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Abstract: In order to quickly and accurately detect whether a chef is wearing a hat and mask, a
kitchen standard dress detection method based on the YOLOv5s embedded model is proposed.
Firstly, a complete kitchen scene dataset was constructed, and the introduction of images for the
wearing of masks and hats allows for the low reliability problem caused by a single detection object
to be effectively avoided. Secondly, the embedded detection system based on Jetson Xavier NX was
introduced into kitchen standard dress detection for the first time, which accurately realizes real-time
detection and early warning of non-standard dress. Among them, the combination of YOLOv5 and
DeepStream SDK effectively improved the accuracy and effectiveness of standard dress detection
in the complex kitchen background. Multiple sets of experiments show that the detection system
based on YOLOv5s has the highest average accuracy of 0.857 and the fastest speed of 31.42 FPS.
Therefore, the proposed detection method provided strong technical support for kitchen hygiene and
food safety.
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1. Introduction

To solve the problem of food safety [1], the CFDA has launched a “transparent kitchen
and stoves” campaign, showing the details of cooking through video displays, open
kitchens, and other ways [2]. The latest Food Safety Law [3] also stipulates that the relevant
personnel should wear clean work clothes and hats when cooking [4]. Food safety standards
propose that the wearing standards for chefs must be standardized strictly [5]. Through
the standardization of chefs’ wearing standards, the safety levels of food will be improved,
and the risk of disease transmission and food poisoning will be reduced. Chefs should
wear chef hats, aprons, and masks, so the kitchen standard dress includes the chef’s hat,
apron, and mask. Assuming that the chef does not wear a chef’s hat and apron, the dirty
things on the body of the chef will pollute the food. Assuming the chef does not wear a
mask, the droplets from the chef’s breath or coughing will fall onto the food. If the chef
is suffering from a disease, the risk of virus transmission will be increased greatly [6].
Therefore, kitchen standard dress detection is particularly important.

At present, there are only a few studies on kitchen wear detection, and these studies
are based on target detection. Target detection methods can be divided into one-phase
and two-stage methods. Two-stage networks include CenterNet [7], R-CNN, and Faster
R-CNN [8], etc. The one-stage detection network includes a single shot detector (SSD) [9],
YOLO, etc. Guo [10] proposed a behavior monitoring model of kitchen staff based on
YOLOv5l and DeepSort [11], which can detect whether chefs wear hats and masks, but it
only uses 2000 pictures to train the model and has low efficiency and accuracy. Tao [12]
proposed a system with a deep learning method to automatically identify the violation of
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kitchen staff, including not wearing a chef’s hat and smoking. Ramadan [13] used long
short-term memory and the hidden Markov model to detect cooking action in the cooking
process, and the recognition rate was 81% and the speed was 35 frames. Sheng [1] pro-
posed a scheme for cooking assistants’ overalls based on the Hi3559A embedded processor,
in which the speed of overalls detection is improved by YOLOv3 network optimization
and parallel processing technology, and the recognition speed is 28 frames. Staden [14]
detected the hands of operators in kitchens through YOLOv3 [15] based on MobileNet-lite
and VGG16 but the detection speed and accuracy under a complex background are not
satisfactory. Lu [16] improved the Faster R-CNN [17] through the deeper region proposal
network (D-RPN), and reconstructed the U-network through the feature enhancement
module; the text recognition accuracy on the kitchen electrical control panel reached 89.84%.
Traditional detection methods and a small number of one-stage and two-stage target detec-
tion algorithms have been applied in kitchen wear detection, but these methods are not
only outdated but they also have some inherent defects. The two-stage object detection
algorithm generates a large number of proposal boxes, which results in the relatively slow
speed of two-stage algorithms such as R-CNN, Fast R-CNN, and Faster R-CNN. Single
stage detection methods such as SSD, YOLOv2, YOLOv3, YOLOv4, YOLOv5, YOLOv6,
and YOLOv7 have simple structures, fast inference speeds, and convenient deployment
methods, but their accuracy is slightly lower than that of two-stage-based methods [6].
Wang proposed a fast detection method of the cannibalistic behavior of juvenile fish based
on YOLOv5 [18], in which the backbone network is replaced by the multi head attention
mechanism. Li [19] proposed a workers’ personal protective equipment detection method
based on YOLOv5, which can improve the efficiency of safety management. In addition,
FCOS and transformer-based methods have recently been used for object detection. Tan
adopts an improved FCOS to recognize the numbers in the industrial instruments; the
balanced feature pyramid is combined with FPN to further integrate the feature informa-
tion [20]. Deshmukh proposed a Swin-Transformer-based vehicle detection framework in
an undisciplined traffic environment [21]. For research on kitchen dress codes, the current
study only focuses on hat wearing and smoking behavior, and the number of datasets is
small, which leads to low detection accuracy and reliability. In addition, the embedded
deployment of detection models is necessary, but this is still a research gap. For detection
performance, the kitchen wear detection methods based on Faster R-CNN, YOLOv3, and
VGG16 are old and simple, while the latest methods based on FCOS and Swin Transformer
have complex network structures, which makes the selection and improvement of the
methods more difficult. In our experiments, YOLOv5s is not only fast but also highly
accurate, so it is considered to be used for kitchen wear detection. However, it is still
difficult for the existing methods to meet the accuracy and real-time requirements. The
following problems still exist in the research of kitchen wear detection.

(1) Most of the existing kitchen wear detection methods only detect one kind of
wearable clothing, which cannot meet the requirements of kitchen wear detection.

(2) Chef hats, aprons, and masks all come in different styles, different shapes, and
different colors, and it is especially difficult to identify chef hats, aprons, and masks at the
same time under different backgrounds.

(3) The detection process currently in use consists of the following steps. Firstly, image
or video data are captured via a camera and the video signal is transmitted to the server
over the network. Then, illegal wearing is detected by a detection model deployed on the
server, and the detection results and alarm signals are transmitted to the client. However,
this detection process is time-consuming, and the detection delay, network delay, and
alarm delay will reduce the effectiveness and reliability of kitchen wear condition detection.
Therefore, how to reduce the detection delay, network delay, and alarm delay is an urgent
problem to be solved.

(4) The display, lighting, and background of items in different kitchens are different,
and traditional methods, YOLOv3, and Faster R-CNN cannot detect the wearing of kitchen
clothes under complex backgrounds and complex lighting.
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In order to improve the accuracy, reliability, and real-time standard detection of the
wearing of hats, masks, and aprons under complex backgrounds and multiple operating
conditions, a set of rich kitchen wearing detection datasets and an embedded detection model
are our research scope, which will provide AI technical support for kitchen hygiene and food
safety. The main contributions and innovations of the paper are summarized as follows.

(1) A Kitchen Standard Dress Detection Method Based on the YOLOv5s Embedded
Model is proposed, which can detect whether a chef is wearing a chef’s cap and mask
accurately and quickly, not just a single mask or hat detection. Several improvements to
YOLOv5s have improved the accuracy of wearing detection under complex backgrounds
and lighting, and the YOLOv5s embedded model further reduces the detection delay.

(2) An embedded detection system based on Jetson Xavier NX and YOLOv5s is
proposed, which minimizes network transmission delay and early warning delay. The
embedded detection system is not only cheap, but can also be deployed directly in the
kitchen to detect illegal wearing behavior and send an alarm on the first occassion.

(3) A complete dataset of kitchen wearing case images under multiple kitchen scenes
is proposed. The dataset includes 7558 images, different kitchen scenes, different chef hats,
and different mask styles, which means that our detection method can achieve different
types of dress detection, rather than a single hat or mask detection.

The rest of this paper is arranged as follows. The standard dress detection system is
described in Section 2. Experimental results and analysis are included in Section 3. Finally,
we present the experimental results and related discussions in Section 4.

2. The Standard Dress Detection System
2.1. Detection Model Training Stage

The standard dress detection system based on the Jetson Xavier NX can be imple-
mented in two stages, including the detection model training stage and the Jetson Xavier
NX model deployment and application stage. In the detection model training stage, the
smallest YOLOv5s model with good performance is trained to detect whether a chef is
wearing both a hat and a mask. The purpose of this phase is to train and generate the “pt”
model with the best detection performance, which does not involve the connection and
operation of the Jetson Xavier NX.

To ensure the reliability of kitchen standard dress detection, a target detection algo-
rithm with high accuracy and reliability is necessary. YOLOv5 is a relatively new object
detection algorithm with good performance. According to the different network widths
and depths, four different versions have been released, including YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x. To ensure the real-time and accurate detection of standard dress,
we used the smallest model, YOLOv5s, as shown in Figure 1. The YOLOv5s model consists
of four parts, input, backbone, neck, and prediction [22].

(1) Input: The input end is composed of Mosaic data augmentation, adaptive anchor
frame calculation, adaptive image scaling, and other small modules. Mosaic data enhance-
ment includes random scaling, random clipping, and random arrangement processing,
the adaptive anchor frame calculation can adaptively calculate the best anchor frame in
different training sets, and adaptive image scaling can improve the inference speed.

(2) Backbone: The backbone is mainly composed of a focus structure and CSP structure.
The key to the focus structure is the slicing operation, and the 4*4*3 image becomes a 2*2*12
feature map after slicing. In fact, there are two CSP structures designed in Yolov5, the
backbone network of which uses a CSP1_X structure.

(3) Neck: Both Yolov5’s neck and Yolov4’s neck use FPN + PAN architecture, and
other parts of the network have been adjusted. In the neck structure of Yolov4, ordinary
convolution operations are used. However, Yolov5’s neck structure borrows from CSPnet’s
CSP2 structure, which strengthens the ability of network feature fusion. YOLOv5s uses
CSP1_X and CSP2_X to improve the speed of the network while ensuring the precision.
The neck of YOLOv5s reduced the number of model parameters by the CSP2_X module
and upsampled feature maps of 80*80*512 in size.
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(4) Prediction: The prediction stage mainly includes two parts, the bounding box loss
function and the NMS non-maximum suppression. GIOU loss is used as the loss function
of the bounding box in YOLOv5. In the post-processing of the YOLOv5 target detection
model, NMS non-maximum suppression is used to screen effective target frames.
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Figure 1. The YOLOv5s network structure.

In order to ensure the reliability and accuracy of standardized dress detection in actual
kitchens, we need to pay attention to two particularly critical issues in the training stage,
including the universality of the dataset and the parameter consistency of model training.
For the training dataset problem, we collected a large number of videos and images of
real kitchen scenes, including various dress situations that can be encountered in kitchen
cooking, which can meet the needs of model training and ensure the accuracy of dress
detection in real scenarios. For the problem of parameter consistency, we trained various
detection models through the same super parameters, the same pre-training model, and
the same hardware devices, which ensures the reliability of the model and the fairness
of comparative experiments. After training, the “pt” model file that can be used for the
deployment of Jetson Xavier NX embedded devices is available.

2.2. Model Deployment and Application Stage Based on Jetson Xavier NX

In a conventional detection system, images or videos are captured via a camera and
the video signal is transmitted to the server over the network. Then, non-standard dress
is detected by a detection model deployed on the server, and the detection results and
alarm signals are transmitted to the client. The process is time-consuming, and the network
delay and alarm delay will reduce the reliability of standard dress detection. As a result,
the trained YOLOv5 model was deployed to the Jetson Xavier NX embedded device, and
the embedded device was deployed in a wide variety of kitchens. With the support of
the powerful computing power of Jetson Xavier NX, the server deployment and network
transmission are omitted, and real-time detection and early warning of non-standard
clothing become possible.

Jetson Xavier NX can be used as an edge server or as a terminal device, so many comput-
ing tasks can be implemented separately based on it [23]. Jetson Xavier NX is small in size,
portable, and powerful in computing performance, which makes it suitable for embedding
into UAVs [24], portable medical devices [25], small robots [26], and other embedded systems
of the Internet of Things [27]. As shown in Table 1, we provide some parameters of the Jetson
Xavier NX device, which indicate that the embedded device is low in energy consumption,
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high in computing efficiency, and good in model portability. Jetson Xavier NX supports
the deep learning model, which meets the performance requirements of edge computing
terminals for object detection [28]. In addition, there is a WIFI module on the back of the
Jetson Xavier NX, which can connect to the host system through wireless networking.

Table 1. Parameters of Jetson Xavier NX.

Items Parameters

GPU 384-core NVIDIA VoltaTM architecture with 48 Tensor cores
CPU six-core NVIDIA Carmel ARMv8.2 64-bit CPU

Memory 16 GB 128-bit LPDDR4x@1600MHz
Data storage 16GB eMMC5.1

CSI CSI support for up to six cameras (14 channels) MIPI CSI-2
D-PHY 1.2

PCIE 1 × 1(PCIE3.0) + 1 × 4(PCIE4.0), 144GT/s
Video encoding/

decoding 2K × 4K60 Hz encoding (HEVC); 2K4K60 Hz decoding

Size 69.6 mm × 45 mm

The process of deploying a detection model to Jetson Xavier NX can be divided into
two key phases, as shown in Figure 2, including Jetson Xavier NX hardware deployment
and DeepStream-Yolo Software Deployment. During the hardware deployment phase, the
Jetson Xavier NX embedded device is connected to the server via a USB interface, which
guarantees the fast transfer of packages, datasets, and configuration files. In addition,
Jetson Xavier NX requires a separate power supply, and Jetson Xavier NX is connected
to the server network through the LAN port, which ensures network connectivity for the
installation and configuration of the environment. However, it is not necessary for the
camera to be connected to the Jetson Xavier NX device during model deployment.
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During the DeepStream-Yolo software deployment, the deployment of YOLOv5s on
the Jetson Xavier NX device is mainly based on the NVIDIA DeepStream SDK. Firstly, we
need to set up the necessary running environment for the DeepStream YOLO and YOLOv5s
models and prepare some video streams and images for testing. Subsequently, import
a trained “pt” model, convert it to obtain the cfg and wts files, and then compile the lib
and edit the configuration files according to the situation. Combined with different model
accuracies in the training stage and the frame rates obtained from running on DeepStream,
the final accuracy used is FP32. The average frame rates of different models under different
accuracies are shown in Table 2. Finally, we tested the model and applied it to actual kitchen
wear detection. It is worth noting that the training process is particularly important, so we
used a high-performance host to train the detection model that will be embedded in the
Jetson Xavier NX device.
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Table 2. Average frame rate of different models on DeepStream with FP32, FP16, and INT8 accuracy.

Model FP32(FPS) FP16(FPS) INT8(FPS)

YOLOv5s 31.56 60 61.05
YOLOv5x 3.94 12.1 12.43
YOLOv7 7.46 22.42 23.65

YOLOv7-tiny 39.12 71.2 72.08
YOLOv7x 4.06 12.8 13.2
YOLOv7e6 6.05 18.64 19.7

After the trained YOLOv5.pt model is successfully deployed to Jetson Xavier NX, we
can use the current Jetson Xavier NX embedded device as a complete kitchen standard
dress detection system, that is, it can be deployed to any kitchen without the host. As
shown in Figure 3, a kitchen normalized dress detection system based on the YOLOv5s
embedded model is deployed in a relatively high corner of the kitchen, which can detect
whether a chef is wearing a mask and hat in real time without a network.
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According to the processing process, the proposed detection method for kitchen
standard dress detection includes three stages, as shown in Figure 3.

(1) During the data acquisition phase, we deployed the Jetson Xavier NX embedded
device to the kitchen and capture kitchen video streams or images in real time via a
monocular camera connected to the Jetson Xavier NX device.

(2) In the image pre-processing phase, we process the video streams and images via
Jetson Xavier NX with the deployment of the YOLOv5s training model. The powerful
computing power of Jetson Xavier NX ensures the accuracy and real-time performance of
standardized dress detection in the kitchen, and this process does not require the support
of the host.

(3) In the stage of detection result display and non-standard dress warning, a high-
definition display and voice warning device can be connected to the USB terminal or the
wireless network of the Jetson Xavier NX, which can monitor the chef’s non-standard dress
in real-time in the form of videos or voice.
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3. Experiments and Discussion
3.1. Experiment Setup and Data Preparation

To verify the effectiveness of proposed kitchen standard dress detection method, we
compared and analyzed the performance of detection models through a large number of
experiments. Our experiments are based on the PyTorch framework, which is deployed
on the Ubuntu operating system. In the process of training models, we used a computer
with an NVIDIA GeForce RTX 3080 Ti GPU, whose memory is 12 GB. In the end, the edge
device was used to measure the speed and the performance while detecting the test sets. As
shown in Table 3, we implemented the training and testing for the models in the following
experimental environment.

Table 3. Experimental environment configuration.

Parameter Configuration

CPU Intel Core i7-10700F, CPU 2.90 Hz,
RAM 32 GB

GPU Nvidia GeForce GTX 2080Ti (24 G)
Accelerated Environment CUDA 11.1, cuDNN8.0.5

Visual Studio System Pytorch1.7.1, Python 3.6
Operating System Ubuntu 18.04

In order to obtain sufficient and realistic datasets, we collected 7558 kitchen images
through cameras installed in various restaurants in Chengjiang City, Yuxi City, which
provides powerful data support for kitchen standard dress detection. The 7558 images
contained four categories, including no mask and no hat (labeled no_mask_hat), mask and
hat (labeled yes_mask_hat), no mask and hat (labeled no_mask_yes_hat), and mask and no
hat (labeled yes_mask_no_hat).

As shown in Figure 4, these kitchen images were collected under different illumina-
tions, distances, and backgrounds, so the size and angle of the chef who appears in the
kitchen are different. The kitchen background is particularly complex in many images,
which makes it particularly difficult to detect the chef’s wearing behavior from the back-
ground. We divided the 7558 images into training and validation sets with sizes of 6047
and 1511, respectively, close to 4:1. A test set was also made up of 200 images captured in
the real situation with about the four classes.
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To verify the validity of the proposed methods, we evaluated the detection perfor-
mance of various methods through precision (P), recall (R), F1 score (F1), mean average
precision (mAP), and speed. Moreover, the detailed definitions of precision, recall, F1 score,
and mean average precision can be found in the literature [21]. Among them, F1 represents
the harmonic mean of precision and recall. The closer the parameter is to one, the better



Appl. Sci. 2023, 13, 2213 8 of 14

the detection performance of the model. Average precision (AP) represents the area under
the precision recall curve. mAP refers to the average recognition accuracy of all of the
categories and speed represents the sum of the pre-processing time, inference time, and
non-maximum suppression time in Jetson Xavier NX.

3.2. Performance Comparison with Existing Methods

The reason why we put forward the detection system is to improve the accuracy
of identifying whether chefs are wearing masks and hats and to make sure the cooking
process is standardized and the food hygiene is safe. In the experiment, we utilized a series
of YOLOv5 and YOLOv7 object detectors to find one with good speed and remarkable
detection performance. We trained six state-of-the-art object detection networks under the
same parameters, the same kitchen standard dress detection dataset, and a fair experimental
environment, including YOLOv5-s, YOLOv5-x, YOLOv7, YOLOv7-tiny, YOLOv7x, and
YOLOv7-e6. All of the models were trained based on their pre-training weights; we used
the same datasets we constructed before for training and validation. The detailed training
parameter settings are shown in Table 4.

Table 4. Training parameter settings of YOLOv5 and YOLOv7.

Epoch Batch Size IoU Threshold Initial Learning Rate Momentum Input Image

500 8 0.2 0.01 0.937 640*640

It can be seen from Figure 5 that when the training set was trained to 300 epochs, the
training accuracy curves of all of the models tended to converge. Among them, YOLOv5s
(red line) not only has good convergence performance for accuracy curves, but it also has
higher training accuracy. At the end of training, YOLOv7x (sky blue line) achieved the
highest accuracy. As shown in Figure 6, except for YOLOv5x, YOLOv5s (red line) has
maintained the highest recall rate, indicating that it has better convergence speed and
accuracy. However, the recall of YOLOv7x, which has the highest training accuracy, is not
high, and the network parameters and time cost on YOLOv7x are huge. YOLOv5s keeps a
high recall rate before the 400 epochs, indicating that its convergence speed and accuracy
are better.
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In order to make the Jetson Xavier NX embedded device implement a good detec-
tion effect on the clothing wear of kitchen staff, we analyzed and compared it with the
evaluation criteria of six models on the basis of the above experimental environment and
then selected the model most suitable for the Jetson Xavier NX embedded device. The
precision (P) and recall (R) of the four conditions for chefs’ clothing wear, no mask and no
hat (labeled no_mask_hat), mask and hat (labeled yes_mask_hat), no mask and hat (labeled
no_mask_yes_hat), and mask and no hat (labeled yes_mask_no_hat), are shown in Table 5.
Compared with no_mask_yes_hat, there are more images and cases for the other three
classes. In the three cases, their accurate detection is easy while the label no_mask_yes_hat
is a bit hard due to the lack of images to train. Moreover, YOLOv5s obtained the best
precision in three categories: no_mask_hat, yes_mask_hat, and yes_mask_no_hat.

Table 5. The precision (P) and recall (R) of the four conditions for chefs’ dressing.

Class Labels
YOLOv5s YOLOv5x YOLOv7 YOLOv7-tiny YOLOv7x YOLOv7e6

P R P R P R P R P R P R

no_mask_hat 728 0.867 0.852 0.858 0.878 0.855 0.856 0.828 0.852 0.86 0.854 0.853 0.832
yes_mask_hat 1064 0.919 0.886 0.907 0.907 0.899 0.902 0.897 0.898 0.891 0.91 0.917 0.875

no_mask_yes_hat 346 0.772 0.775 0.779 0.795 0.753 0.803 0.738 0.783 0.771 0.775 0.751 0.876
yes_mask_no_hat 790 0.868 0.784 0.86 0.824 0.845 0.81 0.833 0.805 0.848 0.797 0.842 0.773

In order to further analyze the detection effect of various kitchen dressing statuses,
we also provided a YOLOv5s-based classification confusion matrix, as shown in Figure 7.
The “yes_mask_hat” state has the highest detection accuracy of 0.91, but this state is easily
recognized as a background state, that is, a small number of cases cannot be recognized.
The detection accuracy of the “yes_mask_no_hat”, “no_mask_hat”, and “no_mask_yes_hat”
states are 0.84, 0.83, and 0.79, respectively. These three states are also easy to recognized as
background states, but there is no confusion between various kitchen dressing states under
the condition of the YOLOv5s detection model. It is worth noting that there are 790, 728, and
346 samples in the “yes_mask_no_hat”, “no_mask_hat”, and “no_mask_yes_hat” states,
respectively, which indicates that the accuracy of the detection model depends largely
on the number of samples. Therefore, it is very meaningful for us to collect 7558 images
through multiple cameras.
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In addition, the detection results of the above six models in the testing datasets are
shown in Table 6 and Figure 8. It can be seen that YOLOv5s has the highest precision and
the second highest speed of 315 ms per image, and YOLOv7 has the best recall, mAP, and
F1 score. Thus, the images detected by YOLOv5s have better precision, especially for the
class no_mask_hat which is represented with red-colored boxes. As for the other classes,
YOLOv5x is the only competitor, but it is quite a lot slower than YOLOv5s. Detailed images
are shown in Figure 8.

Table 6. Performance of different detection models.

Model P R mAP@.5 mAP@.5:.95 F1 Speed in Jetson (ms)
YOLOv5s 0.857 0.824 0.862 0.618 0.840 315
YOLOv5x 0.851 0.851 0.856 0.618 0.851 2694
YOLOv7 0.855 0.856 0.891 0.629 0.855 1570

YOLOv7-tiny 0.824 0.835 0.879 0.613 0.830 212
YOLOv7x 0.842 0.834 0.886 0.632 0.838 2467
YOLOv7e6 0.841 0.817 0.873 0.623 0.829 2063

3.3. Results in the Kitchen

In real life, it is necessary to quickly and accurately judge and warn of non-standard
wearing behaviors in kitchens. Therefore, it is crucial to embed a model with high detection
accuracy and speed into the Jetson Xavier NX portable device to achieve a good detection
effect in the actual scene. Through the above experimental comparison and analysis, it can
be concluded that YOLOv5s can achieve a high detection speed of 33 FPS while maintaining
good detect accuracy, which can meet the requirements of the model in this paper. Therefore,
we choose to embed the YOLOv5s model into Jetson to detect the standard behavior of
kitchen staff in an actual working environment.

To demonstrate the performance of our trained YOLOv5s model, we evaluated it with
the testing datasets constructed by images taken from several surveillance cameras. We
transferred the test set to our edge device to measure the speed of the entire system. The
testing performance is shown in Figure 9. As we can see in Figure 9, our method has good
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performance in both each of the classes and overall in different situations. The results show
that our final system can detect at a speed of 315 ms per image and 31.42 FPS for videos
in our edge device and the confidence has reached the practical application requirements.
However, there is still some low-quality and incorrect detection due to the unexpected
behaviors, such as wearing plastic head covers instead of hats, wearing masks lacking in
standardization, and so on. In the future, we will improve the detection network structure
and modify the algorithm logic of violation detection to make the performance better.
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Figure 8. The detection performance of different models. It should be noted that the colors orange,
green, red, and copper represent the labels yes_mask_hat, yes_mask_no_hat, no_mask_hat, and
no_mask_yes_hat, respectively.
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Figure 9. The detection performance of the YOLOv5s embedded model. It should be noted that
the colors orange, green, red, and copper represent the labels yes_mask_hat, yes_mask_no_hat,
no_mask_hat, and no_mask_yes_hat, respectively.

4. Conclusions

In order to ensure that chefs wear masks and hats correctly, this paper proposes a
kitchen staff dress monitoring system so that food can be kept clean. The system, based on
the YOLOv5s model, automatically detects violations in the back of the kitchen and saves
the violation clips. We have been permitted to utilize the surveillance cameras of several
stores and restaurants to collect datasets and fortunately, our trained system performs well
in these numerous situations. The experimental results show that the kitchen staff dress
detection system we proposed can detect violations in the practical back of a kitchen with
good accuracy and robustness.
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