uFC1 =


(

11.13 + 0.00037v1 + 5.51e−(v1/0.0123)2
)

/72, f or v1 > 0,(
−13.15 + 0.00011v1 − 5.33e−(v1/0.0139)2

)
/72, f or v1 < 0.

, (40)

uFC2 =


(

13.03 + 0.00047v2 + 5.25e−(v2/0.0103)2
)

/72, f or v2 > 0(
−16.22 + 0.00018v2 − 5.51e−(v2/0.0156)2

)
/72, f or v2 < 0.

(41)
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4.2. Synchronized Motion Experiments
4.2.1. Verification of Peak Voltage Calculation

The AFOAM calculates the theoretical peak voltage based on the spectrum of the input
signal and designs the corresponding fractional-order FDC, aiming to avoid the saturation
effect of the control voltage. Therefore, the correctness of the calculation expression for
the theoretical peak voltage directly affects the effectiveness of the proposed method in
improving the synchronization accuracy. The experiments verified the accuracy of the
calculation under different accelerations and velocities.

To accurately analyze the spectrum of the input signal, we modified the short-term
input signal into a long-period signal through periodic processing and calculated the
spectrum according to the discrete Fourier transform shown in Equation (42).

sp(ω) = T2
s

+∞

∑
n=−∞

(
n

∑
k=−∞

(
k

∑
i=−∞

a(i)

))
e−jωn, (42)

where sp(ω) is the spectrum of the input signal, Ts is the sampling time, a(i) denotes the
discrete acceleration sequence, k is the number of discrete acceleration sequences, and
n is the number of discrete velocity sequences. The cubic curve shown in Equation (43)
is a commonly used point-to-point motion planning that can realize the adjustment of
acceleration, velocity, and displacement. Therefore, this curve was used for experimental
analysis. Figure 9 shows the motion planning when the displacement is 0.05 m, maximum
speed is 0.4 m/s, and maximum acceleration is 30 m/s2.

r =


a0 + a1t + a2t2 + a3t3, f or t ≤ ta,

a0 + a1ta + a2tat + a3t3
a , f or ta < t ≤ (ta + tc),

a0 + a1(t− tc) + a2tatc + a2(t− tc)
2 + a3(t− tc)

3,

f or (ta + tc) < t ≤ (2ta + tc).

, (43)

where ai (i = 1, 2, . . . , k) is a parameter of the cubic curve, ta is the acceleration time, tc is
the uniform motion time, and r is the displacement.
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Figure 10 shows the calculated amplitude spectrum of the motion planning with
different accelerations under the same acceleration time, and Figure 11 shows the calculated
amplitude spectrum of the motion planning with different velocities under the same
acceleration. It can be seen from Figure 10 that, as the acceleration increases, the amplitude
spectrum at the non-zero frequency increases, but all accelerations are at a similar frequency.
The results in Figure 11 show that, under the same acceleration, with an increase in velocity,
the amplitude spectrum at the non-zero frequency increases, but the frequencies are all
retained within a small range.

Based on the spectrum analysis of the input signal, the voltage amplitude charac-
teristics of the motor system at the corresponding angular frequency were calculated.
Table 1 shows the comparison results of the theoretical and experimental peak voltages
under different motion planning conditions. The relative error δ in the table is calculated
as follows:

δ = |ucal − u|/u× 100%, (44)

where u is the experimental peak voltage, and ucal is the calculated theoretical peak voltage.
In the experimental results shown in Table 1, the maximum relative error between the
experimental and the calculated theoretical peak voltages was 3.86%, which proves the
accuracy of the calculation of the theoretical peak voltage; thus, Equation (17) can guarantee
the accurate fractional-order FDC planning for the adaptive fractional-order anti-saturation
synchronous control method.
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Table 1. Comparison of calculated theoretical and experimental peak voltages.

Motion Planning Amplitude Spectrum Voltage Amplitude
Characteristic of the

Motor Y1 (dB)

Peak Voltage (V)

δAcceleration
(m/s2)

Velocity
(m/s)

Frequency
(Hz) Peak Value Experiment Calculation

20 0.8 2.5 0.0435 50.3265 14.8562 14.2828 3.86%
30 1.2 2.5 0.0653 50.3265 22.2843 21.4406 3.79%
40 1.6 2.5 0.0870 50.3265 29.7124 28.5655 3.86%
50 2.0 2.5 0.1088 50.3265 37.1405 35.7233 3.82%

4.2.2. Synchronization Accuracy Verification

To further verify the correctness of the calculation for the proposed adaptive fractional-
order anti-saturation synchronous control method and its effectiveness in improving the
synchronization accuracy of the dual-motor system, the cubic curve shown in Equation (43)
was selected to perform the high-speed high-acceleration motion experiments. According
to the above analysis and experiments of the FDC-UM, the parameters of the PID feed-
back controller selected in the experiments are shown in Equation (38), and those of the
friction compensator are shown in Equations (40) and (41). When the dual-motor system
was controlled by the proposed synchronous control method, the AFOAM analyzed the
spectrum of the input signal and the FDC of the control system and then used Equation (36)
to calculate the order of the FOLLC as 1.3190. According to Equations (31)–(33), ωj = 7.1740,
KC = 1, x = 0.8055, and λ = 0.1381. Therefore, using Equation (26), the transfer function
of the AFOAM was calculated as Equation (45). According to Equation (45), we could
draw the adjustment curve of the voltage amplitude characteristic realized by the AFO-AM,
as shown in Figure 12a. An FDC comparison of the motor system with and without the
designed AFO-AM is shown in Figure 12b.

The anti-saturation module can avoid synchronization errors owing to the voltage
limitation; therefore, compared with the force compensation cross-coupling synchronous
control method, the proposed synchronous control method can avoid the artificial sec-
ondary parameter adjustment of the control system to achieve high-synchronization ac-
curacy under different motion plannings. Figure 13 shows the experimental results of the
synchronous motion of the dual-motor system. Under force compensation cross-coupling
synchronous control, both motor systems were affected by long-term saturation, which
led to a large synchronization error. However, there was no control voltage saturation
under the proposed synchronous control, as shown in Figure 13b, so the synchronization
error was reduced obviously, as shown in Figure 13c. Table 2 shows the comparison results
of experimental data under three different motion plannings, in which we use the com-
monly used indicators, such as absolute maximum value (|MAX|), mean absolute error
(MAE), and root mean square error (RMSE) to compare the synchronization error under
different control methods. Under the proposed adaptive fractional-order anti-saturation
synchronous control, the root-mean-square synchronization error of the dual-motor system
can be reduced by more than 77.580% compared with that under the force compensation
synchronous control. The comparison results of the three sets of experimental data verify
that the proposed adaptive fractional-order anti-saturation synchronous control method has
obvious advantages in improving the synchronization accuracy of the dual-motor system.

Ta(s) =
1 + 0.1112s1.3190

0.0269s1.3190
(

25.17s5 + 521.1s4 + 2.479e05s3 + 3.714e06s2 + 3.311e06s + 8924
s6 + 16.92s5 + 10610s4 + 79160s3 + 54480s2

)
+ 0.1381s1.3190 + 1

. (45)
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Table 2. Experimental data comparison results of the synchronous motion experiments.

Experiment
Motion Planning

Control Method

Synchronization Error (µm)
RMSE

Reduction (%)Displacement
(m)

Velocity
(m/s)

Acceleration
(m/s2) |MAX| MAE RMSE

1 0.05 0.35 30
Method 2 584.500 117.259 221.443 -

Proposed method 89.800 36.987 42.132 80.974

2 0.05 0.5 30
Method 2 561.600 80.388 161.193 -

Proposed method 52.900 31.436 32.338 79.938

3 0.05 0.5 50
Method 2 769.000 106.681 220.616 -

Proposed method 141.400 40.019 49.454 77.580

Method 2: Force compensation cross-coupling synchronous control method.

5. Discussion

Synchronization error of a dual-motor system will usually lead to degradation of
equipment performance. Several researchers focused on the cross-coupling synchronous
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control method, by reducing the synchronization error from the aspects of the compensation
method and the control parameter tunning method, to improve the synchronous motion
performance of a dual-motor system [19,30]. However, the cross-coupling synchronous
control method is usually used to compensate the control voltage after the synchronization
error occurred, so there is a time delay between the generation and the compensation of the
synchronization error. As shown in Figure 3, under the control of the chirp signal, although
the cross-coupling synchronous control method could greatly reduce the synchronization
error of the dual-motor system, it was difficult to eliminate the synchronization error
completely due to the constant changes in the amplitude and frequency of the input signal
and the inconsistent response characteristics of the dual-motor system. The experimental
results showed the relationship between the dynamic response characteristics and the FDC
of the motor systems. With the proposed adaptive fractional-order anti-saturation syn-
chronous control method, the FDC of the dual-motor system was adjusted to be consistent
to guarantee the same dynamic response output of the dual-motor system. Compared with
the cross-coupling synchronous control method, our method can suppress the generation
of the synchronization errors of the dual-motor system and eliminate the influence of the
saturation effect and thus can achieve a better synchronous-motion control performance,
as shown in Table 2. It can be seen from the experimental results in Figure 13 that our
method can effectively avoid the non-linear phenomenon of control voltage saturation and
ensure the high-precision synchronization accuracy of the dual-motor system. Considering
the problem of the hysteresis nonlinearity and gap nonlinearity of the dual-motor system,
the synchronous control performance of the proposed method may be affected. Next,
we will tackle this problem to further improve the synchronous control method for the
dual-motor system.

6. Conclusions

In this study, we proposed an adaptive fractional-order anti-saturation synchronous
control method to deal with the asynchronous problem of the dual-motor system. With
the elimination of the differences in FDC by the designed FDC-UM, both motor systems
possessed consistent dynamic response characteristics. Based on the theoretical peak volt-
age calculation, we further developed an adaptive fractional-order anti-saturation module
(AFOAM) to eliminate the nonlinear saturation effect caused by the control voltage sat-
uration and thus effectively improved the synchronization accuracy of the dual-motor
system. The experimental results showed that the maximum relative error between the
calculated and experimental peak voltage was only 3.86%, which confirmed the correctness
of the theoretical calculation of the peak voltage in this paper. On this basis, the proposed
adaptive fractional-order anti-saturation synchronous control method could prevent the
control voltage from reaching the limitation and reduce the root-mean-square synchroniza-
tion error from 221.443 µm to 42.132 µm, with a reduction of 80.974%. The experimental
results demonstrated that the proposed method can effectively suppress the inconsistent
characteristics of the dual-motor system and avoid the nonlinear saturation effect. There-
fore, the proposed method can effectively improve the synchronization accuracy of the
dual-motor system.
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