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Abstract: Regular inspection and monitoring of buildings and infrastructure, that is collectively 

called the built environment in this paper, is critical. The built environment includes commercial 

and residential buildings, roads, bridges, tunnels, and pipelines. Automation and robotics can aid 

in reducing errors and increasing the efficiency of inspection tasks. As a result, robotic inspection 

and monitoring of the built environment has become a significant research topic in recent years. 

This review paper presents an in-depth qualitative content analysis of 269 papers on the use of ro-

bots for the inspection and monitoring of buildings and infrastructure. The review found nine dif-

ferent types of robotic systems, with unmanned aerial vehicles (UAVs) being the most common, 

followed by unmanned ground vehicles (UGVs). The study also found five different applications of 

robots in inspection and monitoring, namely, maintenance inspection, construction quality inspec-

tion, construction progress monitoring, as-built modeling, and safety inspection. Common research 

areas investigated by researchers include autonomous navigation, knowledge extraction, motion 

control systems, sensing, multi-robot collaboration, safety implications, and data transmission. The 

findings of this study provide insight into the recent research and developments in the field of ro-

botic inspection and monitoring of the built environment and will benefit researchers, and construc-

tion and facility managers, in developing and implementing new robotic solutions. 

Keywords: construction robots; project monitoring; robotic inspection; construction automation;  

autonomous robots; mobile robots 

 

1. Introduction 

The built environment consists of human-made buildings and infrastructures such 

as commercial and residential buildings, bridges, roads, tunnels, storage tanks, and pipe-

lines. These structures must be routinely inspected and monitored both during and after 

construction. The structure is monitored and assessed through regular inspections per-

formed by different stakeholders including owners, project managers, architects, engi-

neers, contractors, sub-contractors, end users, and facility managers [1]. Irrespective of 

who is performing the inspection, manual inspection is a time-consuming process and 

adds to the project cost [2]. Manual inspection is also characterized by a high degree of 

variability in the quality of assessment and subjectivity [3,4].  

Some inspection tasks are difficult for humans to perform due to inaccessibility, e.g., 

confined spaces such as inside air-conditioning ducts [5,6], water-filled pipelines and tun-

nels [7], offshore structures [8], and small spaces in walls [9]. Some situations might be 

hazardous for humans, such as inspection at heights [10], structures subjected to natural 

disasters [11], or a bridge deck [12]. Different inspection and monitoring activities differ 

in their requirements and face different challenges. Therefore, not all types of inspection 

can be performed by the same robot. This review paper identifies robot types and various 

application subdomains within the domain of inspection and monitoring of the built en-

vironment and discusses their challenges. 
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Robots have been used in building and infrastructure projects in many ways—e.g., 

for concrete production, automated brickwork, steel welding, concrete distribution, steel 

reinforcement positioning, concrete finishing, tile placement, fireproof coating, painting, 

earthmoving, material handling, and road maintenance [13]. Robots with many different 

locomotion types and sensors have been used for the inspection of the built environment 

[3]. Some examples are unmanned aerial vehicles (UAV), unmanned ground vehicles 

(UGV), marine vehicles, wall-climbing robots, and cable-crawling robots, among others. 

Robotic inspection provides a safer alternative to manual inspection [14,15]. Automated 

robotic inspection improves the frequency of inspections and reduces subjectivity in de-

tecting errors [16–18]. 

As described in this review, challenges associated with developing and implement-

ing robots for inspection and monitoring of the built environment are substantial. One of 

the biggest challenges is that buildings and infrastructure differ widely in design and in-

tended use. Programming and designing a robot to operate in a wide range of input envi-

ronments is a significantly difficult task [3]. Furthermore, various inspection subtasks 

need completely different robot functionalities, such as defect detection [19], progress es-

timation [20], and resource tracking [21], among many others. During this review, it was 

identified that previous research can be categorized into distinct research areas based on 

what challenges it addressed. All these research areas are identified, and the findings are 

presented in this paper.  

Rakha and Gorodetsky [22] presented a comprehensive review of the use of drones 

for building inspection. However, the current review includes all types of robots, includ-

ing but not limited to drones. Lattanzi and Miller [3] reviewed the literature on the robotic 

inspection of infrastructure. They studied different types of robots based on their mobility. 

They also studied different methods developed by past researchers for improving the au-

tonomy and damage perceptions of these robots. However, there have been numerous 

advances In the field of robotics, and in their supporting technologies, such as computer 

vision and deep learning recently. In fact, a bibliometric analysis of the papers reviewed 

in this study revealed that more than 60% of the papers analyzed were published after 

2017, when [3] published their review. The results of the bibliometric analysis are pre-

sented in Section 3. Furthermore, Bock and Linner published the handbook on Construc-

tion Robots [23]. They studied various robots in use in construction. While they briefly 

discussed inspection robots, they did not focus on the various research areas on the im-

plementation of robots in inspection and monitoring of buildings and infrastructure, nor 

did they discuss specific application sub-domains of inspection and monitoring. They also 

did not perform a comprehensive review of all research conducted on this topic. This ar-

ticle synthesizes the findings of previous studies and offers a comprehensive review of 

current research on robotic inspection of the built environment. The goal of this research 

is to consolidate information from the most recent body of literature using the qualitative 

content analysis methodology and answer the following research questions: 

• What types of robots have been studied in the literature on robotic inspection of 

buildings and infrastructure based on their locomotion? 

• What are the prevalent application domains for the robotic inspection of buildings 

and infrastructure? 

• What are the prevalent research areas in the robotic inspection of buildings and in-

frastructure? 

• What research gaps currently exist in the robotic inspection of buildings and infra-

structure? 

This paper is structured as follows. First, the methodology used for this review is 

explained in Section 2. After that, the findings of the bibliometric analysis performed on 

the reviewed papers are presented in Section 3. Then, a critical review of different types 

of robots found in the literature is presented in Section 4. Next, various application do-

mains are identified from the literature and are presented in Section 5. Then, common 
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research areas are identified that have been addressed by different researchers in Section 

6. These are the different challenges faced in the implementation of robotics for the in-

spection and monitoring of the built environment. After that, based on the research gaps 

in the literature identified during the review, future directions for research are provided 

in Section 7. Finally, the paper is concluded in Section 8 with a brief discussion of the 

implications and limitations of this study. 

2. Research Methodology 

This review is based on bibliometric analysis and content analysis of the literature 

body on the topic of using robots for inspection and monitoring. Previous literature re-

view studies [3,24] have used Web of Science (WoS) and Scopus databases to search for 

relevant papers on a topic. Both of these databases have a large range of high-quality ac-

ademic publications in engineering and management domains [24]. To further ensure that 

all relevant papers are included in the review, the authors also used Google Scholar to 

find any relevant papers not indexed in WoS and Scopus. The keywords (robot* OR uav 

OR drone OR “unmanned aerial vehicle”) AND (“construction inspection” OR “infra-

structure inspection” or “construction monitoring” OR “progress monitoring” OR “build-

ing inspection” or “inspection of building” or “monitoring of building”) were used to 

search in all the fields of the publications. The star (*) symbol was used as a wildcard to 

include words such as “robots”, “robotic”, and “robotics”. After compiling the papers 

from all sources, 1538 results were generated in total (308 from WoS, 553 from Scopus, 

and 677 from Google Scholar). After removing the duplicates, 1264 sources were retrieved. 

Conditional formatting function in MS Excel was used to remove duplicate entries. 

Preliminary shortlisting was performed by reading the titles and the abstracts of the 

papers. Only those publications were kept that utilized robots in some way for building 

and infrastructure inspection and monitoring. Papers on the use of robots for labor or 

construction jobs were not included. Research on general-purpose robots that were not 

specific to the built environment application was also removed. For the purpose of this 

review, a “robot” is any mobile system that can operate autonomously or manually and 

has sensors to navigate and collect data. Some examples of robots in the context of this 

study are unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), marine 

vehicles, microbots, wall-climbing robots, cable-suspended robots, and legged robots. 

Apart from the actual applications of robots, research on enabling technologies (such as 

computer vision) that make the use of robots more efficient and safer in the future while 

being independent of the type of robot has also been included in this review.  

After preliminary filtering, 575 sources were shortlisted for further review. This was 

followed by a secondary filtering, in which the shortlisted papers were analyzed by read-

ing the major sections to ascertain the overall theme. The criteria discussed above were 

used to include or exclude the papers. Finally, 269 papers remained for in-depth analysis. 

The remaining papers were reviewed using the qualitative content analysis methodology 

used by past researchers [24,25] to identify the application domains and research areas 

commonly studied in the literature. In this step, papers were tagged with custom key-

words for classification. The resulting classes and categories are discussed in more detail 

in the following sections. The methodology for this review is illustrated graphically in 

Figure 1. 
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Figure 1. Methodology used for the selection of sources. 

3. Bibliometric Analysis 

Bibliometry, or bibliometric analysis, is the application of mathematics and statistics 

to uncover structures and patterns of research in a certain area [26]. For this purpose, Bib-

lioshiny, an open-source application running on R, was used. Biblioshiny is the web ver-

sion of the bibliometrix tool developed by Aria and Cuccurullo [27]. It provides an intui-

tive web interface for performing bibliometric analysis [28]. Table 1 presents the descrip-

tive statistics of the reviewed sources. The review included 269 documents from 185 dif-

ferent sources. Among these, 100 (37.17%) were journal articles, 163 (60.59%) were confer-

ence papers, and 6 (2.23%) were book chapters. The documents were written by 663 dif-

ferent authors. For this review, only documents written in English were considered.  

Table 1. Descriptive statistics of the reviewed sources. 

Description Results 

Timespan 1991:2022 

Sources (Journals, Books, etc) 185 

Documents 269 

Average years from publication 5.25 

Average citations per documents 11.13 

Average citations per year per doc 1.591 

References 463 

DOCUMENT TYPES  

Article 100 

Book chapter 6 

Conference paper 163 

DOCUMENT CONTENTS  

Author’s Keywords (DE) 515 

AUTHORS  

Authors 663 

Author Appearances 823 

Authors of single-authored documents 70 

Authors of multi-authored documents 593 
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AUTHORS COLLABORATION  

Single-authored documents 70 

Documents per Author 0.406 

Authors per Document 2.46 

Co-Authors per Documents 3.06 

Collaboration Index 2.98 

Figure 2 shows the publication output in the area of inspection and monitoring of 

buildings and infrastructure by the year of publication. The earliest source included in 

this review was published in 1991 and titled, “A mobile robot for inspection of power 

transmission lines” [29]. Research in this area gained more popularity only after 2012, as 

can be seen in Figure 2. The median of the data was found to be in the year 2017, which 

means more than half of the papers were published in or after 2017. This again emphasizes 

the significance of our review paper compared to past reviews. From 1991–2021, an aver-

age year-on-year growth of 17% was noted in the publication output on this topic. This 

shows that more researchers are being attracted to this area of research. The consistently 

high output of publications in recent years shows that the topic of robotic inspection of 

the built environment is still relevant. This finding supports the need for this review.  

 

Figure 2. Historical frequency of research. 

4. Types of Robots 

This section critically reviews various types of robots used in research. Figure 3 

shows the types of robots identified. The numbers in the figure denote the number of 

papers reporting the use of that type of robot. Most researchers used UAVs, and because 

of their ability to reach places that humans cannot, they are found to be useful tools for 

many inspection applications [30,31]. They provide valuable support to quickly and safely 

access exterior facades of high-rise buildings and hard-to-reach places of bridge decks 

[32]. The second-most-common type of robot found to be used is the UGV. Unlike UAVs, 

which offer small payload capacities, ground-based robots such as wheeled robots offer 

much higher payload capacities and are useful tools in the longer inspection of buildings 

[3].  

Some researchers used multiple types of robots in collaboration, e.g., a UAV with a 

ground robot [33,34]. Other researchers developed custom hybrid robots with more than 

one locomotion system [20,35–37]. These hybrid robots provide better reach and are more 

versatile than simple robots. For example—a wheeled robot with a rotor attached devel-

oped by Lee et al. [20] can jump around obstacles and inspect both the interior and exterior 

of a building.  
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Figure 3. Types of robots used in literature. 

4.1. Unmanned Aerial Vehicle (UAV) 

UAVs are by far the most commonly used type of robot for inspection and monitor-

ing of the built environment, as found in the literature. According to Association for Un-

manned Vehicle Systems International (AUVSI), the market for UAVs is estimated to be 

$11.3 billion in the U.S. alone, which will grow to $140 billion in the next 10 years [38]. 

Examples of commercial UAVs used in research are DJI Phantom 3 [39], DJI Phantom 4 

[40], Parrot AR.Drone 2.0 [41], DJI M600 Pro [42], DJI Matrice 100 [43], FlyTop FlyNovex 

[44], DJI Mavic Mini [45], DJI Mavic Pro [46], and Tarot FY680 [47]. The use of UAVs, also 

known as drones, started in military operations; however, they are now increasingly being 

used in the construction and maintenance of civil infrastructures for inspection and mon-

itoring [30,48,49]. Their versatility and low operating and maintenance costs make them 

appealing to a wide range of sectors, including construction [50,51]. UAVs are a preferred 

tool for data collection because of their maneuverability and higher angles of measure-

ment [52,53]. They are also very lightweight and take little time to set up. They can reach 

places where it is difficult to reach for humans [51,54,55]. UAVs can also undertake at-

height inspections isolating humans from fall hazards [56,57]. UAVs are also faster than 

human inspectors [58]. High-rise towers with glass facades often get damaged after ex-

treme weather events. These facades need to be inspected before re-occupancy of the 

building is allowed [59]. Due to their speed, UAVs can provide accurate information much 

faster and more frequently than humans [58,60]. UAVs can thereby reduce the cost and 

risk of inspection of the built environment [61].  

UAVs are classified into two categories—fixed-wing and rotary-wing UAVs. While 

fixed-wing UAVs are faster, they cannot hover or take-off vertically. Rotary-wing UAVs 

can take off vertically from any location, eliminating the need for a horizontal plane on 

which to gain speed [62]. The most popular rotary-wing UAV is a quadrotor with four 

rotors [63]. They are agile and can hover in one place. They are, however, slower and have 

a shorter range [62]. As a result, rotary-wing UAVs are better suited for building applica-

tions. However, fixed-wing UAVs can be useful in long, linear infrastructure projects such 
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as highways and railways. A relatively rare UAV type is a lighter-than-air-platform; ex-

amples are balloons and kites [64,65]. These systems are substantially slower and have 

very little wind resistance. 

Typically, UAVs carry digital cameras as payloads to capture visual data from the 

site [66,67]. They can also carry other equipment, such as thermal cameras [68,69]. How-

ever, images or videos captured from UAVs can be noisy and require post-processing [66]. 

The design and payload of the UAV may vary based on the desired application [70]. The 

common use of UAVs in building inspections is to collect visual data by utilizing their 

onboard cameras [15,71]. UAVs are also commonly used for bridge and powerline inspec-

tions, because of the high risk of fall accidents in the manual inspection of bridges [72,73]. 

Lyu et al. [74] identified the following requirements for a UAV system for building in-

spection: 

• UAVs can hover anywhere to take photos. 

• UAVs can zoom in and focus on a small region of interest. 

• UAV operation should be simple, and the operator can get started without profes-

sional training. 

• UAVs should have a long enough flight time to improve operational efficiency. 

• UAVs should be capable of autonomous flight. 

• UAVs should be small enough for transportation and maintenance. 

A UAV can be operated either remotely or autonomously and also fly over difficult-

to-access areas [75]. Researchers [72] have found that for large linear infrastructure pro-

jects, and with manual control of the UAV, frequent turning and climbing maneuvers can 

be exhausting for the UAV pilot. The quality of the images captured by UAVs also de-

pends on the pilot’s performance [76]. This motivated the development of autonomous 

trajectory planning for UAVs [77,78]. Active collision avoidance for UAVs is required to 

avoid accidents on sites due to their use, and it is more complicated than that for autono-

mous ground vehicles [79]. Shared autonomy has also been developed, in which humans 

provide higher-level goals to the UAV, but lower-level control, such as keeping a safe 

distance from the building and avoiding objects, is conducted autonomously [80]. Shared 

autonomy reduces the cognitive load on the human operator while still utilizing their ex-

perience and expertise [80]. 

Although UAVs are efficient and versatile in an outdoor environment, they are of 

limited use in indoor situations because of visual obstructions [81]. Another challenge for 

UAVs is that GPS signals used by outdoor autonomous UAVs may become unreliable in 

indoor settings [82,83]. Many UAVs use other sensors to aid in navigation, such as gyro-

scopes, magnetometers, barometers, SONAR, and inertial navigation systems [65]. Vision-

based localization and navigation have also been developed and tested [84]. These auton-

omous navigation and path-planning techniques for UAVs and other robots are discussed 

in detail in Section 6.1.  

4.2. Unmanned Ground Vehicles (UGV) 

UGVs, also known as rovers, are the simplest in the design of all the robots discussed 

in this review. These robots work well on flat surfaces but perform poorly on cluttered 

surfaces [85]. UGVs can be wheel-driven, using pneumatic wheels to move [86], or 

crawler-mounted or tracked systems [87]. Crawlers, which are also used in military tanks 

and heavy equipment, have better traction on slick or wet terrain. If the surface conditions 

are suitable, wheeled UGVs are the most efficient in terms of power consumption, cost, 

control, robustness, and speed [85]. Owing to lower power consumption and longer 

runtime, UGVs can be used as human assistants for long inspection rounds [88]. Some 

examples of commercially available UGVs used for research are the Clearpath Jackal [89] 

and Clearpath Husky [90]. 

Due to their low center of gravity, UGVs are the most stable and can carry large pay-

loads. Some common payloads attached to UGVs in the built environment for inspection 
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and monitoring purposes are (a) regular fixed cameras and stereo cameras for visual data 

collection [90,91]; (b) LiDAR and laser scanners for 3D data capture [89,91]; (c) mechanical 

arms for obstacle removal [90]; (d) ground-penetrating RADAR (GPR), ultrasonic sensors, 

and infrared sensors for behind-wall and under-ground sensing [92–95]; (e) a graphics 

processing unit (GPU) for processing [89]; and (f) IMU, GPS, and UWB sensors for local-

izing and navigation [89,96].  

UGVs have been used in a variety of situations other than buildings due to their ease 

of design and operation. They have been used for the inspection of bridge decks [89,97], 

storage tanks [98], HVAC ducts [5], and even sewer and water pipelines [99]. Owing to 

their adaptability, they can perform floor cleaning, wall construction, and wall painting 

in addition to inspection [90]. They make an excellent test bed for algorithms and sensor 

design due to their ease of operation. 

The low height of UGVs is also a disadvantage because it limits their reach in large 

halls or spaces with high ceilings. As a result, UGVs are also used in close collaboration 

with other robots, such as UAVs. Such multi-robot collaborations are explained in more 

detail in Section 4.9. 

4.3. Wall-Climbing Robots 

Wall-climbing robots are used for the inspections of building facades, windows, or 

external pipes. Manual inspection of exterior utilities on a high-rise building is performed 

by human inspectors supported on a temporary frame suspended from the roof of the 

structure, which poses a huge safety risk to the human inspector [100]. A UAV can be the 

tool of choice for such applications because of its easy setup and flexibility. However, as 

discussed above, UAVs are susceptible to high winds and legal restrictions. Liu et al. [100] 

developed a cable-suspended wall-climbing robot for the inspection of exterior pipelines. 

Such robots are much safer and can carry larger sensor payloads. They can also be used 

for the external inspection of large above-ground storage tanks [101]. When supported by 

a single cable, as developed by [100], the robot can only move in the vertical direction. 

However, horizontal motion can be added by supporting the robot with two cables sus-

pended from two different horizontally-spaced points at the top of the structure [101]. 

Other methods of wall-climbing include grip-climbing using mechanical actuators 

and springs to create gripping action [102]. These robots do not require any pre-installed 

infrastructure to climb the vertical structure. However, they need surface protrusions to 

grip while climbing and are not suitable for smooth surfaces. 

Magnetic climbing robots use electromagnets controlled by circuits to climb steel 

structures [103]. The power needed to operate the magnets in these robots is very little 

compared to UAVs, and they can hold a position indefinitely [103]. A similar robot was 

developed by [104] with magnetic tracks. The robot was designed to inspect the interior 

of large steel storage tanks. Magnetic climbers are susceptible to losing traction from the 

surface due to dust or unevenness, which can be dangerous [105]. Therefore, both grip-

climbing and magnetic-climbing robots are limited in their use for special types of sur-

faces. 

Owing to the need for dedicated infrastructure or a special type of surface in the pre-

viously mentioned wall-climbing robots, researchers have also developed suction-mounts 

that can stick to a wider range of wall surface types. The Alicia robot was developed by 

[106] as three circular suction mounts linked together by two arms. The mounts are sealed 

by special sealants to maintain negative pressure and develop strong adhesion with the 

wall surface. A similar design was seen in [107]. Their robot Mantis was also designed as 

three suction modules joined by two links used for the inspection of window frames. 

When moving from one frame to another, one of the modules would detach and go over 

the frame followed by the other two modules one-by-one. Kouzehgar et al. [107] acknowl-

edged that cracked glass windows may create a dangerous situation for their robot; there-

fore, they also developed a crack-detection algorithm to avoid attaching to cracked sur-

faces. In contrast, the ROMERIN robot developed by [108] used six inter-linked suction 
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cups and turbines, instead of pumps, to create stronger air flow and negative air pressure. 

The use of many suction cups/mounts and high air-flow turbines provided the robot re-

silience against cracked surfaces [108]. 

4.4. Cable-Crawling Robots 

Cable-crawling robots have a niche area of application in the inspection of stay cables 

in cable-stayed and suspension bridges [109]. These robots are different from the cable-

suspended robots used for wall-climbing explained in Section 4.2. These robots do not 

need additional infrastructure to navigate but crawl along the existing steel cables in 

bridges through the use of drive rollers [110]. Although drones can also be used to safely 

inspect these bridge cables at high-altitudes, drones need to maintain a minimum safe 

distance to avoid collision [109]. Images captured from a distance do not provide enough 

clarity to detect micro-cracks on the cable surface [109]. Additionally, cable-crawling ro-

bots equipped with multiple cameras, as performed in [109], can inspect the whole surface 

of the steel cables instead of only one side at a time. 

A similar cable-crawling robot was also developed by [110] in Japan for the inspec-

tion of the steel cables of suspension bridges. Their design was similar to [109], yet slightly 

different. Their robot consisted of a base platform that crawled the main cables of the 

bridge connecting the support tower and a tethered camera module that was lowered 

from the base platform for the inspection of the hanging ropes. The actual inspection was 

carried out by the camera module suspended from the base platform, while the base plat-

form provided horizontal locomotion along the bridge. 

4.5. Marine Robots 

Marine robots are used for the inspection of marine structures such as bridge piers, 

dam embankments, underwater pipes, and offshore structures. There are two types of 

marine robots found in the literature—(a) submersible robots, also known as unmanned 

underwater vehicles (UUVs) [111] or autonomous underwater vehicles (AUVs) [112]; and 

(b) unmanned surface vehicles (USV), sometimes called surface water platforms (SWPs) 

[113]. Both USV and UUV are sometimes clubbed together under a single term of un-

manned marine vehicles [114]. 

Submersible robots, as the name suggests, can be fully submerged in water and can 

perform inspection under water. They are also sometimes referred to as underwater 

drones [115]. Underwater inspection is conventionally performed by human divers, 

which is costly, labor-intensive, and unsafe [116,117]. With UUVs, positioning and navi-

gating the robot is a huge challenge because most sensor and positioning techniques (GPS, 

fiducials, UWB, visual odometry, etc.) used on the ground are inviable underwater [111]. 

Dead reckoning techniques using inertial navigation, as explained later in Section 6.1.1, 

can be used for underwater navigation, but its accuracy deteriorates with time due to drift 

[111]. Optic and acoustic systems are also used that measure distance from the reflected 

light or sound waves [8]. However, inertial systems do not rely on information from out-

side and therefore are not affected by underwater rocks or marine life, as is the case with 

optic and acoustic systems [8]. 

Unmanned surface vehicles, on the other hand, operate on the surface of a water 

body. They are low-cost devices that can facilitate safer inspection of marine structures. 

USVs are often designed as large devices so they are stable in rough waters, though small 

USVs have also been developed and tested. The use of waterproof cameras and other 

equipment is a crucial design consideration for USVs [118]. Although USVs have been 

primarily used in military applications before, the construction industry can also benefit 

largely from their application. Bridge inspection is one of the largest areas where USV can 

be utilized because out of 575,000 bridges in the US, 85% of them span waterways [119].  
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4.6. Hinged Microbots 

Hinged microbots are made up of several tiny body sections hinged together. These 

robots imitate the movements of snakes or worms. Instead of wheels, they move by using 

multiple motored joints along their body. They can move by contracting and stretching 

their bodies like worms, or by sidewinding like snakes [120]. Various propagation tech-

niques for these robots have previously been investigated, such as piezoelectric, hydrau-

lic, pneumatic, and electrical micro-actuators [9]. Electrical micro-motors have been found 

to provide the best speed and power. 

The main advantage of hinged microbots is that they are lighter and smaller in size 

than other types of robots [9]. They are only a few cubic centimeters in size. As a result, 

they are appropriate for inspecting sewer, gas, water, or other pipes [9,120]. However, due 

to size limitations, they can only carry a limited amount of data-collection equipment. 

They are most often equipped with cameras on their heads [120]. Pipeline inspection is 

also complicated by a limited and unreliable network. Owing to unreliable communica-

tion within pipelines, Paap et al. [120] developed autonomous path-finding for their robot 

that can navigate sewer pipes even if there is no communication with the operator. With 

the advancement in machine learning techniques, Lakshmanan et al. [121] created a path-

planning method for their hinged microbot based on reinforcement learning that quickly 

finds the best path with the least energy requirement. 

4.7. Legged Robots 

Legged robots are relatively newer than other types of robots used for the inspection 

and monitoring of the built environment. They move using mechanical limbs controlled 

by multiple motors in each limb. Legged robots may have two legs (bipedal) [122], four 

legs (quadrupeds) [123], or even six legs (hexapods) [124]. They have the adaptability and 

mobility to traverse various types of terrains, making them well-suited for construction 

sites [123]. Numerous legged robots have been developed by NASA, MIT, IIT, ETH, Bos-

ton Dynamics, Ghost Robotics, ANYbotics, and Unitree [125]. However, due to high tech-

nical complexity, very few have been used outside of a laboratory setting [125]. Due to 

less availability of commercial legged robots in the market, the literature on these in the 

construction domain is also sparse. A major advantage of using legged robots over UGVs 

is that the former can traverse stairs, which facilitates multi-story inspections [126]. 

4.8. Hybrid Robots 

A hybrid class of robots uses more than one locomotion to navigate. These are a spe-

cial type of robots that are developed for specific problems and are not commercially 

available in the market for general use. A simple hybrid robot is a wheeled robot with 

additional rotors on top as developed by [20]. In such a robot, the wheels provide stability 

on a flat surface indoors whereas the rotors assist in inspection at height, obstacle avoid-

ance, and floor change. 

Another hybrid robot that was developed by [127] adds rotors to wall-climbing ro-

bots. As discussed above, wall-climbing robots using suction or magnetic mounts can be 

useful for flat exterior surfaces. However, protrusions on the façade such as columns and 

mullions limit the maneuverability of wall-climbing robots. Rotors allow skipping over 

these protrusions easily without any additional infrastructure, such as cables, thereby ex-

tending the reach of wall-climbing robots. A similar robot developed by [128] used wheels 

with adhesive coating. The rotors not only provided the vertical thrust but also horizontal 

thrust to maintain contact with the structure. The wall-sticking mechanism can also be 

provided through the use of electro-magnets as done by [37]. Electro-magnets can be more 

stable against strong winds, however, may only work with steel structures and not with 

concrete or glass surfaces. 

Another example of hybrid robot was provided by [35] that consists of legs with mag-

netic padding. The magnetic legs cannot only climb steel elements for at-height 
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inspections but can also walk over wall protrusions. The strong electro-magnets also pro-

vide some fall protection against high winds. However, glass and ceramic surfaces may 

not work with this type of robot. A similar robot with six magnetic legs was developed by 

[129]. The robot matched a spider in appearance that climb walls for at-height inspection. 

Such complex robots require complex control systems and circuity to control the legs and 

their magnetism in tune with the walking motion, which is a separate research area. 

4.9. Multi-Robot Systems 

Researchers have also used teams of multiple robots of the same or different types 

for inspection and monitoring of the built environment. The robotic system developed by 

[130] comprised two quadruped robots working in a “so-called” master-slave relation-

ship. The master robot was responsible for mission planning, task allocation, and compre-

hensive report generation and carried a high-performance computing unit for these pur-

poses. The slave or the secondary robot carried other payloads such as a thermal camera, 

robotic arm, and long-range Lidar along with a smaller computing unit for running local 

control algorithms. Such systems can carry larger payloads without the need for an over-

size robotic platform. The primary focus of the research with multiple robots is the devel-

opment of multi-robot collaboration strategies. 

Another type of multi-robot system used by researchers is a team of Unmanned Aer-

ial and unmanned ground vehicles. In the multi-robot system developed by [33], the 

wheeled robot on the ground carried the sensors for mapping the environment while the 

UAV provided a wider view of the area from a higher vantage point for better path plan-

ning and navigation. A similar approach was undertaken by [34,131,132], in which the 

UAV provided an initial scan of the area for the identification of obstacles and occlusions. 

Based on the initial scan by the UAV, the optimum scan locations were selected for the 

wheeled robot for higher-quality and longer scans. 

Multi-UAV swarms have been used by Khaloo et al. [133] and Mansouri et al. [134] 

independently. Large infrastructure projects, such as gravity dams and linear transporta-

tion infrastructure, can be too large for a single UAV to inspect in a single mission and 

require mid-mission recharging. Utilizing multiple UAVs together may reduce the time 

for data collection while covering a large area. In studies related to multiple UAVs where 

each robot is inspecting a part of the target structure, the combine path planning and data 

fusion from multiple data sources become the primary research focus [135]. This even ap-

plies to other multi-robot systems as well. 

Finally, a team of underwater robots and USV has been independently developed by 

Ueda et al. [136], Yang et al. [137], and Shimono et al. [113] for the underwater inspection 

of dams and bridge piers. In these studies, the USV provided horizontal navigation from 

the surface of the water body and lowered the submersible robot suspended by cables or 

winch for closer inspection under the water. 

5. Application Domain 

After conducting a qualitative content analysis of the shortlisted papers, many dif-

ferent application domains and research areas were identified from the literature. It was 

found that, within the context of building and infrastructure inspection and monitoring, 

robots have been used for five different applications, namely, (a) maintenance inspection, 

(b) construction quality inspection, (c) as-built/as-is modeling, (d) progress monitoring, 

and (e) safety inspection. These application domains are explained in detail in the follow-

ing subsections. The frequency of work in each of these application domains is presented 

in Figure 4. 
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Figure 4. Application domains of using robots for inspection and monitoring. 

5.1. Maintenance Inspection 

Operation and maintenance of a building cost about 50–70% of the total life-cycle cost 

of a project [138]. Structures deteriorate due to aging and extreme weather [139]. Regular 

maintenance increases the useful life of the building [138]. It is crucial to identify defects 

before they get worse and cause building failure [140]. Periodic monitoring of a structure 

after it has been constructed for maintenance purposes is also known as structural health 

monitoring (SHM) [141]. SHM is critical to ensure the safety and integrity of the structures 

[142]. Visual inspection has long been used to uncover structural flaws in order to guide 

building rehabilitation [143]. Current practices involve regular and manual inspection of 

the structure for any structural defects, which is slow and costly [138,140]. Robots can 

regularly monitor the structural elements for any signs of damage and alert humans if 

further analysis is required [144]. Maintenance inspection also involves measuring the rate 

of deterioration for predictive analysis [145]. Images captured using robots are more con-

sistent in their perspective, which is more useful in noticing the rate of change as com-

pared to images captured manually [145].  

Robotic inspection also provides a safer alternative to manual inspection. High-rise 

towers with glass facades, which are a common sight in most cities, require regular 

maintenance [107]. The classical approach to the maintenance of high-rise buildings poses 

a high risk to human workers due to high winds [107]. UAVs and wall-climbing robots 

provide a safer alternative for performing maintenance inspections of high-rise buildings 

[108,146]. Inspection of tall cylindrical structures such as storage tanks and silos also poses 

a similar risk to human inspectors [147], and so do roof inspections, since manually in-

specting roofs can be difficult due to access difficulties [56].  

Old structures may also become unsafe for humans to inspect, especially after sus-

taining damage from a natural disaster [11,148]. Many historical buildings are abandoned 

because of numerous structural defects that make them hazardous for manual inspection 

[149]. Robots equipped with special sensors can be used to diagnose structural integrity 

before a human can perform a detailed inspection [150]. Ghosh Mondal et al. [151] trained 

a convolutional neural network (CNN) model with images captured from UAVs for as-

sessing the extent of damage in disaster-affected structures. Sometimes, a single type of 

sensor is not adequate to identify all types of defects; therefore, multi-robot systems with 

different types of sensors are also deployed to monitor the structure [152]. One such 
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sensor used is an infrared thermal camera to collect thermal images of the building [153]. 

Thermal images may reveal special defects such as material degradation and air leakage 

that might not be detectable using the naked eye or simple RGB images [153]. 

The monitoring of bridges is often undertaken as a manual inspection task. However, 

it involves a human inspector being exposed to high-speed traffic and fall hazards from 

going under the bridge deck [154]. It also involves the bridge being closed and the use of 

lifting equipment to reach the hard-to-reach places under the bridge [152]. Due to these 

challenges, bridges may suffer from poor maintenance, which has been the reason for 

many collapses [154]. UAVs can be used for regular structural health monitoring of bridge 

decks where it is riskier for humans to reach frequently [32]. Schober [155] used a climbing 

robot for the inspection and testing of high bridge pillars. Lee et al. [156] studied the use 

of a teleoperated robot for the inspection of hard-to-reach parts of a bridge.  

Robots are also used for measuring building performance. Thermal leakages in a 

building may cause up to 40% energy loss, thereby decreasing building performance [22]. 

UAVs fitted with infrared sensors have been used for monitoring of thermal efficiency of 

buildings [157–159]. They have also been used to create heat maps of a building envelope 

to detect thermal anomalies using thermal cameras [22]. This process is called thermogra-

phy [160]. Pini et al. [161] argued that using a robotic system for inspection improves re-

peatability in measurement and reduces human involvement.  

5.2. Construction Quality Inspection 

Construction quality inspection involves checking the building elements while they 

are being constructed to ensure they are within tolerable limits and meet industry stand-

ards [130].The use of low-quality and changes in temperature may cause cracks in the 

structures [162]. Cracks in critical structural components must be inspected and docu-

mented in detail [163]. Field workers manually inspect the status and condition of the 

building of interest in a traditional visual inspection [130,164]. Manual inspection requires 

a significant amount of manpower, which in turn increases the chances of human errors 

[129]. Undetected defects in the structure may affect the safety of the structure in the long 

run [129]. Using robots in collaboration with humans for construction quality inspection 

reduces labor and improves productivity and accuracy [165].  

Prieto et al. [130] developed a multi-robot system called AutoCIS for performing 

quality inspection of construction work. Quality inspection of different types of elements 

needs different automation approaches [130]. Some examples of quality defects found reg-

ularly in construction projects are cracks, wall cavities, surface finish defects, alignment 

errors, unevenness, and inclination defects [130]. Detection of each of these defects needs 

a different automation approach. The defect detection methods are categorized into two 

categories—destructive and non-destructive [130]. For robotic inspection, non-destructive 

methods are preferred that use different non-destructive sensors such as cameras, 3D 

scanners, RGB-D cameras, thermal cameras, or other sensing probes [130].  

Cracks and other surface defects can be detected by non-destructive methods. Two 

of the most extensively used approaches for crack-detection are edge detector-based and 

deep learning-based approaches [163]. While edge detection is an image processing tech-

nique that does not require large training datasets, deep learning approaches such as 

CNNs do [166]. Kouzehgar et al. [107] used a CNN for the detection of cracks in the glass 

façades of high-rise towers, which is a high-risk and labor-intensive process, using a suc-

tion-mounted wall-climbing robot. More discussion on knowledge extraction methods us-

ing image processing and deep learning is presented in Section 6.2.  

UGV with LiDAR was used to detect defects in infrastructure projects such as bridge 

decks, which are more dangerous for humans to perform [89]. Lorenc et al. [167] devel-

oped an encapsulated robotic system for the inspection of drilled shafts which can be used 

in high-water-table situations that would normally require a costly and time-consuming 

dewatering process for human inspection. Barry et al. [101] used a cable-suspended robot 
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for the inspection of vertical structures, such as storage tanks, ship hulls, and high-rise 

towers. 

Various methods for inspecting the quality of building interior components have also 

been developed. For example, Shutin et al. [168] used robots to inspect the quality of block-

work. Many defects arise during the bricklaying or blockwork activities. and inspecting 

and correcting them takes significant time and effort [168]. Quality inspection of indoor 

drywall partitions has been performed using a UAV by Hamledari et al. [169]. Hussung 

et al. [170] developed a ground-based robot called BetoScan for the non-destructive 

strength-testing of concrete and reinforced concrete elements. An integrated framework 

for combining these techniques used by different researchers in order to develop a single 

robotic system capable of independently checking the quality of various elements should 

be developed.  

5.3. Progress Monitoring 

Construction projects can get delayed due to various causes, such as weather, supply 

chain disruptions, or human error [20]. Projects must be monitored regularly, and correc-

tive actions must be taken to reduce the impact of the delays [20]. Traditionally, the project 

manager (PM) visits the jobsite to monitor construction operations and compares the as-

built state of the construction with as-planned state [171]. It allows project managers to 

timely identify schedule discrepancies [172]. When the PM cannot visit the site, time-series 

images that show the progress over time are also used by them for progress monitoring 

[173]. Typically, this process is manual and strenuous [123,174,175]. Automated progress 

monitoring aims to make this process more efficient and precise through the use of tech-

nology such as BIM, robotics, and image processing [171].  

Lee et al. [20] developed a robotic system equipped with LiDAR, wheels, and rotors 

connected with a remote server for remote progress monitoring. The advantage of such a 

system is that it saves time for the project manager, as the robotic system moves faster 

than a human, so can cover a larger area in less time [176,177]. The PM can monitor mul-

tiple projects from one remote location [178]. Bang et al. [179] developed an image stitch-

ing algorithm that converts a video captured through a UAV into a sitewide panorama. 

This allows the PM to view the entire jobsite at one glance and monitor the progress.  

An extension to the above approach is to automatically detect progress from visual 

data by robots. Computer vision has been used to automatically identify building compo-

nents (e.g., drywall) from 2D images and update the progress information in an Industry 

Foundation Classes (IFC)-based 4D Building Information Model (BIM) [169]. Such algo-

rithms used in conjunction with autonomously navigating robotic systems [180,181] 

driven by BIMs automate a significant part of progress monitoring, thereby reducing hu-

man effort.  

Using point clouds from laser scans is also used to detect constructed elements to 

measure progress [174]. Since laser scanning is a time-consuming task, using autonomous 

robots for laser scanning can reduce the human resource requirement. A major challenge 

in automating the progress monitoring process through visual scans is to identify the op-

timum points that provide the best view of all constructed elements [174].  

Visualization of construction progress based on information collected by robots 

needs to be considered too. Human inspectors receive a wealth of contextual information 

during manual walkthroughs, which helps them understand the construction work. Look-

ing at 2D images is not intuitive for that task [126]. Halder et al. [126] created a methodol-

ogy for visualizing 360° images collected on-site using a quadruped robot within a 3D 

virtual environment created with BIM. The 360° images were geolocated inside the build-

ing using BIM, which provides enough contextual information to understand the image’s 

relationship to the building. Immersive virtual reality has also been tested to assist a re-

mote inspector visualize the site visuals easily and intuitively [178].  
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5.4. As-Built/As-Is Modeling 

During construction, deviations may arise between the as-built structure and the as-

planned model of the project due to various reasons. To avoid disputes, the changes must 

be communicated to all stakeholders in a timely manner [182]. Three-dimensional recon-

struction of the as-built state is useful for measuring those deviations [46,183]. Three-di-

mensional reconstruction is creating a 3D model of the building using visual data from it. 

Capturing visual data from the site using manual means is laborious and time-consuming 

[184]. Robots can be used to automate the data-capturing process for 3D reconstruction or 

as-built modeling [185,186].  

Point clouds are a popular data structure for storing as-built information in the form 

of physical scans of structures [187]. Point clouds are generated either using laser scanners 

or image-based photogrammetry [187]. Photogrammetry techniques rely only on RGB 

cameras to capture 2D images for as-built modeling [188]. Photogrammetry also allows 

taking volumetric measurements from images [189]. Image processing techniques such as 

structure-from-motion are used to build a 3D model from 2D images from a moving cam-

era for photogrammetry [190]. However, this requires heavy post-processing of the im-

ages. Laser scanners are more accurate, but they require specialized equipment and 

skilled operators, which is substantially more expensive than conventional RGB image 

capturing. Photogrammetry using regular RGB cameras is more suitable than bulky laser 

scanners for UAVs. However, the accuracy of measurements generated from photogram-

metry is subject to various factors, such as the choice of lens, sensor resolution, the sensi-

tivity of the sensor, and lighting conditions [191]. LiDAR is also used instead of laser scan-

ners. Being lighter in weight, LiDAR mounted on UAVs has also been used for as-built 

modeling [192]. Another approach is using Kinect sensors [48]. Kinect measures the dis-

tance of objects using structured light projection [48]. Kinect sensors are lighter than laser 

scanners; therefore, they have also been used with UAVs [48]. 

Visual obstructions at construction sites, such as scaffolding, stacks of building ma-

terials, and people moving around, create the requirement for multiple scans within a 

single space [193]. This makes manual laser-scanning time-consuming and labor-inten-

sive. By automating this procedure, the rate of generating as-built information may be 

raised from weekly inspections to daily data collection. [187]. 

Both UAVs and UGVs can be used for as-built data collection [34,91,194]. Robots 

equipped with laser scanners were used for as-built/as-is modeling of construction sites 

[193]. Drones were used with photogrammetry to create automatic point clouds [187]. 

Hamledari et al. [52] used a UAV for collecting as-built information and updating the BIM 

model by updating the IFC data pre-loaded on its system. Patel et al. [30] used Pix4D to 

create automatic flight plans to fully automate the capturing of images of a building using 

a UAV and create a point cloud for inspection.  

5.5. Safety Inspection 

The Bureau of Labor Statistics reported that one-fifth of worksite fatalities in 2017 

occurred on construction worksites [195]. Safety managers perform safety inspections of 

construction sites on a day-to-day basis to control hazards. Safety inspection involves 

safety managers performing walkthroughs of the site and visually observing construction 

operations to enable the early detection of problems [196]. In response, project managers 

implement precautionary actions to prevent accidents [196]. However, this the project 

managers from engaging in other productive. Additionally, safety is an important issue 

that can benefit from more frequent monitoring. One of the leading causes of accidents on 

construction sites is falls [197]. Implementing site-wide fall protection practices has been 

found inadequate to prevent falls; instead, continuous monitoring is important for pre-

venting fall accidents [197]. 

UAVs have been used for remote surveillance of construction sites for improving 

safety and preventing accidents [21,196,197]. UAVs move faster than humans and can 



Appl. Sci. 2023, 13, 2304 16 of 38 
 

access hard-to-reach places [196] and perform continuous monitoring. Gheisari et al. [197] 

developed computer vision algorithms to detect unguarded openings from video streams 

transmitted by drones. Kim et al. [21] trained computer vision models for object detection 

and object tracking for proximity monitoring. They used a drone to survey a construction 

site and track construction resources (workers, equipment, and material) to prevent 

struck-by accidents.  

6. Research Areas 

To study the challenges of using robots for inspection and monitoring of the built 

environment, the papers were reviewed and categorized based on the research areas stud-

ied by the researchers. There were eight main research areas discovered in the literature—

(a) autonomous navigation, (b) knowledge extraction, (c) motion control system, (d) safety 

implications, (e) sensing, (f) human factors, (g) multi-robot collaboration, and (h) data 

transmission. The following subsections discuss each of these research areas in detail. 

6.1. Autonomous Navigation 

Atyabi et al. [112] define intelligence as “the ability to discover knowledge and use 

it” and autonomy as the “ability to describe its own purpose without instructions”. Nav-

igating a robot autonomously on a construction site for inspection has been a prime focus 

of research for many researchers [89,198–200]. Technologies have been developed to make 

the robot aware of its surroundings. Autonomous navigation of robots can be divided into 

three stages—localization, planning, and navigation.  

6.1.1. Localization 

In the localization stage, the robot estimates its current position in the target space. 

Myung et al. [201] used the local navigation system (LNS) for the localization of any robot 

inside a building. The LNS uses preinstalled anchor nodes for calculating the location of 

the robot, similar to how the Global Positioning System (GPS) works, though GPS is inef-

fective in an indoor setting. Traditional LNS requires a direct line of sight with the anchor 

nodes and produces an accuracy of up to 11 m in a non-line-of-sight setting, which is not 

very useful. However, Myung et al. [201] developed an algorithm to compensate for non-

line-of-sight and achieved an accuracy of 2 m. This is a significant improvement but may 

not be sufficient for reliable inspection in small spaces. 

In GPS-denied environments, such as inside large buildings or areas surrounded by 

high-rise structures, additional technologies such as Real-Time Kinematic (RTK), Differ-

ential GPS (DGPS), and Ultra-Wide Band (UWB) technologies are used to augment the 

capabilities of GPS and improve the positioning accuracy to within the centimeter range 

[200]. However, these technologies require additional infrastructure to set up and operate 

[53]. 

The Simultaneous Localization and Mapping (SLAM) algorithm is used to create a 

digital map of the surroundings using a camera, LiDAR, or other sensors. Phillips and 

Narasimhan [89] combined measurements from an IMU sensor, wheel odometry, and 

GPS (whenever available) and used the extended Kalman filter (EKF) for estimating the 

position of a Clearpath Jackal robot, a medium-sized UGV. This technique is called dead-

reckoning, which can enable localization without any external infrastructure, but can be 

subject to drift over time and needs to be re-calibrated repeatedly [53]. Parameters re-

quired for localization of the robot are categorized into four categories—interior orienta-

tion parameters (e.g., camera focal length, the principle point, and length distortion), ex-

terior orientation parameters (e.g., orientation from IMU), ground control points (e.g., any 

known natural or artificial targets), and tie/pass points (e.g., unique feature points on the 

scene that can be tracked in multiple images) [202]. The scale-invariant feature transform 

(SIFT) technique was used for feature extraction in the surrounding environment and 
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comparison with a CAD model for estimating the position of the robot in the frame of 

reference of the building [203–205].  

In underwater inspection, such as inside water tanks, visual sensors become ineffec-

tive. An underwater robot needs ultrasonic acoustic and inertial navigation sensors [8]. 

GNSS and underwater acoustic position systems have been used together to provide reli-

able localization underwater [206]. The other approach is to use a USV to carry a submers-

ible vehicle. The USV being above water can receive GNSS signal, and the submersible 

vehicle’s absolute position can be calculated from its position relative to the USV [137]. 

6.1.2. Path Planning 

Path planning involves finding the optimum path or a series of control points (called 

waypoints) from the robot’s current location to its target location while avoiding collision 

with the different elements of the structure [207]. Besides the positions of the control 

points, the path information may also include the velocity and yaw of the robot [135]. BIM 

has been used as a planning tool for robot path planning [207,208]. Most research on path 

planning focuses on single-building inspection. However, a multi-building path planning 

approach has also been performed with UAVs by Lin et al. [209]. Another technique used 

for path planning for UAVs is discrete particle swarm optimization [31]. Dynamically 

changing site conditions in construction projects also require the robot to re-adjust its 

path, which means any pre-programmed path may not work in the long run or must be 

revised each time the robot is expected to complete its mission. Therefore, path planning 

should consider the current state of the structure. Therefore, 4D BIM is used for path plan-

ning because it captures the state of the structure with time during construction [81]. How-

ever, the success of the path planning will depend on how accurately the 4D BIM repre-

sents the actual temporal state of the structure. BIM also provides information about the 

openings (e.g., doors) that needs to be considered in indoor path planning [126,210]. When 

BIM is not available, a 3D point cloud can also be used in its place for path planning [211]. 

Krishna Lakshmanan et al. [121] used reinforced learning (RL) to train a robot to find 

the optimum path. RL is one of three types of machine learning models, other than super-

vised and unsupervised learning. It is based on finding the correct solution based on a 

positive and negative reward system. Asadi et al. [180] used an embedded Nvidia GPU 

on the robot body for mapping and navigation using deep-learning-based semantic seg-

mentation of images captured by the robot’s camera. This eliminates the continuous need 

for connectivity and improves the autonomy of the robot.  

6.1.3. Navigation 

Construction sites are highly cluttered environments. During the navigation, the ro-

bot must be aware of its surroundings and make minor adjustments to its path [212]. War-

szawski et al. [213] compared laser sensors, ultrasonic sensors, and infrared sensors for 

mapping a floor for robot navigation. Zhang et al. [214] and Asadi et al. [212] used deep-

learning for vision-based obstacle avoidance of the robot. Asadi et al. [90] developed an 

autonomous arm for a UGV for detecting and removing obstacles from the robot’s path. 

They used a CNN-based segmentation model for object detection. This is useful for re-

moving small obstacles up to the payload capacity of the attached arm. 

Wang and Luo [165] developed a wall-following algorithm using LiDAR sensors and 

a ground-based wheeled robot to run along the walls and find defects. This is a simple 

algorithm that does not need any pre-planning of the path, but it cannot move away from 

the walls. In large halls or auditoriums, the wall-following feature can be a limitation. Al-

Kaff et al. [215] used visual servoing with UAV to maintain a safe distance from the wall. 

Visual servoing uses a feedback loop between the camera image and robot control to dy-

namically control the robot with the changing condition [215]. 

  



Appl. Sci. 2023, 13, 2304 18 of 38 
 

6.2. Knowledge Extraction 

Computer vision is used extensively to create a rich set of information from site im-

ages and videos for inspection purposes [216]. Computer vision and deep-learning have 

been used to detect defects in a building structure, such as exposed aggregates on a con-

crete surface [217] or cracks on the walls of storage tanks [218]. It is also used for post-

disaster reconnaissance of damaged buildings [148,151]. CNNs have performed remarka-

bly well in detecting defects from images [219]. Li et al. [217] trained a U-net (a CNN-

based deep-learning model) to identify exposed aggregate on a concrete surface. The U-

net is a popular deep-learning model used for pixel-wise image segmentation. With a 

training dataset of 408 images and a validation dataset of 52 images, they achieved an 

accuracy of 91.43%. The results are promising, which could be further improved with a 

larger dataset. Alipour and Harris [220] used a publicly available dataset of forty thousand 

images to train a deep-learning model to identify cracks on concrete and asphalt surfaces. 

They achieved an F1-score of up to 99.1%, which is a measure of how well a classifier 

function performs. The major challenge with crack detection using deep-learning is the 

wide range of complex backgrounds due to different types of facade materials [221].  

Computer vision has also been used for the automatic creation of as-built models 

from site images. Hamledari et al. [169] used computer vision to identify components of 

indoor partitions, such as electrical outlets and doors using pictures captured from a UAV. 

Hamledari et al. [52] further developed the technique to compare as-built elements with 

the as-designed elements in an IFC database. If a discrepancy is found, the element type, 

property, or geometry is updated to build an as-built model automatically.  

Researchers also developed non-ML-based image processing approaches that do not 

require big training datasets. For example, mathematical transformations for stitching 

multiple images across a single site to create a panoramic view of the project has been 

developed for inspection [179,222,223]. Photogrammetry, as explained in Section 5.4, is an 

image-processing technique [224]. Pix4D is a commercial platform used for photogram-

metry that provides the option of taking building measurements from a 3D model created 

from 2D images. Pix4D has been used for knowledge extraction (taking measurements) 

using robots [30]. Edge detection techniques, which find discontinuities in the image, such 

as the Laplacian of Gaussian algorithm, are used to detect cracks on walls [225,226] but do 

not require training data. 

Another important consideration in using robots in the field is that due to their effi-

ciency and speed in capturing data, the high volume of data may soon create data over-

load which slows down learning from the data [227]. Thus, it is important to extract only 

useful data from the complete pool of data collected by the robot. In this direction, Ham 

and Kamari [227] developed a method to rank and select images captured by a UAV based 

on the number of construction-related objects visible in the image using semantic segmen-

tation. 

6.3. Motion Control System 

Inspections of building facades, ducts, pipes, and shafts require a different type of 

locomotion and navigation. Barry et al. [101] studied the use of cable-suspended robots 

for the inspection of high-rise towers or storage tanks from the outside. Heffron [228] de-

veloped a remotely-operated submersible vehicle for underwater inspection. Brunete et 

al. [9] developed a worm-like microbot for the inspection of small-diameter pipes and 

used infrared sensors for navigation and defect detection. ALICIA3 [229] is a wall-climb-

ing robot that uses pressure-controlled suction cups to stay affixed to the walls and is used 

for the inspection of building facades. Researchers have installed multi-joint arms and 

grippers, telescopic supports, and rotating heads [29,35] to enable the robots to reach hard-

to-reach places. These works improved the overall reach of the robots.  

Apart from the basic wheel or rotor-based locomotion, hybrid locomotive systems 

further improve the maneuverability of the robot in cluttered environments, such as 
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construction sites. A drone equipped with wheels and a propeller can inspect a building’s 

exterior, move in small spaces, and also climb stairs [20]. A legged robot with magnetic 

pads under its feet can walk on the ground and climb on steel columns and pipes for closer 

inspection [35]. A climbing-flying robot can climb on walls and poles for better quality 

inspection and can fly to pass obstacles and avoid falling [36,37]. 

Aerial robots deal with a high degree of freedom and are extremely prone to envi-

ronmental disturbances. Images captured from an aerial robot or UAV are often charac-

terized as “noisy” [230]. To perform an effective inspection, the robot (or drone) needs to 

keep adjusting to the external environment. González-deSantos et al. [231] equipped a 

UAV with Lidar to measure distance and orientation for maintaining a stable altitude and 

position with respect to the inspection target, which was important for the ultrasonic 

gauge sensor used to measure the thickness of metallic sheets. Kuo et al. [232] developed 

a fuzzy logic-based control system to control the camera and the thrust of the UAV to get 

more stable images. 

In wall-climbing robots, the pressure in the suction cups is controlled using pressure 

sensors installed inside the robotic systems. This adjusts the suction strength for different 

surface conditions [233]. Barry et al. [101] developed a rope-climbing robot for climbing 

and inspecting walls of storage tanks and high-rise buildings. They designed the control 

system to counteract the oscillations of the rope caused by the climbing motion of the 

robot. 

6.4. Sensing 

Robots can be equipped with various types of sensors to perform different types of 

inspections. They can be equipped with high-precision servo-accelerometers to measure 

story drift in earthquake-affected structures without the need for a human inspector [234]. 

Many other sensors have been used with robots for non-destructive testing and structural 

health monitoring, such as eddy current, RADAR, infrared (IR), and ultrasound sensors 

[95,170]. Liu et al. [100] proposed using gas detectors with a pipe-climbing robot for de-

tecting gas leakage in high-rise towers. Elbanhawi and Simic [235] developed a robotic 

arm to automatically collect water samples from a solar pond. The arm was equipped with 

multiple sensors for in situ measurement of density, salinity, pH, and turbidity. Huston 

et al. [236] embedded sensors, such as strain gauges, in the building structure. They used 

a UGV to power the sensors and collected data wirelessly through electromagnetic induc-

tion. This avoided the need for embedding power cables for powering the sensors. Da-

vidson and Chase [92] installed RADAR on a robotic cart to create a digital reconstruction 

of the interior of a bridge deck through diffraction tomography. Kriengkomol et al. [129] 

used audio sensors to perform a hammering test on steel structures using a hexapod robot. 

The hammering test detects and analyses the vibration of a structural element after strik-

ing it with a hammer. Anomalies in the resulting vibrations indicate loose bolts or other 

structural defects [129]. An emissometer connected to robotic arms has been used for au-

tonomous mapping of the thermal emissivity of the building envelope for energy studies 

[161]. Robots equipped with IR sensors are used to monitor the building envelope for any 

thermal anomalies [158,237–239]. When using IR, the angle of tilt of the sensors affects the 

accuracy of measurement [240]. Therefore, UAVs can be advantageous in maintaining the 

right angle while collecting data for high-rise buildings. Experts may choose to combine 

multiple sensors into a single robotic platform for faster inspection and more detailed in-

spection. These sensors can be grouped together into six categories—thermal/IR sensors, 

ground-penetrating radars (GPR), accelerometers, laser-based sensors (LIDAR or laser 

scanners), strain gauges, microphones, and electrical resistivity sensors. The frequency of 

works reporting the use of these sensors found in the review is presented in Figure 5. The 

numbers in the figure represent the number of papers reviewed reporting the use of such 

type of sensors. 
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Figure 5. Types of sensing technologies used with robots for inspection and monitoring. 
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the power requirements even further. 
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Researchers have used multiple robots, such as UAV-UAV or UAV-UGV pairs for 

better navigation. In the UAV-UGV pair, the UGV performs the actual inspection while 
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cloud with 2D photogrammetry which is then used by the UGV for navigation [34,131]. 

However, in indoor spaces, the presence of a large number of obstacles limits the effec-
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Another approach is to use the UAV for the main inspection and the UGV as a dock-
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missions since the UAV needs to be lightweight and can be equipped with a smaller bat-
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coordinating the movements of two UAVs in such a way that one of them is in a location 

where GNSS is available, while the other calculates its absolute position based on its rela-

tive position from the first UAV [244]. 

Mantha et al. [208] developed an algorithm for the efficient allocation of tasks and 

path-finding for multiple robots while keeping path obstructions and the single-charge 

run capacity of robots as constrained. Genetic and k-means algorithms in conjunction with 

the Travelling Salesman Problem (TSP) also allow finding the optimum solution to the 

multi-robot path planning and task allocation problem [245,246]. Multi-robot collabora-

tion is important for the efficient use of these tools while avoiding clashes. 

6.6. Safety Implications 

Requirements for the safe use of robots on construction sites are not well-explored, 

as there are very few notable works on the safety and usability assessment of robots for 

inspection. There also needs to be more research on regulating the use of robots on con-

struction sites.  o the best of the authors’ knowledge, there are no statutory regulations 

on using ground robots on construction sites that provide guidelines for ensuring the 

safety of people from robots, especially autonomous robots. The Federal Aviation Admin-

istration (FAA) provides regulations on the use of UAVs [247], which are generally appli-

cable to its use anywhere including construction. The FAA previously disallowed the use 

of UAVs out of sight of the pilot and over a populated area [247]. This rule necessitated 

the involvement of a human with the UAV at all times during its operation, which de-

feated the purpose of fully autonomous inspection. However, recent amendments in the 

FAA rule effective on 21 April 2021 allow the use of UAVs in populated areas and at night-

time [248]. The FAA also provides a waiver from part 107.31, which prohibits the use of 

UAVs out of sight of the pilot, for small aircraft [248]. Using the FAA rules, the Occupa-

tional Safety and Health Administration (OSHA) [249], through its memorandum to re-

gional administrators, outlined some guidelines and recommended some best practices 

for using drones specifically for inspection in a workplace setting. These recommenda-

tions include procedures for “pre-deployment, pre-flight operations, postflight field pro-

cedures, postflight office procedures, flight reporting, program monitoring and evalua-

tion, training, recordkeeping, and accident reporting” [250]. OSHA too prohibits the use 

of drones over people, out of sight of the operator, and after sunset. 

Various models and simulations have been developed and tested for qualitative and 

quantitative analysis of risks associated with the use of aerial robots in construction sites 

[247,250,251]. Flight simulators are also used to train UAV pilots for the safe usage of 

UAVs in construction sites and to reduce risk from the use of UAVs [252]. 

6.7. Data Transmission 

In this category, researchers have developed data compression and transmission 

techniques for faster and more robust data transfer from wireless robots over the Internet 

or local area network [253–255]. Li and Zhang [256] combined the Internet of Things (IoT) 

with robotics for wirelessly collecting data from multiple sensors inside the building for 

quality inspection. Wireless communication with robots usually occurs via radio fre-

quency (RF) signals using protocols such as WiFi and Bluetooth [256,257]. Other RF-based 

communication protocols have also been used, such as LoRa and ZigBee [256,257]. How-

ever, in urban settings, where there is a large number of sources of RF signals, signal in-

terference and/or loss of signal can severely affect the safe performance of the robot. 

Therefore, Mahama et al. [257] studied the effect of RF noise in urban settings in the oper-

ation of UAVs and recommended using redundant channels and faster frequency switch-

ing for seamless operations. 

A robotic inspection may generate a vast amount of data in the form of images or 

point clouds [255]. Depending on the fidelity of the data required, either lossless or lossy 

data compression techniques may be used. Lossless compression produces exact 
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reconstruction, whereas lossy conversion has a higher compression ratio but loses some 

details during reconstruction [255]. 

6.8. Human Factors 

Humans and robots collect and process information differently. While humans can 

understand abstract and unstructured data easily, robots need structured instructions. On 

the other hand, robots can process and execute instructions more accurately than humans 

without tiring. Human–robot interactions deal with understanding the intent of the hu-

man operator and breaking it down into simple instructions that can be executed by the 

robot. At the same time, it also deals with presenting the raw data collected by robots in a 

form that makes sense to humans. Human–robot collaboration (HRC) can utilize the 

strengths of both agents [258]. 

Augmented, virtual, and mixed reality are excellent tools for presenting site infor-

mation in a human-friendly format. Van Dam et al. [259] discovered that annotating the 

visual data captured by a UAV helps human operators perform inspection tasks by re-

ducing their workload and decreasing the likelihood of missing an error in the work. Liu 

et al. [164] augmented the live visual feed from a UAV with the BIM. Jacob-Loyola et al. 

[175], on the other hand, augmented the as-planned BIM model with a reconstructed 3D 

model of the building created from UAV images in an augmented reality environment. 

Both of these methods used and converted information captured by robots into a more 

intuitive format for human evaluation. However, using augmented reality with BIM is 

challenged by the problem of alignment, as consistently keeping the BIM aligned with the 

reality in a moving UAV is a challenging task [164]. 

Even though many studies are working on making robots more and more autono-

mous, full or partial human intervention is still required for the safe and efficient use of 

robots [260]. Robotics, being a fairly new technology, requires proper training for the op-

erators [115,260]. Virtual reality is found to be an excellent test-bed for prototyping new 

human–robot interactions [261,262]. It provides a safe environment to train human oper-

ators without the risk of harm to the site, the robot, or any human [260]. 

7. Future Research Directions 

The comprehensive review of the literature revealed a few research gaps in each of 

the identified research areas. These research gaps are presented as follows. 

7.1. Autonomous Navigation 

Currently, robots that can successfully perform regular autonomous navigation 

through the unstructured and dynamically changing environments of construction sites 

do not exist. Therefore, future research should develop control and autonomy algorithms 

to this end. Additionally, robots are efficient data collection agents because of their speed 

and consistency, ensuring that the data available to project stakeholders are up-to-date 

and consistent [145]. Studies on autonomous navigation, including [30], have considered 

predefined scan locations from where the robot would perform scans for as-built model-

ing. A good quality laser scan may take several minutes at each point to complete [263]. 

Therefore, it is important to minimize the number of scan locations to enable the robot to 

cover the whole structure on a single charge. Human reasoning is still required for select-

ing the optimum locations from where the robot would collect data through autonomous 

navigation. The next step towards improving autonomy should be making the robot able 

to select scan locations itself. The selection of target scan locations requires experience and 

domain knowledge in addition to the knowledge about the structural geometry. Future 

studies can investigate the process followed by humans and the visual cues used by them 

in selecting right locations for capturing site images or performing laser scans. This 

knowledge can help robots to independently identify the navigation goals that meets hu-

man requirements. 
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7.2. Knowledge Extraction 

As discussed in Section 5.2, different elements of a structure require a unique ap-

proach to quality inspection. Previous research has developed independent techniques for 

inspecting the quality of a single type of element, such as indoor partitions [169], rein-

forced concrete [217], storage tanks [218], glass facades [107], and so on. Although vision-

based defect detection techniques can detect many surface defects, other sensors, such as 

hammering devices, are employed to detect internal defects [264]. Future research should 

focus on developing an integration framework that will combine these techniques into a 

single robotic system for a comprehensive inspection and monitoring of the built environ-

ment.  

Nevertheless, vision-based defect detection is an important research area [163]. The 

CNN-based deep-learning approach is commonly explored by many researchers [71,151]. 

However, CNN and other deep-learning models require large training datasets to train. 

Various researchers created separate databases of labeled images to train CNN models. 

However, these databases contain only a single type of component. SDNET2018 by the 

Structural Defects Network (SDNET) is an open-source dataset of 56,000 annotated im-

ages of concrete defects developed at Utah State University [265]. Similar open-source li-

braries of images of different building components and construction defects can signifi-

cantly advance the development of more intelligent inspection robots. 

7.3. Motion Control System 

Most of the reviewed literature has focused on UAVs and UGVs. Future research 

should study other robots with different types of locomotion in the inspection and moni-

toring of the built environment. Amongst the promising categories of robots are legged 

robots, which can navigate stairs and avoid small obstacles, making them better suited for 

construction environments. These robots have not been thoroughly studied, owing to the 

lack of many commercial options on the market. Quadruped robots that are currently on 

the market, e.g., Spot by Boston Dynamics, are costly. A cost-benefit and return-on-invest-

ment analysis of the quadruped robot is required to build the case for industry adoption 

in the future. Although legged robots are more adaptable than wheeled UGVs, their 

adaptability to unstable and unfinished terrain must also be assessed. A comparative anal-

ysis of different types of robots in undertaking inspection and monitoring of the built en-

vironment in multiple scenarios can uncover the potentials and limitations of the robot 

types. 

More research on hybrid robots is also needed. As discussed in Section 4.8, hybrid 

robots combine multiple motion control systems, such as wheels, legs, suction mounts, 

and rotors. Built-environment structures vary significantly in shape and size [3]. Require-

ments for a bridge inspection robot can be significantly different from the requirements 

for a building inspection robot. Similarly, indoor and outdoor inspections require signifi-

cantly different motion capabilities. A versatile robotic platform suitable for a comprehen-

sive inspection of a wide range of structures should possess multiple motion capabilities, 

such as wheeled legs with rotors. Future research can develop more types of hybrid robots 

and study their usability in the construction and operation of buildings and infrastructure.  

7.4. Sensing 

Since vision-based defect detection requires a large training dataset and still not be 

fully accurate in all conditions, a multi-sensor approach has been explored to detect sur-

face defects that take input from various sensors, such as RADAR, thermal cameras, and 

accelerometers [86,94,95]. More research is needed in this area to identify other types of 

defects as well by fusing data from multiple sensors. For example, data from regular and 

thermal cameras can be combined to detect wet patches on ceilings and walls. Data from 

the accelerometer and LiDAR can be combined to measure the verticality of walls and the 

horizontality of floors.  
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7.5. Multi-Robot Collaboration 

Future research should investigate the use of multiple heterogeneous robots in per-

forming inspection and monitoring of the built environment. UGV-UAV teams have been 

studied and found to provide better capabilities as compared to a single type of robot 

[33,34,131,244]. Due to their complementary capabilities, UGV and UAV create synergistic 

relationships that can outperform either of them individually. However, due to their dif-

ferent motion capabilities and degrees of freedom, they require different types of input. 

For example, in addition to velocity and angle, UAVs also require a target altitude. More-

over, different manufacturers provide their own software development kits (SDKs) which 

might not be compatible with another manufacturer’s  DK.  his requires the develop-

ment of a separate integration layer in the software architecture. Additionally, if one of 

the robots is replaced with another robot from a different manufacturer, the software 

backend needs to be re-developed. This creates the necessity for the development of ex-

changeable data formats similar to IFC. Future research may develop standard formats 

and protocols for multi-robot collaboration which are manufacturer-independent. 

7.6. Safety Implications 

Robots can be a safer alternative to manual inspection methods, but they can also 

introduce new safety hazards. There is a significant gap in the research on assessing the 

safety implications of introducing autonomous robots to construction sites. As discussed 

in Section 6.6, there have been some studies on the risk assessment of UAVs in construc-

tion [266], but other types of robots pose different types of risks which need to be evalu-

ated as well. While FAA regulates the use of UAVs [247], an overarching legal framework 

for all types of robots needs to be developed. Future research may assess the perceived 

risks and safety of other types of robots in order to provide regulatory guidance. Such 

regulatory guidance does not only provide a framework to mitigate risks from the use of 

robots, but also provides a framework to evaluate the risk for insurance and liability pur-

poses. 

7.7. Data Transmission 

Internet of Things (IoT) is identified as one of the enablers of Industry 4.0 [267]. IoT 

is defined as the “interconnection of sensing and actuating devices providing the ability 

to share information across platforms through a unified framework, developing a com-

mon operating picture for enabling innovative applications” [25]. As more smart devices, 

such as robots, are deployed in the built environment, their interconnection may be used 

to improve their performance. Since Wi-Fi may not be always available in live construc-

tion projects, a direct device-to-device protocol can be developed for robots and other 

smart devices to communicate with each other. Live construction sites are dynamic and 

cluttered environments. Many changes in the environment may render the robot lost and 

cause it to completely fail its mission [125]. However, with the ability to communicate 

with other devices at the site, such as fixed cameras, construction equipment, or other 

robots, the robot may become more robust in path finding and other operations. Future 

research can identify what devices already exist in the buildings and infrastructure and 

how they can communicate with robots for a collaborative inspection activity. 

7.8. Human Factors 

The unstructured environment of a live construction site is a major challenge for ro-

bots [268]. Robots can perform well in structured and straightforward tasks but need hu-

man reasoning in complex tasks that occur in an unstructured environment [268]. Hu-

man–robot collaboration (HRC) combines the strengths of humans and robots [269]. 

Shared autonomy has been studied [80], which involves humans carrying out higher-level 

reasoning, such as deciding where to take images [270], while the robot manages low-

level tasks such as avoiding obstacles and maintaining a safe distance from the wall. The 
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development of shared autonomy workflows for different types of robots in different ap-

plication domains for inspection and monitoring of the built environment can contribute 

to the mutual adaptation of human–robot teams. 

Other domains have investigated various modes of human–robot interactions (HRI) 

[271]. Construction noise, lighting conditions, and the diverse technical literacy of con-

struction workers necessitate a closer examination of HRI in the context of construction. 

Future studies can investigate the effect of different HRI modes on the performance of 

human–robot teams during the inspection and monitoring of the built environment. 

Human–robot collaboration can also improve the autonomy of the robot in the long 

run by making the robot learn gradually from the human. Reinforcement Learning (RL) 

can be used to develop human-in-the-loop methodologies in which robots learn to iden-

tify defect indicators from human inspectors through observations. Future work should 

develop an HRI model to understand human behavior in response to external stimuli in 

human–robot collaboration tasks and train the robot to learn from it for increased auton-

omy in future tasks in similar situations. 

Recent growth in the use of automation and robotics in construction has necessitated 

reskilling of the construction workforce for the adoption of technology safely and effi-

ciently [272]. Studies have been conducted on training the construction workforce in using 

robots through VR [272]. VR provides a safe and cost-effective medium to train construc-

tion personnel. Future research can identify training needs to develop continuing educa-

tion programs for the construction industry to assist with adopting robotic technologies 

in the inspection and monitoring of the built environment through the use of VR or other 

mediums. Incorporating robotics in construction education should be explored to prepare 

future experts with the required competencies. Future research should survey robotics 

experts to identify the knowledge, skills, and abilities required for future construction 

workers and professionals in conducting inspection and monitoring of the built environ-

ment to efficiently use robotics in the architecture, engineering, construction, and opera-

tion (AECO) industry. 

8. Conclusions 

Inspection and monitoring of buildings and infrastructure are important for the suc-

cess of the project and the longevity of the structure. Multiple people are involved in the 

inspection and monitoring throughout the lifecycle of the structure. Traditional methods 

involve visual observations through personally visiting the site, which is time-consuming 

and adds to the overall lifecycle cost. This article presents a comprehensive review of the 

literature on robotic inspection of the built environment.  

This research contributes to understanding the potential of robots for the regular in-

spection of the built environment. The knowledge synthesized from the body of literature 

is used to highlight different types of robots that have been applied for automated inspec-

tion and the different applications these robots can serve within the inspection and mon-

itoring of the built environment and the prevalent research areas. 

The study identified five application domains for use of robots for inspection pur-

poses in the built environment, namely, post-construction maintenance inspection, con-

struction quality inspection, progress monitoring, as-built modeling, and safety inspec-

tion. For these inspection domains in the built environment, a variety of robots were used. 

Drones were found to be the most prevalent, followed by wheeled robots. Other custom 

robots with varying locomotion and sizes were also developed for a variety of purposes. 

The study also found eight different research areas that have been studied. Those are au-

tonomous navigation, knowledge extraction, a motion control system, sensing, safety im-

plications, multi-robot collaboration, human–robot collaboration, and data transmission.  

One of the limitations of this review is that it only includes materials written in Eng-

lish. The authors acknowledge that many important studies published in other languages 

are not included in this review. Another limitation is that this review only covers publica-

tions published through April 2022. Owing to the rapid growth in this topic, more articles 
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may have been published by the time this review is made available to the readers. Another 

limitation is that the review includes only academic publications. Many robotic applica-

tions might be developed by corporations and startups who do not publish their research 

in academic publishing venues, and therefore might have not been represented in this 

review. 

With the rapid growth in the research on robotics and supporting technologies such 

as deep learning and computer vision, robots will be utilized more often than they are 

now in the AECO industry. Future adoption of robotics will require an understanding of 

the technology by both managers and workers. This systematic literature review will help 

both researchers and AECO practitioners to develop and implement new robotic solu-

tions. It will also assist construction and facility managers in understanding how robotics 

fits into their existing processes and how to modify their existing policies in order to adopt 

and benefit from it.  
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