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Abstract: The compression and compressive creep behavior of target shipping containers, which are
material properties based on finite element analysis, and the lifetime and load-sharing rate, were
analyzed in this study to develop a computer-aided engineering prediction technology for predicting
the multi-stage compression behavior of three target packages with different logistics conditions.
In the experiment performed in the study, the relative humidity levels were 50%, 70%, and 90%,
with creep measurements performed for 12 h for a combination of three levels of applied load and
relative humidity. Using the nonlinear model of the stress–strain and creep behavior of the target
shipping container, the lifetime was analyzed by estimating the average creep rate of the target
shipping container. The load-sharing rate for each logistics situation of the target packages was
also analyzed. The reduction rate of the compression strength of the container with respect to the
increase in relative humidity was greater in the ‘horizontal long’ container than in the ‘vertical long’
container. As the applied load increased, the rate of increase in the average creep rate increased,
i.e., the higher the applied load, the larger the difference in the average creep rate with respect to
the relative humidity. The lifetime estimated from the failure strain and average creep rate of the
container gradually decreased as the applied load increased at all relative humidity levels. However,
as the applied load increased, the difference with respect to the relative humidity tended to decrease.
In the target packages used in this study, the ratio of the load-sharing rate between the shipping
container and an expanded polystyrene cushioning material was determined to be 2%:98%, with
most of the stacking load applied to the product through the cushioning material.

Keywords: corrugated fiberboard container; creep behavior; EPS-based cushioning system; lifetime;
secondary creep rate; load-sharing rate

1. Introduction

Heavy home appliances (e.g., refrigerators, washing machines, and air conditioners)
are usually cushioned by an expanded polystyrene (EPS)-based cushioning system and
packaged in a shipping container (mostly corrugated fiberboard containers). These pack-
ages are unitized on a pallet in a certain quantity (palletized-unit load) and are subject to
logistics operations, such as transportation, storage, and handling. They are commonly
stacked in multiple stages during storage. In such a situation, where the package is subject
to long-term stacking loads, the shipping container and EPS-based cushioning system in a
package undergo creep deformation. The longer the package is stacked on the lower layer,
the more severe the creep deformation.

In a warehouse, the cumulative creep deformation of multi-stacked packages may
lead to an inclination of the unitized load and even collapse. This phenomenon occurs
more conspicuously by the action of the rotational moment owing to an eccentric load
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when the center of gravity is eccentric to one side in the package of heavy goods, such as
refrigerators and washing machines.

In general, the creep behavior of a viscoelastic material has been described to have
three phases, as shown in Figure 1: (1) primary (transient) creep, (2) secondary (steady-
state) creep, and (3) tertiary (accelerating) creep. In the primary phase, the strain increases
with a decrease in the strain rate. In the second phase, the strain increases linearly with
time, yielding a constant strain rate. The tertiary phase is characterized by a rapid increase
in strain, rapidly leading to failure. However, the actual creep behavior of viscoelastic
materials is strongly influenced by the properties of the material itself and the level of load
applied, stabilizing after transient creep and leading to destruction after rapid progression
through the three creep phases, or fully proceeding with the three creep phases.
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The creep behavior, from instantaneous elastic strain to steady-state creep after loading,
can be described by the Burgers model: ε(t) = σo/Eo + σo/Er{1− exp(−t/τr)}+ (σo/ηv)t,
where Eo = instantaneous elastic modulus (Pa), Er = retarded elastic modulus (Pa), ηv and ηr
are the viscosity coefficients of the dashpot (Pa·s), and τr is the retardation time (=ηr/Er)(s).
The constants of this model allow for a quantitative understanding of the characteristics
of the different creep phases. In the Burgers model, the Maxwell and Kelvin elements are
connected in series. The spring of the Maxwell element represents the instantaneous elastic
strain, whereas the dashpot represents a non-reversible viscous flow. The Kelvin element
describes the delayed elasticity [1,2].

Corrugated fiberboard containers are mostly used as shipping containers for home
appliances. In the case of a corrugated fiberboard container, the structure has a unique
characteristic that renders its creep behavior as different from that of a simple viscoelastic
material. The primary creep region of the corrugated fiberboard container is the deforma-
tion accommodated in the flattening process of the wing in the vertical direction to the
applied load. The creep rate and quantity are large because the wing rotates and bends
around the crease [3]. Part of the creep deformation generated in this phase is recoverable,
occurring for a short time and not contributing to the failure of the container. The secondary
creep region is dominated by the bulging of the container side and the load transfer to
the container corner. The secondary creep rate is nearly constant; however, most of the
deformation is inelastic and contributes to failure [4]. Local buckling at the corner of the
container forms a hinge at the corner, resulting in overall buckling, eventually proceeding
to tertiary creep and leading to the ultimate collapse of the container.

The container lifetime (time to failure) in the multi-stacked condition is significantly
affected by the level of applied load (stacking load) and by the relative humidity (rh) and
moisture content of the container itself (owing to the hygroscopic properties of cellulosic
materials). Many researchers [5–7] have reported that cyclic humidity conditions at the
same levels of the applied load lower the container lifetime compared to constant humidity
conditions. However, Hussain et al. [3] reported that the effects of cyclic and constant
humidity conditions differed according to the applied load level. In other words, constant
humidity conditions under a high applied load level deteriorated the lifetime more than
cyclic humidity conditions, with one reason for this being that the cyclic humidity condi-
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tions did not reach the equilibrium moisture condition. However, they stated that testing
under cyclic humidity conditions was more appropriate for the packaging industry, as most
of the containers were stacked under lower applied load conditions in the supply chain of
the container.

Many researchers [3,5,8] have studied the relationship between the lifetime and sec-
ondary creep rate of containers, because the majority of the lifetimes of multi-stacked contain-
ers are affected by secondary creep regions. Hussain et al. [3] calculated the slope of the linear
regression equation for the data corresponding to 10–90% and 20–80% of the period through
creep measurement for 21 days; the values obtained were expressed as the secondary creep
rates of the failing and non-failing containers within the period, respectively. They reported
that the container lifetime was inversely proportional to the secondary creep rate. Long-term
stacking tests ranging from several days to several months are required to determine the
secondary creep rate of corrugated fiberboard containers. Burgers et al. [9] presented a
container lifetime estimation method by obtaining the average creep rate through a creep
experiment of only 12 h, and correcting it to failure according to the applied load level. The
method they proposed starts on the premise that creep failure of a container occurs when the
creep strain reaches the quasi-static compression failure strain of the container: T = D/R,
where T = lifetime (time to fail) (min), D = ASTM D642 failure deformation (mm), R = average
creep rate [= R12 × P/(100− P)] over the entire time up to failure at the applied load level
P, R12 = average creep rate in the 12 h test (slope of straight line fitted to creep data), and
P = load expressed as a percentage of the ASTM D642 compression strength (CS) [10]. As a
more recent study, Gray-Stuart et al. [11] analyzed how creep performance (secondary creep
rate) and lifetime of container depend on the container conditions including fill and the area
of the container that is exposed for moisture transfer. Regarding the secondary creep rate and
lifetime of boxes containing product were significantly smaller than those of other conditions,
they said that it was due to the occurrence of out-of-plane displacement due to the internal
pressure imparted on the panels by the product. Holmvall [12] introduced the concept of
reliability in predicting the lifetime of the container, and he said that the lifetime is indeed
dependent not only on a stacking factor, but also on durability and the variations associated
with the material or container.

Computer-aided engineering (CAE) prediction technology of compression behavior in
multi-stacked home appliance packages equipped with an EPS-based cushioning system is
an important technical evaluation tool that can prevent accidents caused by overturning of
multi-stacked packages in warehouses. In addition, this tool can help reduce the develop-
ment period owing to the preliminary review of multi-stacking, improvement of packaging
quality, and optimization of packaging materials.

This study aimed to measure and model the compression and compressive creep
behavior as material properties based on finite element analysis (FEA) of target shipping
containers (corrugated fiberboard container) used for heavy home appliances, and to ana-
lyze the lifetime and load-sharing rate. As this study was conducted as part of developing
a CAE prediction technology of compression behavior for unitized loads of packaged
appliances with an EPS-based cushioning system, the variables and scope of the study
reflected this scenario.

2. Experimental Design
2.1. Experimental Materials

The three cases shown in Table 1 were the target packages used for developing the
CAE prediction technology that can predict compression behavior of the multi-stacked
home appliance packages. The shipping container used in each of these three cases had a
different shape, and the density of the EPS applied to the EPS-based cushioning system
in each case was also different. Therefore, modeling the compression and compressive
creep behavior of the packaging material for each case was essential for developing a CAE
prediction technology for each of these cases.
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Table 1. Details of the target packages.

Division Case 1 Case 2 Case 3

Outer size - L968 ×W994 × H1870 mm - L690 ×W664 × H890 mm - L892 ×W381 × H249 mm

Total weight - 1.884 kN - 0.559 kN - 0.108 kN

Components

- Outer: Container A
- Inner: EPS cushion_(bottom)

25 kg/m3, (top) 20 kg/m3

- Outer: Container B
- Inner: EPS

cushion_(bottom)
22 kg/m3, (top) 25 kg/m3

- Outer: Container C
- Inner: EPS cushion

(right & left) 16 kg/m3

Stacking - 4 column stacking - 5 column stacking - 16 column stacking

Cushioning
- Cushion area: 0.1323 m2

- Cushion thickness: 155 mm
- Cushion area: 0.1488 m2

- Cushion thickness: 47 mm
- Cushion area: 0.0384 m2

- Cushion thickness: 47 mm

Cushioning method
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represents the contact area and the thickness of the cushioning material in contact with the
base of the product (red dotted circle in each figure).

The detailed specifications of the shipping containers used in the target package are
listed in Table 2. For Containers A and B, their sizes were too large to be tested; thus, the
model test was reduced to a geometric similarity of 1/2. In the model testing, it was found
the density (including mass, dimension, and area moment of inertia) of the corrugated
fiberboard constituting the container between the prototype and model should also be
reduced [13]. However, as it is virtually impossible to change the corrugated fiberboard
specifications arbitrarily in terms of production, only the scale effect was considered in this
study. Furthermore, because Containers A and B are both ‘vertical long’ with large heights,
it was necessary to analyze the mechanical similarity between the prototype and model for
the buckling stress condition. As shown in Table 3, the difference in the slenderness ratio
between the prototype and model was negligible; therefore, it was considered that there was
no difference in the buckling stress against axial compression between the two. Therefore,
the mechanical behavior of the prototype could be determined through a model experiment.
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Table 2. Specifications of the shipping containers used for the target packages [14].

Division Container A Container B Container C

Outer size
- (prototype) L968×W994 × H1870 mm
- (model) L484×W497 × H935 mm(3)

- (prototype) L690×W664×H890 mm
- (model) L345×W332 × H445 mm(3) - (prototype) L892×W381×H249 mm

Container type
- RSC, single-winged
- (extremely) vertical long (H/L = 1.88;

L/W = 1.03)

- RSC, single-winged
- (slightly) vertical long (H/L = 1.29;

L/W = 1.04)

- RSC, double-winged
- (extremely) horizontal long

(H/L = 0.28; L/W = 2.34)

Paper
combination(1,2)

- BB/F-DW
- KLB175/S120/CK180/S120/K180

- A/F-SW
- KLB225/CK180/KLB225

- A/F-SW
- KLB175/CK180/K180

Note: (1) KLB225: (BS, bursting strength) 726 kPa, (RC, ring crush) 332 N, (t) 0.30 mm; KLB175: (BS) 569 kPa,
(RC) 258 N, (t) 0.27 mm; K180: (BS) 353 kPa, (RC) 194 N, (t) 0.28 mm; CK180: (BS) 392 kPa, (RC) 270 N, (t) 0.27 mm;
S120: (BS) 125 kPa, (RC) 82 N, (t) 0,17 mm. (2) KLB225 and KLB175: 40% UKP + 30% AOCC + 30% KOCC,
KOCC = Korean old corrugated container, UKP = unbleached kraft pulp, AOCC = American old corrugated
container; K180 and S120: 100% KOCC; CK180: 20% AOCC + 80% KOCC. (3) BB/F-DW (BB flute-double wall),
A/F-SW (A flute-single wall), RSC (regular slotted container). (4) Geometric similarity, λ = Wm/Wp = Dm/Dp =
Hm/Hp = 1/2 (m = model, p = prototype).

Table 3. Results of mechanical similarity analysis for buckling stress conditions between the prototype
and model [15].

Division A (mm2) Izz (mm4) k (mm) Le (mm) r(1)

Container A
Prototype 23,477.52 3.65 × 109 394.29 1870 4.74

Model 11,666.28 4.47 × 108 195.80 935 4.77

Container B
Prototype 13,973.44 1.02 × 109 270.26 890 3.29

Model 6932.64 1.25 × 108 134.08 445 3.32

Note: (1) r = Le/k, k =
√

Izz/A (r = slenderness ratio, Le = effective buckling length (column with pinned ends,
Le = H) (mm), k = minimum radius of gyration (mm), Izz = area moment of inertia (mm4) for the neutral axis.
A = cross-sectional area (mm2)).

2.2. Experimental Apparatus and Methods

In the uniaxial compression test for the shipping container, the loading rate of the
universal testing machine was set to 10 ± 3 mm/min, and on the load-deformation curve
obtained, the starting point of deformation was from the point at which a preload of 222 N
was applied [16].

The uniaxial compression creep test equipment for the shipping containers was com-
posed of a hardware system consisting of a load-adding device, linear displacement-
measuring device (linear variable differential transformer, LVDT), specimen compression
device, load-measuring device, and software system to continuously measure and analyze
the deformation of the specimen with time (Figure 2). In order to automatically measure
the creep amount of the container continuously for a long-time by the LVDT installed in
one place, the moving plate equipped with dead weight must perform accurate linear
translation movement along the guide axis. For this purpose, a guide poster equipped
with a ball bearing guide with a width of 10 cm was used in the creep test equipment
manufactured. After applying a 222 N preload to set the reference point for measuring
the deformation [16], three levels of constant load, selected from the ASTM D642 CS for
each relative humidity scenario (23 ◦C; rh 50%, 70%, and 90%), were applied to the test
specimen using a load-adding device; then, the 12 h creep test was performed [9].
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Figure 2. Uniaxial compression creep test apparatus for the shipping containers.

Before the compression and compressive creep tests, the samples were equilibrated
under the planned temperature and humidity conditions for more than 48 h. Creep tests
were conducted in a large chamber (L×W×H = 2.8× 1.8× 2.1 m), where the temperature
and humidity were well maintained, with the freezer separated to reduce vibrations.

3. Results and Discussion
3.1. Uniaxial Compression Behavior Modeling for the Target Shipping Container

Figure 3 shows the stress-train (SS) curves obtained through the compression test for
the target shipping container. Among grapes of the same color, a grape of a thick solid line
represents the average for three repetitions. The maximum stress on the SS curve is CS,
and the corresponding deformation is the failure strain (FS). In the case of a container, most
of the compressive load is supported by the four vertical edges and side panels; therefore,
the CS of the container is expressed as the load per unit peripheral length, considering the
structural characteristics of the container [16].
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Figure 3. Stress–strain curves for the target shipping containers.

Significant differences were observed in the CS and FS of the target shipping containers
with respect to the relative humidity (Figure 3 and Table 4). In the case of the ‘vertical long’
Containers A and B, the CS in the standard condition decreased by approximately 15%
and 24% as the relative humidity increased to 70% and 90%, respectively. In the case of the
‘horizontal long’ Container C, it decreased by approximately 24% and 42%, respectively
(Table 4). As shown in Table 1, although the outer liners of the target shipping containers
that come in direct contact with the humid outside air were the same (paperboard), the
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primary cause of this difference is believed to be the difference in the geometric shape of
the containers. In addition, in the case of Container C (Figure 3c), the FS decreased with the
increase in the relative humidity; therefore, we deduced that the ‘horizontal long’ container
is more sensitive to changes in the relative humidity.

Table 4. Compressive properties of the target shipping container according to the equilibrium condition [14].

Division
Compression Strength (kN/m) Failure Strain (mm/mm)

rh 50% rh 70% rh 90% rh 50% rh 70% rh 90%

Container A 1.88
(0.14) a

1.63
(0.17) b

1.42
(0.19) c

6.84 × 10−3

(3.53 × 10−4) a
7.70 × 10−3

(6.95 × 10−4) b
8.56 × 10−3

(9.41 × 10−4) c

Container B 2.44
(0.16) a

2.07
(0.18) b

1.85
(0.16) c

1.26 × 10−2

(9.21 × 10−4) a
1.35 × 10−2

(1.28 × 10−3) b
1.53 × 10−2

(1.66 × 10−3) c

Container C 1.23
(0.13) a

0.94
(0.08) b

0.71
(0.08) c

3.21 × 10−2

(1.85 × 10−3) a
3.01 × 10−2

(2.69 × 10−3) b
2.61 × 10−2

(2.85 × 10−3) c

Note: Mean comparison by Duncan’s multiple range tests. a, b, c indicate the statistical difference in rows
(significance level 5%).

Modeling each SS curve, as shown in Figure 3, was required to determine the CAE-
predicted compression behavior in the multi-stacked packages, as applied to the target
shipping containers. A procedure such as 3D response surface analysis is required to
derive a model (3D, stress–strain-humidity) representing the more general SS behavior of a
container from the experimental data (2D, stress–strain) in Figure 3. Figure 4 shows the
results of the 3D response surface analysis of the SS behavior with respect to the relative
humidity of each target shipping container. The modeling results are presented in Table 5.
The shape of the response surface of stress–strain–relative humidity and the constant value
of the model reflect the geometric shape of the container.
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Table 5. SS behavior modeling results for the target shipping containers.

Division
σ = a(rh)b (c + dε + eε2 + fε3)

σ = Stress (kN/m), rh = Relative Humidity (%), ε = Strain, a–f = Model Coefficients r2

a b c d e f

Container A 7.1770 −0.5046 −8.1647 × 10−2 220.7711 35,062.7922 −3,964,056.2237 0.9703
Container B 16.9642 −0.6407 −8.7621 × 10−3 85.1669 17,046.9011 −1,006,318.4112 0.9910
Container C 19.8104 −0.7513 2.2976 × 10−2 1.3531 3461.1754 −76,603.4909 0.9819

3.2. Creep Behavior Modeling and Lifetime Prediction for the Target Shipping Container

Figure 5 shows the 12 h creep behavior with respect to the relative humidity and
applied load of the target shipping container and the 3D response surface analysis results.
Table 6 shows the modeling results for the 12 h creep behavior.
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Table 6. The 12 h creep behavior modeling results for the target shipping containers.

Division
rh
(%)

ε(Lo, t) = aLo
b{c + dt − exp(−et)}

ε = Strain, Lo = Initial Static Load (kN/m), t = Elapsed Time (min), a−e = Model Coefficients r2

a b c d e

Container A
50 0.1115 × 10−2 0.3059 6.2218 0.6620 × 10−3 0.2723 0.9394
70 0.1261 × 10−2 0.2817 5.5656 0.8130 × 10−3 0.3213 0.9616
90 0.1402 × 10−2 0.2603 5.0795 0.9222 × 10−3 0.3598 0.9761

Container B
50 0.2331 × 10−2 0.3951 4.5110 0.5667 × 10−3 0.2937 0.9847
70 0.2637 × 10−2 0.4223 4.2641 0.7352 × 10−3 0.3641 0.9848
90 0.2959 × 10−2 0.4468 4.0470 0.8710 × 10−3 0.4401 0.9852

Container C
50 1.3610 × 10−2 0.5951 3.0018 0.5396 × 10−3 0.7177 0.9552
70 1.3073 × 10−2 0.5743 2.9639 1.0357 × 10−3 0.4683 0.9610
90 1.2832 × 10−2 0.5625 2.9003 1.5215 × 10−3 0.3258 0.9336

Using the nonlinear creep model, as presented in Table 6, the 12 h creep behavior of
the target shipping container is expressed in stages: instantaneous elastic strain that occurs
within a very short time after the load is applied; retarded elastic creep, where the creep
rate decreases with time; and steady-state creep, with an almost constant creep rate. The
instantaneous elastic strain, retarded elastic creep, and steady-state creep rates increased as
the level of applied load and relative humidity increased, and when the relative humidity
at the same applied load was increased.

Based on the 12 h creep strain data, as shown in Figure 5, the 12 h average creep rate
(CR12) was analyzed using linear regression analysis, and the values were re-corrected up
to failure using the method suggested by Burgers et al. [8,9]. Table 7 and Figure 6 show the
corrected average creep rates (CRFD). As an example, Figure 7 shows the analysis process of
the CRFD until failure when an applied load of 0.1652 kN/m is used, at a relative humidity
of 70%, for Container B. Thus, the 12 h creep strain was inferred from the nonlinear creep
model shown in Table 6, while the analysis process of the CR12 and CRFD up to failure is
visually demonstrated.
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Table 7. Lifetime prediction results of the target shipping containers [10].

Division rh (%) Applied Load
Level (P) (% CS) CR12

(1) (1/min)
Correction Factor,

P/(100-P) CRFD
(2) (1/min) Lifetime (min)

Container A

50%
9.3084 7.8404 × 10−7 0.1027 8.0473 × 10−8 85,000

15.9574 9.4011 × 10−7 0.1899 1.7850 × 10−7 38,300
22.6064 1.0983 × 10−6 0.2922 3.2081 × 10−7 21,300

70%
10.7362 9.9283 × 10−7 0.1203 1.1941 × 10−7 64,500
18.4049 1.1839 × 10−6 0.2255 2.6705 × 10−7 28,800
26.0736 1.3832 × 10−6 0.3526 4.8785 × 10−7 15,800

90%
12.3239 1.1962 × 10−6 0.1405 1.6814 × 10−7 50,900
21.1368 1.4276 × 10−6 0.2679 3.8239 × 10−7 22,400
29.9296 1.6681 × 10−6 0.4271 7.1251 × 10−7 12,000

Container B

50%
10.3934 1.5357 × 10−6 0.1159 1.7813 × 10−7 70,700
17.8156 1.8428 × 10−6 0.2168 3.9947 × 10−7 31,500
25.2377 2.1827 × 10−6 0.3376 7.3682 × 10−7 17,100

70%
12.2512 1.8010 × 10−6 0.1396 2.5145 × 10−7 53,600
21.0000 2.2129 × 10−6 0.2658 5.8824 × 10−7 22,900
29.7488 2.7047 × 10−6 0.4235 1.1453 × 10−6 11,800

90%
13.7081 2.0664 × 10−6 0.1589 3.2826 × 10−7 46,500
23.4973 2.5830 × 10−6 0.3072 7.9335 × 10−7 19,300
33.2865 3.2288 × 10−6 0.4990 1.6110 × 10−6 9480

Container C

50%
10.9593 5.4254 × 10−6 0.1231 6.6777 × 10−7 48,100
18.7967 5.0598 × 10−6 0.2315 1.1712 × 10−6 27,400
26.6260 4.8542 × 10−6 0.3630 1.7615 × 10−6 18,200

70%
14.3404 5.4809 × 10−6 0.1674 9.1757 × 10−7 32,800
24.5957 6.5818 × 10−6 0.3263 2.1469 × 10−6 14,000
34.8404 1.1741 × 10−5 0.5347 6.2778 × 10−6 4800

90%
18.9859 5.5365 × 10−6 0.2344 1.2975 × 10−6 20,100
32.5634 8.1000 × 10−6 0.4828 3.9113 × 10−6 6670
46.1268 1.8628 × 10−5 0.8563 1.5949 × 10−5 1640

Note: (1) Average creep rate in 12 h test. (2) Average creep rate over the entire time up to failure at load level P.
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Figure 7. Example of the average creep rate from a nonlinear creep model: Container B,
rh = 70%, Lo = 0.1652 kN/m, applied load level (% of CS) = 0.1652/2.07 = 7.98%, correction fac-
tor = 7.98/(100−7.98) = 0.0867 (Tables 4 and 6).

As the applied load increased at all relative humidity levels in this study, the rate
of increase in the CRFD was higher Except for ‘horizontal long’ container C, which has a
unique structure compared to containers A and B, the higher the applied load level, the
greater the difference in average creep rate by relative humidity. In general, it was found
that the average creep rate of the container was more affected by the applied load than
the relative humidity (Figure 6a). The lifetime (time to failure) estimated from the FS and
average creep rate of the container gradually slowed as the applied load increased at all
relative humidity levels (Table 7, Figure 6b). However, as the applied load level increased,
the difference with respect to the relative humidity tended to decrease. Overall, the effect
of the applied load level was greater than that of relative humidity. For example, in the
case of Container B, when applied loads of approximately 10.4%, 17.8%, and 25.2% of the
CS in the standard condition (relative humidity 50%) were applied, the predicted lifetimes
decreased by approximately 24%, 27%, and 31%, respectively, compared to the lifetime of
the standard condition at 70% relative humidity, and by approximately 34%, 39%, and 45%,
respectively, at 90% relative humidity.

3.3. Load-Sharing Rate of Target Package

Accurate calculation of the load-sharing rate between the shipping container and cush-
ioning system in packages equipped with the EPS-based cushioning system is important
to achieve the proper packaging design of the product. As the stacking load, excluding
the load-sharing rate of the shipping container, is transmitted to the product through the
cushioning material, the strength independence of the product is used as the basis for
designing the shipping container. In other words, if the strength independence of the
product is zero, the shipping container shall be responsible for all stacking loads. However,
if there is a certain level of strength independence owing to the nature of the product, the
stacking load, excluding this strength independence, becomes the basis of the strength
design of the shipping container.

Figure 8 shows the analysis results of the load-sharing rate acting on the shipping
container and the EPS cushioning material of the bottom layer package for each stacking
situation (Table 1) of the target packages. The SS models for the target shipping containers
in Table 5 and the SS models of the EPS previously published by the researchers [17] were
applied to this estimation.
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cushioning material.

In the target packages used in this study, the ratio of the load-sharing rate between the
shipping container and EPS cushioning material was determined to be about 2%:98%, with
most of the stacking load applied to the product through the cushioning material. Therefore,
because the compression behavior of the target package depends on the compression
behavior of the cushioning material in the package as opposed to the shipping container,
data on the compression and compressive creep behavior of the EPS-based cushioning
system are considered to be more important in CAE prediction technology for determining
the compression behavior of multi-stacked target packages.

4. Conclusions

CAE prediction technology for compression behavior in multi-stacked packages is an
important tool for preventing warehouse accidents, shortening packaging development
periods, and optimizing packaging. In this study, compression and compressive creep
behavior of target shipping containers, which are material properties based on FEA, and
the lifetime and load-sharing rate, were analyzed to develop CAE prediction technology
for predicting the multistage compression behavior of three target packages with different
logistics conditions. The research results can be summarized as follows:

1. The reduction rate of the compression strength of the container with respect to the
increase in the relative humidity was greater in the ‘horizontal long’ container than
in the ‘vertical long’ container. However, the failure strain increased with increasing
relative humidity in the ‘vertical long’ container, but decreased in the ‘horizontal long’
container. A nonlinear regression model for the SS behavior of the target shipping
container was developed for the relative humidity and strain.

2. Using a 12 h creep experiment on the target shipping containers, a nonlinear creep
model was developed with the applied stress and elapsed time as factors of the model.
The instantaneous elastic strain, retarded elastic creep, and steady-state creep rates
increased as the load was applied and the relative humidity increased, and when the
relative humidity at the same applied load increased.

3. Based on the data obtained from the 12 h creep strain experiment, the 12 h average
creep rate (CR12) was analyzed using linear regression analysis, and the values were
re-corrected until failure. As the applied load increased, the rate of increase in the
average creep rate (CRFD) increased, i.e., the higher the applied load level, the larger
the difference in the average creep rate with respect to the relative humidity.

4. The lifetime (time to failure) estimated from the failure strain and average creep rate
of the container gradually decreased as the applied load increased at all values of
relative humidity. However, as the applied load increased, the difference with respect
to the relative humidity tended to decrease.
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5. In the target packages used in this study, the ratio of the load-sharing rate between
the shipping container and EPS cushioning material was determined to be 2%:98%,
with most of the stacking load applied to the product through the cushioning material.
Therefore, data on the compression and compressive creep behavior of the EPS-
based cushioning system are considered significant in developing a CAE prediction
technology for the compression behavior of multi-stacked target packages.
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