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Abstract: Although the vision transformer has been used in gait recognition, its application in multi-
view gait recognition remains limited. Different views significantly affect the accuracy with which
the characteristics of gait contour are extracted and identified. To address this issue, this paper
proposes a Siamese mobile vision transformer (SMViT). This model not only focuses on the local
characteristics of the human gait space, but also considers the characteristics of long-distance attention
associations, which can extract multi-dimensional step status characteristics. In addition, it describes
how different perspectives affect the gait characteristics and generates reliable features of perspective—
relationship factors. The average recognition rate of SMViT for the CASIA B dataset reached 96.4%.
The experimental results show that SMViT can attain a state-of-the-art performance when compared
to advanced step-recognition models, such as GaitGAN, Multi_view GAN and Posegait.

Keywords: multi-view gait recognition; Siamese neural network; vision transformer; view-feature
conversion; gradual view

1. Introduction

The identification of human individuals based on their gait, alongside a range of
biological features, including facial features, fingerprints, and irises, has the benefits of
being a long-range, non-intrusive, and passive mode of identification [1]. In addition, as the
security facilities of urban and public places are gradually improved, monitoring facilities,
such as cameras are ubiquitous, facilitating the use of basic, low-resolution instruments
of which the identified target is unaware [2]. Personality traits determine one’s identity.
This has led to the widespread use of deep-learning-based gait-recognition technology
in modern society [3], particularly in criminal investigations and public security; this
technique has significant potential for future applications [4]. To sum up, the fact that
gait recognition allows for the undetectable identification of individuals means that it has
obvious advantages in anti-terrorism and in fugitive tracking. Therefore, we believe that
this research is of great significance to the long-term interests of society.

To achieve a reliable identification of people in public spaces, it is necessary to over-
come the problem of variability in pedestrian behaviors in such environments through
the collection and identification of pedestrian gait information from multiple views [5,6].
Formal gait recognition uses 90° gait features that provide the most salient and comprehen-
sive details of human posture as experimental data. The rationale for this method is that
the gait characteristics in other views overlap due to the perspective problems of human
physical characteristics, with the result that the contour characteristics are not effectively
rendered. This is also one of the complications of multi-view gait recognition. Moreover, in
practical terms, in order to preserve the advantages of passive identification, it is crucial
not to establish a fixed walking position and camera viewpoint for the pedestrian [7]. This
problem needs to be solved urgently.

In the task of multi-view gait recognition, when the angle of view moves from 90°
to 0° and 180°, the contour of the human body is affected by the shooting angle, and
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some of the gait feature information is lost. This significantly impacts the extraction
of the gait contour characteristics. In response to this issue, this paper uses a Siamese
neural network to calculate the posture relationship between the two views and calculate
the characteristic conversion factor. Under the premise of retaining identity information,
the useful high-dimensional intensive characteristics of the network are strengthened to
make its high-dimensional features clearer, and the effect of the loss of gait characteristics
on recognition accuracy is lessened. The SMViT model constructed using this concept
can obtain higher recognition accuracy in a non-90° multi-view; moreover, this model is
more robust.
In summary, this paper makes the following contributions:

(1) It designs a reasonable and novel gait-view conversion method, which can deal with
the problem of multi-view gait;

(2) It constructs the SMViT model, and uses the view characteristic relation module to
calculate the association between multi-view gait characteristics;

(3) We develop a gradually moving view-training strategy that can raise the model’s
robustness while raising the recognition rate for less precise gait-view data.

The structure of this paper is as follows. The technologies related to gait recognition
are introduced in Section 2. Then, the SMViT is constructed and the gradual-moving-view
training method is explained in Section 3. In Section 4, experimentation with the CASIA B
gait dataset [8] is employed to explore the models and methods that are presented in this
paper. Finally, in Section 5, we summarize the research contained herein and consider the
future directions of gait recognition technology.

2. Related Work

At present, there are many methods of solving the problem of multi-view gait recogni-
tion. Some researchers adopt the method of constructing a three-dimensional model and
use the close cooperation of multiple cameras to construct a three-dimensional model of
pedestrian movement, so as to weaken the influence of multiple perspectives, clothing,
and other factors. Bodor et al. proposed combining arbitrary views taken by multiple
cameras to construct appropriate images that match the training view for pedestrian gait
recognition [9]. Ariyanto et al. constructed a correlation energy map between their pro-
posed generative gait model and the data, and adopted a dynamic programming method
to select possible paths and extract gait kinematic trajectory features, proposing that the
extracted features were inherent to the 3D data [10]. In addition, Tome et al. set out
a comprehensive approach that combines the probability information related to 3D human
poses with convolutional neural networks (CNNSs), and introduced a unified formula to
address the challenge of estimating 3D human poses from a single RGB image [11]. In sub-
sequent research, Weng et al. changed the extraction method of human 3D pose modeling,
and proposed a deformable pose ergodic convolution to optimize the convolution kernel of
each joint by considering context joints with different weights [12]. However, this method
of 3D pose modeling is more complicated to calculate and has high requirements regarding
the number of cameras and the shooting environment, so it is difficult to use in application
settings with ordinary cameras.

Some scholars used the view transformation model (VIM) to extract the frequency
domain features of gait contours by transforming them from different views. For instance,
Makihara et al. proposed a gait recognition method based on frequency domain features
and view transformation. First, a spatio-temporal contour set of gait characteristics was
constructed, and the periodic characteristics of gait were subjected to the Fourier analysis
to extract the frequency domain features of pedestrian gait; the multi-view training set
was used to calculate the view transformation model [13]. In this method, the Spatio-
temporal gait images in the gait cycle are usually first fused into a gait energy image (GEI),
which is a Spatio-temporal gait representation method first proposed by Han et al. [14].
Kusakunniran et al. combined the gait energy image (GEI) with the view transition model
(VIM), and used a linear discriminant analysis (LDA) to optimize the feature vectors and
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improve the performance of VIM [15]. Later, Kusakunniran et al. used a motion clustering
method to classify gaits from different views into groups according to their correlation;
within each group, a canonical correlation analysis (CCA) was used to further enhance
the linear correlation between gaits from different views [16]. In addition, researchers
have considered how to perform gait recognition from any view. Hu et al. proposed
a viewpoint invariant discriminant projection (ViDP) method to improve the discrimination
accuracy of gait features using linear projection [17]. However, most of these methods are
realized by domain transformation or singular value decomposition, and the perspective
of transformation is complicated.

Others have used an adversarial generative network to normalize multiple views
into a common perspective. Zhang et al. proposed a perspective-shifting adversarial
generative network (VI-GAN), which can transform gait views across two arbitrary views
with only one model [18]. Shi et al. designed GaitGANvV1 and GaitGANV2, versions of a gait
adversarial generation network, which use GAN as a regressor to generate a standardized
side view of a normal gait; this not only prevents the falsification of gait images, but
also helps to maintain identity information, and the networks achieved good results in
cross-view gait recognition [19,20]. In addition, Wen et al. used GAN to convert gait
images with arbitrary decorations and views into normal states of 54°, 90°, and 126°, so
as to extract view-invariant features and reduce the loss of feature information caused by
view transformation [21]. Focusing on the problem of limited recognition accuracy arising
from the lack of gait samples from different views, Chen et al. proposed a multi-view gait
generation ad hoc network (MvGGAN) to generate false gait samples to expand the dataset
and improve recognition accuracy [22]. However, the ability of this adversarial generative
network structure to accurately undertake recognition tasks from the same perspective is
easily affected by decorative features, such as clothes and backpacks, resulting in limited
recognition accuracy.

3. SMViT and the Gradually Moving-View Training Method
3.1. Model Structure

In order to solve the problem of multi-perspective situations, this paper uses the
Siamese neural network as a design basis and calculates the correlation between the charac-
teristics of different views and uses this as the basis for the conversion of the characteristics
of the view. When there are few specimens, a Siamese neural network can extract and
learn the links between two groups of photos [23]. ViT is advantageous for the extraction
of multi-scale features because of its robust strength and resistance to interference from
mistaken samples [24,25]. In this paper, a two-channel Siamese module (Conv and MViT,
CM Block) of convolution is constructed to extract the characteristics of multi-view gait
contour features. The specific model structure is shown in Figure 1.
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Figure 1. Structure diagram of SMViT.
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In order to extract the gait information from various viewpoints, two feature extraction
networks are used in the Siamese network module described in this paper. Convolution
channels are used inside each module to obtain the contour’s high-dimensional local
features. Furthermore, we utilize the Mobile ViT channel to create high-dimensional states
that are indicative long-distance attention characteristics of the current view.

In addition, the mobile view transformation (MVT) module is used to extract the view
characteristics and tensors, meaning that the advantages of convolution and ViT are retained
in the extraction of the gait contour features. This module is based on the Mobile ViT model,
and incorporates the convolution with the transformer. Local processing is replaced with
deeper global treatment in the convolution. In an effective receiving domain, we model
long-distance non-local dependencies. The model has smaller parameters and produces
ideal experimental results. The specific details of the module are shown in Figure 2.
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Figure 2. Details of the module.

As shown in Figure 2, there are two types of the conv block module (Conv Block),
N x N convolution and point-by-point convolution, according to the difference in the
convolution kernel size. This module consists of a convolution layer and a batch nor-
malization layer. Mobile Block takes MobileNet as the essential conceptual basis [26-28]
and controls the network’s depth and the number of parameters by constructing depth-
separable convolution. In addition, due to the differences in the processing methods
and content of the feature extraction between the convolution and the ViT, the format
conversion needs to be carried out before and after the transformer module in order to
control the data processing format. SiLU is used as the activation function in each module,
as shown in Equation (1), and the global average pooling layer is used in the pooling
layer, as shown in Equation (2), where x means the input matrix and x,, represents the
operation area of the pooling layer:

SiLU(x) = x-Sigmoid(x) 1)

Pooling(xy) = Avg(xw) 2)

The transformer module absorbs some of the advantages of the convolutional com-
puting and retains its characteristic processing capabilities in the space-perception domain.
By dividing a large global receptive field into different patches in a non-overlapping way,
P = Wh, where w and h are the width and height of the patches, respectively. Then,
the transformer is used to encode the relationship between the patches. Specifically, the
self-attention mechanism calculates the scaled dot-product attention by constructing the
query vector Q, the value vector V, and the key vector K, as shown in Equations (3)—(5):
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QKT
,K) = =—— 3
f(Q,K) i ©)
X = softmax(f(Q,K)) 4)
Attention(X,V) =X xV 5)

In this case, the module’s computation cost of multi-head self-attention is O (N2Pd).
Compared with the traditional ViT, the calculation cost O(N?d) is increased but its speed
in practical applications is faster [29].

3.2. Perspective Feature Conversion Block and Inverse Transformation Block

The inverse transformation block (IT block) and the perspective feature conversion
block (PFC block) are designed concurrently. The former is used to calculate the character-
istics of the two perspectives obtained by the Siamese network, and the relation tensor is
taken as the view conversion factor as shown in Formula (6). The latter is used to convert the
high-dimensional characteristics between the two views as shown in Formula (7). Among
them, x and y are two view-cornering characteristics and N is the capacity of the target
view set. The process of calculating the gait characteristics from different perspectives in
the PFC block and IT block are shown in Figure 3.

IT(x,y) = x+ PFC(x,y) (6)
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Figure 3. PFC block and IT block.

3.3. Gradually Moving-View Training Method

To develop the multi-view gait recognition model SMViT, this article designs a brand
new, suitable, multi-view gait-recognition method; that is, the gradually moving-view
training method. The training strategy of this method differs between the perspective
feature relationship calculation module and the classification module.

In the characteristic view relationship calculation module, SMViT uses convolution
and dual-channel VIT to extract the gait characteristics. To better calculate the difference
between the 90°- and non-90°-perspective characteristics, the same pre-training weights
are used to calculate the characteristics tensor of the perspective. Because the purpose of
this module is to calculate the perspective characteristic tensor, not the classification, the
pre-training weight of the last two layers of the network module needs to be eliminated.
The specific training steps are shown in Algorithm 1.
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Algorithm 1: Process of training the characteristic view relationship calculation module.

Input: CASIA B and CASIA C gait datasets.

Step 1: First, supplement the dual-channel view feature relationship calculation module as

a complete classification model and conduct pre-training in the CASIA C dataset.

Step 2: Freeze the pre-training parameters to remove the weight of the final classification layer.
Step 3: Load the parameters from step 2 to the dual-channel perspective characteristic
relationship calculation module.

Step 4: Use the module obtained in step 3 to extract the dual-channel features of 90° and non-90°
CASIA B gait data.

Step 5: Calculate the relationship tensor between the two perspectives obtained in step 4 with the
PFC block.

Step 6: Store the characteristic relationship between the two views obtained in step 5, and hand it
over to the classification module.

Output: The characteristic relationship tensor between the two views.

In the classification module, the tensors of the gait characteristics of the different views
after conversion should be identified and classified. Therefore, starting with the weight of
the 90° model with high accuracy, training is undertaken in two directions of 0° and 180°.
That is, a training weight of 90° is used as the initial weight of the model when training
72° and 108° gait data. When training at 54° and 126°, the training weights of, respectively,
72° and 108° are loaded and so on. This part uses a cross-entropy loss function as the
method of loss calculation as shown in formula 8. The specific training steps are shown
in Algorithm 2.

Loss(output, class) = weight cjasq (—0utput (s +log (Y e™P™i)) (8)
j
Here, output is the prediction result, class is the actual label of this sample, and

output|.,) represents the element of the class position in output, that is, the predicted
value of the real classification. Finally, weight ., is a weight parameter.

Algorithm 2: Classification Module Training Process

Input: CASIA B gait dataset.

Step 1: First, the 90° gait data are transformed and recognized (at this time, there is no change in
the characteristics of the perspective), and the parameter weight is saved.

Step 2: The weight parameters obtained in step 1 are loaded to the classification module, the gait
dataset (such as 72° and 108°) of the adjacent perspective is trained, and the parameter weight
is saved.

Step 3: The characteristic relationship tensor between the two perspectives is matched and the
parameter weights obtained in the previous step are loaded into the model.

Step 4: The trained perspective weight is loaded to the model, the gait dataset of adjacent non-90°
perspectives is trained, and the weight parameters are saved.

Step 5: The classification layer and the regression layer are used to identify and classify the
characteristic tensor of the view.

Step 6: Push in two directions (90°—0° and 90°—180°), and repeat steps 3, 4, and 5.

Output: The gait recognition model SMViT.

4. Experiment and Analysis
4.1. Experimental Data

The CASIA B dataset is a large dataset that is widely used in multi-view gait recogni-
tion tasks. It consists of 124 subjects (31 women and 93 men) [19]. The gait images of each
subject in the three different states of normal walking (NM), walking with a bag (BG), and
walking with a coat (CL) were collected [30] from 11 points of view, from 0° to 180° (with
an interval of 18° for close views) as shown in Figure 4.
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Figure 4. CASIA B multi-view gait dataset [8].

4.2. Experimental Design

In multi-view gait recognition tasks, due to the offset of the perspective, some human
gait contour characteristics are lost and the recognition accuracy is reduced. This exper-
iment designated 90° as a high-precision standard perspective. The remaining 10 views
of the gait characteristics are calculated using the standard view relationship. The mutual
verification between the perspectives is not considered; only the gait recognition accuracy
inside the perspective is calculated. Additionally, a simple perspective conversion factor
group is established to transform the view feature tensor with less feature information into
a 90° feature tensor with more useful and distinct feature information.

In order to compare the results with the comparison model for the same data, we
directly used the gait contour data provided by the CASIA B gait database. In addition,
this allowed us to be more attuned to the uncertainty caused by people’s attire and walking
speeds, and other aspects of practical application scenarios. From the same perspective, we
ignore slight differences in dress, walking speeds, and other personal features, and divide
the overall data into the training set and the verification set according to the 7:3 ratio. There
is no crossover between each view, in order to improve the recognition accuracy within each
view. The gait data obtained in the actual application scenario may not necessarily contain
a complete gait cycle, and the gait characteristics are random. Therefore, this experiment
does not adopt the gait-cycle group as the input data. Instead, the gait group with three
walking states is scattered at will to ensure that the model’s effect is similar to a complex
real-world environment.

Setting the initial learning rate to 1 x 1073, with Adam as the optimizer, we used
the categorical_ The crossentropy multiclass cross-entropy loss function to calculate loss.
In this experiment, Pycharm, an efficient Python IDE, was used to write code. The code
was tested in Pytorch 1.8 and CUDA 11. The various equipment parameters used in the
calculation process are shown in Table 1.

Table 1. Experimental environment.

Environment Parameter/Version
CPU 17-10700K
GPU NVIDIA RTX 3060
CUDA 11.0
Pytorch 1.8
Operating System Win10

4.3. Experimental Results for the CASIA B Dataset

To evaluate the effectiveness of the SMViT model and the view movement method
(SMVIT_T) proposed in this paper, we used the first 10,000 training loss changes of the
two intermediate views as an assessment of the convergence effect. It can be seen that,
even in the middle of the view offset, the SMViT model proposed in this paper can still



Appl. Sci. 2023, 13,2273

8 of 14

effectively converge and stabilize under the general trend as shown by the blue line in
Figures 5 and 6. After the gradually moving-perspective training, not only is the model’s
drop in loss significantly improved, but the unstable jumping phenomenon of losses is also
suppressed to a certain extent as shown by the orange line in Figures 5 and 6.

Angle 547 Train Loss
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Figure 5. Loss change when the view is 54°.
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Figure 6. Loss change when the view is 126°.

The experiment was carried out at 10 angles, from 0 to 180 degrees, in order to
prove that the model can effectively learn gait characteristics from multiple perspectives
and overcome the problems caused by the poor learning effect and fluctuation in the
accuracy rate, which are commonplace in multi-perspective gait recognition. Figure 7
shows the effect pictures of the model trained with or without gradually moving-view
training for 10 views, but not for the 90° view. It can be observed that, except for the
basic model (SMViT_BASE) at a perspective of 36°, there is a small oscillation in accuracy,
and the experimental effects for the other views steadily increased. Both the base and T
models quickly reach their peak accuracy and then stabilize as shown by the point line
in Figure 7. The model proposed in this paper (SMViT_T), with gradually moving-view
training, has a high accuracy for all the viewpoints, and there is no significant fluctuation
in the recognition rate during the training process. The recognition rate of our model is
always higher than that of the base model.
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Figure 7. Diagram of the training process for the model proposed in this paper for various views in the
CASIA B dataset (In the figure (a—j) are the experimental results of SMViT base and T in each angle).
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4.4. Comparison with the Latest Technology
4.4.1. Ablation Experiment

At present, in many gait recognition studies, walking speed, clothing, and other charac-
teristics are tested separately. As such, it can be considered an idealized experiment where
some of the complexity of the data are eliminated by manual classification. This allows
the model to obtain good results in NM classification. Other classifications, however, have
poor accuracy. We suggest that, in real-world application scenarios, human appearance is
highly uncertain. Therefore, the data obtained for different states are trained and verified
separately, and the results cannot be used as the possible results of practical applications.

We experimented with a mixture of data for various characteristics to maximize the
complexity of the gait data. In addition, our structural design focuses on improving the
accuracy of gait recognition from multiple perspectives, rather than using cross-perspective
experimental methods.

For the 11 views in the CASIA B dataset, our model (SMViT_Base) was compared
with SPAE [31], GaitGAN [19,20], Multi_View GAN [21], Slack Allocation GAN [32], GAN
based on U-Net [33], and PoseGait [34] in terms of the internal recognition rate of non-cross-
view offset views. That is, without considering cross-verification, verification experiments
only considered the multi-view perspective. Due to the limitations of the experimental
environment and equipment, we could not effectively restore the experimental results of
the multiple comparative models. Therefore, we directly used the experimental results
presented in the papers. Other model data, shown in Table 2, were taken from the average
value of the three-state gait recognition rates from the same view in the same dataset. It can
be seen that, for all the views, the model presented here showed significant improvements
when compared to the other gait recognition models. Additionally, the average upgrade
index exceeded 20 percentage points. It is verified that, in the task of multi-view recognition
with a non-crossing view, the model proposed in this paper is better than the selected
comparison model.

Table 2. Precision comparison of CASIA B with the latest technology for each view.

Comparison of Model Accuracy for Each View When Not Crossing Views

0° 18° 36° 54° 72° 90° 108° 126° 144° 162° 180°
SPAE [31] 0.7419 0.7661 0.7150 0.6989 0.7311 0.6801 0.6854 0.7258 0.7016 0.6881 0.7231
GaitGANV1 [19] 0.6828 0.7123 0.7285 0.7339 0.6962 0.7043 0.7150 0.7285 0.7204 0.7042 0.6828
GaitGANv2 [20] 0.7258 0.7554 0.7150 0.7332 0.7527 0.707  0.6962 0.7392 0.7150 0.7311 0.6989
Multi_View GAN [21] 0.7213 0.7869 0.7814 0.7589 0.7568 0.7131 0.7322 0.7431 0.7431 0.7480 0.7513
Slack Allocation GAN [32] 0.7473 0.7258 0.7258 0.7141 0.7560 0.7336 0.6967 0.7365 0.7277 0.7243 0.7221
GAN based on U-Net [33] 0.7365 0.7715 0.7956 0.7957 0.8521 0.7822 0.8172 0.7956 0.7984 0.7419 0.7580
PoseGait [34] 0.7231 0.7365 0.7688 0.7822 0.7446 0.7473 0.7607 0.7284 0.7553 0.7365 0.6586
SMViT_Base 0.9802 0.9704 0.9318 0.9805 0.9689 0.9744 0.9668 0.9617 0.9529 0.9451 0.9831

At the same time, the average values for the 11 views of normal walking (NM), walking
with a backpack (BG), and walking while wearing a jacket (CL) were compared. For this
comparison, the training sets and verification sets of each model were taken from the same
view. The proportion of internal training sets and verification sets for each view is 7:3, and
the cross-verification of the view is not considered. From Figure 8, it can be seen that the
red model, which was proposed in this paper, significantly increased the average value of
multi-view mixed recognition rates, which increased by about 20 percentage points.
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Figure 8. Comparison of the average validation rates of the model from multiple views.

4.4.2. Validation of the Gradually Moving-View Training Strategy

As shown in Figure 7, we initially demonstrated the effectiveness of this strategy by
comparing the T model with the base model in SMViT. During the experiment, we found
that, with this training strategy, SMViT can still maximize the stability of learning for some
perspectives with low-quality data. Taking the 18° gait data as an example, we conducted
ablation experiments to verify the effectiveness of the gradually moving-view training
method. As shown by the square point line in Figure 9, during the first 15 rounds of
training, the SMViT_base model proposed in this paper dropped significantly in the second
and ninth rounds and there was a significant saturation of recognition rates. After the
experimental analysis, we surmised that the first decline was due to the loss of a number of
gait characteristic outlines. At the same time, this model does not use view-mobilization
training methods to convert and strengthen the gait characteristics, making the model
unable to effectively learn the characteristics, and the accuracy decreases sharply. The
second drop is due to the small number of features, which led to the abnormal situation
of gradual overfitting in the verification accuracy; this also reflects the improvement in
the model’s robustness facilitated by the view-transition training method. At around
13 rounds, the base model reaches the upper limit of saturation accuracy but is still about
one percentage point lower than the SMViT_T model’s recognition accuracy. On the whole,
due to the gradually moving-view training strategy of SMViT, the initial recognition rate is
about 70 percentage points higher than that of the basic model; our model also maintains
a relatively stable level of recognition accuracy. Although the accuracy saturation trend
also appeared quickly, the upper limit of the saturation value was about one percentage
point higher than that of the base model, and the oscillation amplitude of the validation
rate remained below one percentage point.

In this paper, we integrated the design concept of Siamese neural networks and
a variant mobile vision transformer model and built a multi-view Siamese ViT gait recog-
nition model: SMViT. At the same time, we designed a gradually moving-view training
strategy for multi-view gait recognition, referred to as SMViT_Base and SMViT_T. After
conducting a number of experiments on the CASIA B dataset, it was shown that the Siamese
feature relationship calculation method can be used to obtain the perspective characteris-
tic conversion factor, which can be used to determine the relationship between different
perspective gait characteristics; this effectively improves the accuracy of multi-perspective
gait recognition. Our experimental results show that the proposed model can significantly
improve the recognition rate when compared with the existing generative multi-view gait
recognition methods, without considering cross-view verification. We demonstrated an
increase of 20 percentage points in the hybrid recognition rate, without considering the
external attire of the pedestrians. Therefore, SMViT expands the gait recognition view
while ensuring high accuracy, improving efficient gait recognition in multi-view practical
application scenarios.
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Figure 9. Reliability verification of the gradually moving-view training method at 18°.
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Figure 10. Comparison of the initial validation rate and the maximum validation rate of the proposed
model trained with or without gradually moving-view training.

5. Conclusions and Future Prospects

In the future, a more abundant dataset can be used to verify the recognition effect,
and a more sophisticated view-feature conversion module can be used to enhance the
application scope of SMViT. Additionally, when the visible light intensity is insufficient,
the infrared thermal imaging target tracking method can be used to extract the gait contour
features, creating the possibility of dealing with more complex and variable natural envi-
ronments [35] and undertaking the tracking of more obscure gaits [36,37]. We believe that
the design of SMViT with multiple covariates will open up new methods for multi-view
gait recognition; the vision transformer can also play a role in multi-view gait recognition
tasks in complex environments.
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