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Abstract: At present, the surveillance of river floating in China is labor-intensive, time-consuming,
and may miss something, so a fast and accurate automatic detection method is necessary. The
two-stage convolutional neural network models appear to have high detection accuracy, but it is
hard to reach real-time detection, while on the other hand, the one-stage models are less time-
consuming but have lower accuracy. In response to the above problems, we propose a one-stage
object detection model EYOLOv3 to achieve real-time and high accuracy detection of floating objects
in video streams. Firstly, we design a multi-scale feature extraction and fusion module to improve
the feature extraction capability of the network. Secondly, a better clustering algorithm is used to
analyze the size characteristics of floating objects to design the anchor box, enabling the network to
detect objects more effectively. Then a focus loss function is proposed to make the network effectively
overcome the sample imbalance problem, and finally, an improved NMS algorithm is proposed
to solve the object suppressed problem. Experiments show that the proposed model is efficient in
detection of river floating objects, and has better performance than the classical object detection
method and the latest method, realizing real-time floating detection in video streams.

Keywords: real-time object detection; video streaming; multi-scale feature

1. Introduction

With the rapid development of industrialization and urbanization, the ecological
environment has been seriously damaged, especially the water environment. A large
number of floating objects such as plastic bottles, plastic bags, and aquatic plants appear
on the water surface of many rivers and lakes. The presence of floating objects on the
water surface will not only affect the aesthetics of the water body, cause water environment
pollution, destroy the ecological balance, and even pose a threat to people’s drinking water
safety [1]. In addition, a large number of floating objects may affect equipment working in
the river. For example, the propeller of a ship may be entangled in floating objects, and
floating objects gathered in front of the barrage also have varying degrees of impacts on
power generation, shipping, and other aspects [2].

In order to address the pressing water environmental problems, we should develop
more intelligent methods to identify and clean up floating objects on the river. At present,
the surveillance of the river floating in China is labor-intensive, time-consuming, and may
miss something, so a fast and accurate automatic detection method is necessary [3–5].

With the improvement of science and technology, the performance of computer hard-
ware, especially graphics processing unit, has been greatly improved, thus promoting
the rapid development of pattern recognition, computer vision and other deep learning
technologies. Therefore, object detection methods based on deep learning have been ap-
plied in many fields [6,7], such as face recognition [8,9], vehicle detection [10], automatic
driving [11,12], and achieved good results. However, there is little research in the detection
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of floating objects on rivers and lakes. The purpose of this paper is to detect the floating
objects in the images through deep learning, realize the intelligent monitoring of floating
objects on rivers or lakes, so as to reduce the pollution of the water environment caused
by the accumulation of floating objects, and lay a foundation for the realization of early
warning of water pollution, the improvement of drinking water safety, and good water
environment detection system in the future.

The early object detection methods, such as the combination of artificial design fea-
tures and support vector machines, or background difference method, are mainly used
for object detection. However, due to the complex environment and diverse forms of
floating objects on river, the expression ability of artificial design features on floating object
features is insufficient, and the robustness and generalization performance are poor, which
cannot achieve the desired detection accuracy [13,14]. Deep learning methods show more
advantages over prior methods in object detection. However, the object detection based on
deep learning has high requirements on the quantity and quality of training dataset, while
there are few open floating object dataset currently. Therefore, it is a challenging task to
create a floating object dataset, and design a network model with high detection accuracy
and fast detection speed.

In order to solve the above problems, we propose a model named EYOLOv3, an
efficient real-time detection model for floating detection based on YOLOv3, and the contri-
butions of this model can be summarized as follows:

i. In order to make full use of the information of different scale features of floating
objects, a multi-scale feature extraction and fusion network is constructed to obtain
more scale feature maps. At the same time, the high-level feature maps and low-level
detection feature maps are fused to enrich the semantics of feature maps and improve
the detection accuracy of our model;

ii. In view of the mismatching between the large difference of floating size and the fixed
anchor box sizes in YOLOv3, an adaptive anchor box clustering method is proposed
to design the anchor box sizes that conforms to the floating objects on the river;

iii. The cross entropy loss function is optimized, and the weight factor is added to adjust
the weight of the different samples adaptively, so that the training is focused on the
hard samples. While solving the problem of sample imbalance, the detection accuracy
of our model is improved; and

iv. In order to reduce the wrongly suppressed problem, the non-maximum suppression
(NMS) algorithm is improved. The prediction boxes whose overlapping area with
the prediction box with the highest confidence is greater than the threshold will not
be directly suppressed, instead, we will set the confidence for each prediction box
base on the overlapping area, which can reduce false positive samples and effectively
detect the floating objects with high overlapping simultaneously.

2. Related Works
2.1. Traditional Object Detection Methods

Generally, different objects have differences in color, texture, shape and other features.
Traditional object detection methods start from these features, extract features based on
manual-designed features and combine them with classifiers to achieve object detection.
Detection methods have been studied for a long time. Different objects usually have
differences in color, texture, shape, and other features. Common manual features include:
Haar-like features [15], histogram of oriented gradient (HOG) features [16], Edgelet features
and mixed features [17,18]. In 2000, Papageorgiou proposed Haar-like features, which
describe the features of an object in an image using Haar wavelet. The advantage of
Haar-like features is that it can effectively obtain the significant areas in the image, but it is
less sensitive to the contour information of the object. It is vulnerable to the influence of
object shape and image lighting. In 2005, Dalal proposed the HOG features based on the
scale-invariant feature transform (SIFT) [19], mainly by calculating the gradient direction
vector of the local area in the image and making it into a histogram to form the feature,
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which is distinctive and invariant to translation, rotation, scale, and other features. Then,
based on HOG features, there are some improved features. The commonly used Local
Binary Pattern (LBP) was proposed by Ojala [20], which has the advantages of gray scale
invariance and rotation invariance. Girshick [21] combines the HOG feature with the LBP
feature to achieve object detection when an object is occluded in the image. In the case of
complex background, the detection effect of HOG features will be significantly reduced,
but LBP features can filter out background noise, thus improving the detection effect. In
general, all the models need to design the corresponding features for different detection
objects, and the detection accuracy is not high for floating detection.

2.2. Deep-Learning-Based Methods

In 2006, Geoffrey Hinton, published a paper in Science, and proposed the idea of
Deep Belief Networks [22] for the first time, which opened the prelude to the study of
deep learning. In 2012, Hinton proposed AlexNet [23], which won the first place in
ImageNet Large-Scale Visual Recognition Challenge (ILSVRC). This fully demonstrates
the effectiveness of deep learning in image recognition tasks and its great potential in
image processing.

With the development of deep learning, the performance of object detection is also
improving. R-CNN was proposed in 2014 as a pioneering work in the field of object
detection, which improved the accuracy of object detection greatly by combining the good
automatic feature extraction and classification prediction of convolution neural network
(CNN) with selective search. Subsequent work has improved this method too. In 2015, Ross
Girshick proposed Fast R-CNN [24], which use the idea of SPP-Net [25] to propose ROI
pooling layer, and a multitask loss function to incorporate both classification prediction and
bounding box prediction, thus greatly improving the accuracy and speed of object detection.
However, as Fast R-CNN uses a selective search strategy for region suggestions, the time
required to generate candidate regions rises. Ren proposed the Faster R-CNN network [26],
which designs a new Region Proposal Network (RPN), which hands over the task of region
proposals to convolution network and improves the detection accuracy and speed. Since
small objects have always been the difficulty of object detection, Yi et al. [27] proposed a
Faster R-CNN algorithm with Class Activation for the detection and localization of floating
objects on the water surface. From the results, the algorithm has strong adaptability when
detecting small objects. However, it does not combine the statistical characteristics of
floating objects in the region for further analysis. In the instance segmentation, the large
receptive field pays more attention to the detail information, while the small receptive field
pays more attention to the semantic information. Zhang et al. [28] proposed a Mask refined
R-CNN network based on the object detection network Mask R-CNN. By constructing a
feature pyramid network, the network can sum the forward and backward transmission
of feature maps with the same resolution to achieve feature fusion, so as to balance the
network performance. The above methods belong to two-stage object detectors and are
less real-time than one-stage methods. In 2016, the end-to-end phase of YOLO [29] was
proposed, abandoning the region proposals phase, so that object detection can achieve
real-time detection speed, but detection accuracy is lower. In view of the problems of
YOLO, YOLOv2 [30] and YOLOv3 [31] are proposed subsequently.

YOLOv3 has higher detection accuracy and detection speed, but is still not effective for
floating objects on river which including small objects, and having dense object distribution
and diverse shapes. Yang et al. [32] proposed a coordinated attention mechanism into the
YOLOv5 model, which enabled the model to extract features quickly and efficiently, and
improved the recall rate, average accuracy and F1 score on both public and private datasets.
However, it also brings higher computational complexity and longer training time. Due to
the real-time requirement, Lin et al. [33] proposed an improved YOLO for floating debris
in waterway based on a one-stage algorithm. As the floating objects on river in China are
different from the floating debris in waterway, we propose our method for the detection of
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floating objects on river, from the creation of the dataset to the design of the model, and to
the end-to-end real-time floating detection in the video stream.

3. Proposed Method

YOLOv3 has become the preferred method for object detection, but the deep feature
extraction network in YOLOv3 will reduce or even miss the features of smaller objects.
While the floating objects on river have the various aspect ratios and the floating with
the same size usually is dense distribution, so it is not easy to balance the detection
accuracy and feature scale, and the detection accuracy of objects with dense distribution is
lower. In addition, YOLOv3 is prone to gradient disappearance after it finishes continuous
convolution operations, and the expression ability and generalization of feature extraction
are not strong. In this paper, we will create the dataset of floating objects on river at
first, then design an efficient real-time detector for floating detection, and carry out the
end-to-end model training and real-time floating detection in video stream.

3.1. Dataset Creation of Floating Objects on River

We selected monitoring video images of a river gate and a flood diversion gate in
Beijing in August 2018. The video frame rate is 25 frames per second. The floating objects
mainly consist of water and grass. First, we picked out the video clips that contain floating
objects and set an interval of 2 s to capture images. In order to ensure the validity of the
floating object detection model and the convergence of the convolution neural network, we
choose images with different lightings, as shown in Figure 1. We get 2065 images containing
at least one floating object per image. We use rotation and clipping to expand the dataset,
and the final dataset contains 4320 pictures, and the dataset is randomly divided into
training set and test set with the ratio of 7:3.
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Figure 1. Images in dataset. (a) Image with common light, (b) image with dark light, (c) image with
bright light; (d) distance view image.

In order to facilitate the object detection model to read data, we use the constructed
dataset as VOC2007 format. We used the annotation tool LabelImg to annotate all images
in the dataset. Each image uses a rectangular bounding box to surround the objects, and the
category information is set to flotage. After annotating, Labelmg automatically generates
an XML file containing coordinate information and category information of the rectangular
bounding box. Divide all file names into two randomly according to the ratio of 7:3, write
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them into the train.txt file and the test.txt file by line. All images recorded in train.txt are
used for model training, and all images recorded in test.txt are used for model testing.

3.2. Training

First, the network is initialized with the model parameters of ImageNet pre-training;
secondly, based on this, the EYOLOV3 network model is used to continuously tune the net-
work according to the training dataset. The training process of the model mainly includes
two stages: forward propagation and reverse propagation. The forward propagation mainly
refers to the transfer from the input layer to the convolution layer, the convolution operation
of the convolution kernel, the activation function operation, the pooling operation and the
full connection calculation. The output result is calculated through forward propagation,
and it is handed over to the back propagation algorithm to update the model parameters.
The back-propagation algorithm will be combined with the gradient-based optimization
algorithm during training, and the error or loss of the network will be transferred back
to each network layer, and each layer of network will update the model parameters by
calculating the gradient iteration. When the back-propagation reaches the input layer, the
network will start the forward propagation calculation again and repeat the above process
until the network converges or reaches the iteration number.

3.3. EYOLOv3: Optimized YOLOv3 Model

The EYOLOv3 network is shown in Figure 2. The backbone network structure of
YOLOv3 is shown in Figure 3. The main improvement parts are as follows: (1) Build
multi-scale feature extraction and fusion network to obtain feature of different scales of
the floating, and more effectively fuse and re-extract shallow and deep features to improve
the expression and generalization ability of network for feature extraction; (2) aiming at
the variable object size, k-means++ is used to design the superior anchor box for floating
objects on river; (3) the NMS is improved to reduce the missed detection of objects with
high overlaps; (4) in order to improve the effect of nonlinear features and increase the
expression ability and generalization of the network, the weight factor is added to adjust
the weight of the different samples adaptively based on the cross-entropy loss function.
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3.3.1. Multi-Scale Feature Extraction and Fusion Network

The multi-scale feature extraction of EYOLOv3 uses the YOLOv3 backbone network
and adds the auxiliary convolution layer at its end to obtain a variety of feature maps
with different scales and resolutions. We use 3 × 3 and 1 × 1 convolution kernel, the
activation function is Leaky Relu, and batch normalization (BN) is used to prevent over-
fitting after each 2D convolution calculation. The calculation formula of BN is shown in
Formulas (1) and (2):

x̂(k) =
x(k) − E

[
x(k)

]
√

Var
[
x(k)

] (1)

y(k) = γ(k) x̂(k) + β(k) (2)

where x(k) denotes the linear activation of neurons in the current layer, γ and β is the regu-
latory parameter of neurons, E represents the mean within Batch, and Var is the variance.

The Feature Pyramid Network (FPN) can use feature fusion to achieve multi-scale
object detection in multi-layer features. The lower-level features have higher resolution
and contain more location and detail information. However, due to less convolutions,
they have lower semantics and more noise. High level features have stronger semantic
information, but their resolution is lower and their perception ability is poor. Hence, we
combine the up-sampling of FPN and feature fusion of different layers, and propose a
multi-scale jump connection method to achieve multi-scale feature fusion and improve the
detection accuracy of multi-scale objects of the model.

In order to obtain more features and higher semantic, we add four new convolution
(Cnv17_1, Conv17_2, Conv18_1, Conv18_2) layers at the end of feature extraction network,
and a fusion branch is constructed to fuse the features output by the new convolution
layers with multi-scale features to obtain feature maps of three sizes. One is the fusion
of Conv12 layer and Conv18_2 layer, which is used to predict the three largest anchors
and is suitable for large object detection; the second is the fusion of Conv14 layer and
Conv17_2 layer, which is used to predict three anchors of medium size and is suitable
for medium size object detection; the third is obtained by convolving the feature map of
Conv16 layer, which is used to predict the minimum three anchors and is suitable for small
object detection. After the down-sampling operations, the sizes of feature maps obtained by
different convolutional layers are different, so it is impossible to directly fuse the features
of convolutional neural networks. Take the fusion of Conv12 layer and Conv18_2 layer as
an example, firstly, the feature map of the Conv18_2 layer is up-sampled; secondly, we use
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L2-Norm to normalize the eigenvalue of the two layers to the same level, because Conv12
layer is shallow and its eigenvalue is large, and Conv18_2 layer is deep and its eigenvalue
is small, so the direct connection is not feasible; thirdly, the two corresponding feature maps
are merged to increase the number of channels; finally, through 1 × 1 convolution layer
to fuse and reduce the dimension of the merged feature map, so the fused feature map
contains both high-level feature semantic and low-level high-resolution detail information.
The feature fusion module is shown in Figure 4. And Figure 5 shows the visualization
process of the module. It can be seen from the Figure 5 that the fused feature maps have
more information.
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Figure 5. The visualization process of feature fusion module. (a) original image, (b) visualization of
the feature in Conv14 layer, (c) visualization of the feature in Conv16 layer, (d,e) show the visualization
of the fused feature.

3.3.2. Anchor Box Design

The YOLOv3 model used nine priori anchor boxes obtained by the dataset COCO,
which are not suitable for floating objects on river. In the real scene, the shapes of the
floating objects are varying and have the different aspect ratios from the objects in dataset
COCO. We also manually set for anchor boxed may not be able to match the ground truth
box of the floating, which affects the final detection as a result. Therefore, we design
appropriate anchor boxes to improve the model faster and more accurate. The clustering
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algorithm is to maximize the IOU overlapping value between the anchor box and the
ground truth box. The measurement function is shown in Formula (3):

d(box, centroid) = 1− IoU(box, centroid) (3)

Here, box is the ground truth box, and centroid is the cluster center. The value of the
distance d decreases with the increase of the IOU value. According to the above method,
K-means++ [34] is used to re-cluster the anchor boxes of the floating on river.

The steps of the K-means++ in detail are as follows:

1. Randomly select a sample from our dataset and take it as the initial clustering center;
2. Calculate the shortest distance between each data point and the existing clustering center;
3. Select a new data point as the clustering center. The selection principle is as follows:

the greater the distance calculated in step 2, the greater the probability that it will be
selected as the next clustering center. Then the next cluster center is determined by
the method of polling scheme;

4. Repeat step 2 and step 3 until k clustering centers are selected;
5. Associate the each remaining sample point in the data set d with its nearest clustering

center respectively and take it into the same clustering;
6. Calculate the mean value of each clustering, and take it as the clustering center of

each group; and
7. Repeat step 5 and step 6 until the new clustering center is the same as the initial

clustering center or less than a pre-set threshold.

The K-means++ algorithm is shown in Algorithm 1.

Algorithm 1 K-means++ algorithm

Repeat {
for i =1 to m & k = 1 to K

D(i) := ‖x(i) − µk‖2

p(i) := D(i2)

∑m
i=1 D(i)2

for i = 1 to m
c(i) := arg·mink‖x(i) − µk‖2

for k = 1 to K

µ(i) := ∑m
i=1 I{c(i)=k}·xi

∑m
i=1 I{c(i)=k}

}

Where D(1), D(2), . . . , D(m) represents the shortest distance between each data point
and the existing clustering center, and P(1), P(2), . . . , P(m) represents the probability that
each data point is selected as the next clustering center.

The label format of floating object dataset created in this paper is shown in Table 1.
Here, object-class indicates the object category label, (x,y) indicates the center coordinate of
the ground truth box, and width and height indicate the width and height of it, respectively.

Table 1. Dataset label format.

Dataset Label Format

<object-class> <x> <y> <width> <height>

We use the values of width and height to get the clustering centers of the floating
objects, and set the coordinates x and y to 0 at initialization phase. Figure 6 shows the
aspect ratio distribution and the clustering process of the ground truth boxes of floating,
where the horizontal ordinate is the width of the ground truth boxes, and the ordinate is
the height of the ground truth boxes.
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Considering the balance between calculation efficiency and accuracy of the network,
we choose nine anchor boxes, as shown in Table 2:

Table 2. Anchor boxes.

Anchor Boxes

Anchor boxes = (14,8) (18,19) (28,21) (37,10) (48,25) (57,31) (91,33) (148,51) (262,109)

3.3.3. Improved NMS Algorithm

The traditional NMS only selects the prediction box with the highest confidence in
an area, so the prediction boxes whose overlapping area with the prediction box with the
highest confidence is greater than the threshold will be directly suppressed, then rise the
missed detection. We set the confidence for each prediction box based on the overlapping
area, which can reduce false positive samples and effectively detect the floating objects
with high overlapping simultaneously. The improved NMS algorithm is as follows:

• First, sort the prediction boxes according to their confidence scores, and select the
detection box M with the highest score;

• Traverse the remaining prediction boxes of the object. If the overlapping of the
prediction box bi and M is greater than the IOU threshold, the attenuation function
is used to adjust the score of the prediction box. In order to prevent score faulting,
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the Gaussian weighted attenuation function is used here. The calculation formula is
shown in Formula (4):

Si = Sie−
iou(M,bi)

2

σ , ∀bi /∈ D (4)

where D represents the set of high score detection boxes that is reserved.
• Finally, select the box with the highest score again from the rest and set it to M,

repeat the above, and successively reduce the scores of the prediction boxes with
high overlapping, sort the final scores from high to low in sequence, and select all the
prediction boxes with higher score than the threshold as the final.

The above process not only completes the non-maximum suppression to filter the
redundant boxes, but also improves the detection accuracy of the model while there are
multiple floating objects with higher overlapping area.

3.3.4. Balanced Focal Loss Function

The YOLOv3 does not make candidate box extraction, so it faces the imbalance be-
tween the foreground and background during training. To solve this problem, this paper
uses a focal loss function replace the cross entropy loss function, and the binary classification
cross entropy loss function is shown in Formula (5):

E(p, y) =
{
−log(p) y = 1
−log(1− p) others

(5)

where y ∈ {±1} indicates whether it is a foreground, and p ∈ [0, 1] refers to the probability
classified as a foreground, that is y = 1. The pt is shown in Equation (6):

pt =

{
p y = 1

1− p others
(6)

Therefore, the cross entropy function can be defined as shown in Equation (7):

CE(p, y) = CE(pt) = −log(pt) (7)

The cross entropy loss function will always produce a loss value, even if the samples
can be easily classified and identified. When the loss values are accumulated, the classes
with fewer samples will be missed. In order to solve the category imbalance, a weighting
factor αt ∈ [0, 1] is introduced into the cross entropy loss function. The definition of αt is
shown in Equation (8):

αt =

{
α y = 1

1− α others
(8)

Therefore, the balanced loss function can be optimized as shown in Equation (9):

CE(pt) = −αtlog(pt) (9)

This function will be greatly affected by the imbalance of foreground and background
samples due to the negative samples dominating the gradient and loss value. In addition,
we need to reduce the weight of simple samples in training process, in order to solve
hard sample mining. Therefore, we use a weight factor (1− pt)

γ, where γ represents an
adjustable parameter. We obtained the final focus function as shown in Equation (10):

FL(pt) = −αt(1− pt)
γlog(pt) γ ≥ 0 (10)

It can be concluded that the focal loss function can reduce the weight of simple samples,
thus increasing the weight of hard samples. Therefore, the contribution of hard samples
can be improved during model training, so as to solve the problem of imbalance between
foreground and background samples and improve the detection accuracy of the model.
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4. Experiments
4.1. Parameters Setting

All the Experiments in this paper is completed on Nvidia GeForce 1080 Ti, and the
simulation platform is Ubuntu 16.04. We use the dataset we created in Section 3.1, and the
parameter settings are shown in Table 3. In the experiment, the random gradient descent
method is used to optimize 40,000 iterations of training. The initial learning rate is set to
0.0001, and the learning rate of 10,000 iterations per iteration is reduced by 10 times.

Table 3. Experimental parameters setting.

Parameter Value

Batch Size 64
Image Size 416 × 416

Initial learning Rate 0.0001
Maximum Learning Rate 0.001
Minimum Learning Rate 0.000001

Momentum 0.9
Iterations 40,000

4.2. Evaluation Index

In order to evaluate the performance of the network and prove the effectiveness of our
method, the following indicators are selected

• Precision (P) and recall (R). Precision refers to the ratio of the number of positive
samples to the number of all samples; recall rate refers to the ratio of positive samples
to the number of truth samples. The calculation formulas of precision and recall are
shown in Equations (11) and (12):

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

• where TP denotes the number of positive samples detected correctly, FP denotes the
number of negative samples detected as positive samples, and FN denotes the number
of positive samples detected as negative samples false negatives. Average Precision
(AP) and mean Average Precision (mAP). AP measures the detection accuracy of the
model. We can draw the P-R curves according to the precision and recall of the model,
integrate the curve function, and calculate the area to obtain the average precision.
The mAP is the mean value of APs of all the categories in one dataset. In this paper,
since there is only one floating object, the AP is the same as the mAP.

• Frames Per Second (FPS). The frame rate refers to the number of pictures that can
be detected per second. This indicator is used to evaluate the detection speed of the
object detection of the network.

4.3. Experiments and Analysis
4.3.1. Experiments of Our Method

Firstly, Figure 7 shows the loss curve of our model in the training process. We selected
test data with different environments to prove the robustness of our method, which is very
important in real application, because the quality of the images in surveillance system
is worse than the images in the public dataset. Figure 8 shows the detection results of
floating objects under different light conditions and small object density. Our method can
detect floating objects accurately, with high confidence, and has high robustness for floating
objects in different scenes and lightings. As shown in Figure 8e,f, EYOLOv3 also has
excellent detection effect in the case of dense small objects. Although there is a possibility
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of missed detection of small floating objects, compared with YOLOv3 model, it greatly
improves the missed detection of small objects. The comparative experiments will be
described later.
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4.3.2. Experiment on Improved Strategies

In order to quantitatively analyze the impact of each improvement strategy in our
method, the designs of the ablation experiments are shown in Table 4, and the experiments
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of different improvement strategies are displayed in the form of P-R curve in Figure 9, and
the experiments are in Figure 10.

Table 4. The ablation experiments of the improved strategies.

Model Name Balanced Focal
Loss Function K-Means++ Improved NMS

Algorithm mAP

Model 1 × × × 78.6%
Model 2

√
× × 81.1%

Model 3 ×
√ √

80.7%
Model 4

√ √ √
82.3%
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It is seen from Table 4, the Model 1 does not use any improvement strategy, that is
YOLOv3. Model 2 uses the focal loss function. Compared with Model 1, the detection
accuracy of Model 2 has increased by 2.5%, indicating that the focus loss improvement
strategy is effective. Model 3 introduces k-means++ clustering optimization algorithm and
improved NMS algorithm, and the detection accuracy is improved by 2.1% compared with
Model 1. It is verified that these two improved strategies can avoid missed detection and
reduce the number of false positive samples, and improve the performance of the model.
Model 4 adopts the focal loss function on the basis of Model 3, and the detection accuracy
is 1.6% higher than Model 3, which indicates that the focal loss function effectively solves
the imbalance problem of sample categories and improves the model performance. Model
4 integrates three improved strategies, and its detection accuracy is up to 82.3%, which is
3.7% higher than the YOLOv3, indicating that our proposed improvement strategy can
effectively detect the floating objects on river automatically.

4.3.3. Comparison with Other YOLOs

We compared the detection performance of EYOLOv3 with other YOLOs, and Table 5
shows the detection performance of several models. The experiments show that, compared
with YOLOv3, EYOLOv3 increases the mAP by 3.7%, and only increases the memory
consumption of the graphics card; compared with YOLOv5, the mAP of EYOLOv3 is 1.8%
higher, the detection speed of YOLOv5 is faster than that of EYOLOv3. However, the
graphics card memory consumption of YOLOv5 is 1.54 times that of EYOLOv3, which will
consume more computing resources, increase hardware costs, and have a negative impact
on practical applications.

Table 5. Comparison with other YOLOs.

Model Name Precision Recall mAP FPS Graphics Card Memory Consumption

YOLOv3 [31]
YOLOv5

EYOLOv3

83.2%
85.8%
87.4%

80.4%
82.5%
85.7%

78.6%
80.5%
82.3%

35
40
35

1218 M
1925 M
1250 M

4.3.4. Comparison with Other Methods

We compare our model with other object detectors including improved RefineDet
model we proposed in [35]. YOLOv3 uses the same parameter settings as our model in
this paper, and Fast R-CNN and Faster R-CNN use the default parameter settings. Mask-
Refined R-CNN, CA-faster R-CNN and Improved RefineDet train on the dataset we build
until the model converges. We compare EYOLOv3 and the above methods on the same test
dataset. The detection accuracy, the recall rate, the mAP, and FPS of the different detectors
are shown in Table 6.

Table 6. Comparison with other models.

Model Name Precision Recall mAP FPS

Fast R-CNN [24] 79.8% 78.5% 75.3% 4
Faster R-CNN [26] 88.6% 84.9% 81.2% 13

YOLOv3 [31] 83.2% 80.4% 78.6% 35
EYOLOv3 87.4% 85.7% 82.3% 35

Mask-Refined R-CNN [28] 86.9% 85.1% 81.8% 16
CA-faster R-CNN [27] 89.5% 83.6% 82.0% 20

Improved RefineDet [35] 88.3% 85.0% 81.5% 28

It can be seen from Table 5, Fast R-CNN model, as a two-stage object detector, using the
selective search strategy and high-level feature map, has the lowest detection accuracy and
slowest detection speed, and missed detection for small objects is obvious. The detection
accuracy of the Faster R-CNN network is slightly higher than Fast R-CNN and YOLOv3,
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and its detection speed is also faster than Fast R-CNN, but slower than YOLOv3. YOLOv3
is a single-stage detection model, so its detection speed is fast. However, YOLOv3 uses the
traditional NMS algorithm, so there is a problem of missed detection of floating objects
and no candidate box extraction process, so the detection accuracy is low. Our proposed
model achieves the highest detection accuracy, which is 82.3%, and the detection speed
reaches 35 FPS, which meets the real-time detection requirements of video streams. Both
Mask-Refined R-CNN and CA-faster R-CNN are improved by adding auxiliary network on
the basis of R-CNN, which improves the detection accuracy. However, due to its two-stage
object detection network, the detection speed is slower than EYOLOv3. Compared with the
Improved RefineDet we proposed in the previous work, EYOLOv3 uses the idea of skip
connection for reference to fuse low-level features into multiple high-level features and uses
soft-NMS algorithm to effectively reduce the missed detection rate of highly overlapping
objects. Consequently, the final feature map generated for detection in EYOLOv3 contains
rich detail information, which is conducive to small object detection. And the experiments
show EYOLOv3 has higher detection accuracy and speed than Improved RefineDet. The
experiments are shown in Figure 11.
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4.3.5. Real-Time Detection of Floating Objects in Video Stream

To further test the real-time performance of our method, a monitoring video containing
floating objects is collected from the flood diversion gate, and our method is applied to
detect the floating objects in the video. The detection results are shown in Figure 12. It can
be seen from the Figure 12a,b that floating objects in each frame can be accurately detected.
Also, Figure 12c–f show that floating detections of the four consecutive frames at 18:23:27
in 8 August 2018. Therefore, our method can realize efficient real-time floating detection in
video stream.
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5. Conclusions and Prospect

In this paper, we propose an EYOLOv3 model. Considering the characteristics of
floating objects, a deep multi-scale feature extraction and fusion network is designed to
make full use of multi-scale feature information to achieve the complementary effect of
different features and enhance the feature expression ability; in the training stage, the
balanced Focal Loss Function is used to dynamically adjust the weight of positive and
negative samples, so that the training can focus on hard samples and solve the imbalance
problem of positive and negative samples. K-means++ is used to cluster the anchor boxes
of the floating objects, and the anchor boxes redesigned match the floating better; improved
NMS algorithm is used to reduce the missed detection of objects with high overlap. The
experiments show that the EYOLOv3 is robust to the floating detection under different
lightings. The detection accuracy of our model is improved to 82.3%, and the detection
speed can reach 35 FPS, which meet the requirements of real-time floating detection.

In future work, we consider further improvement of NMS or use of better NMS
algorithm, such as Syncretic-NMS algorithm proposed by Chu et al. [36]. The algorithm
takes the traditional NMS as the first step, processes the boundary boxes obtained by the
traditional NMS, judges the adjacent boundary boxes of each boundary box, and combines
them with the corresponding boundary boxes. Syncretic-NMS algorithm has achieved
excellent performance when applied to instance segmentation. In addition, combining
multiple object detection networks is also the trend of future research. Munteanu et al. [37]
proposed a deep learning model based on YOLO, SSD and EfficientDet mainstream object
detection network. It is applied to the detection of sea mines on the surface and underwater,
which provides a useful idea for the detection of floating objects on the surface.
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