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Abstract: This study undertook the mineralogical and chemical analysis of anglesite (PbSO4), cerus-
site (PbCO3), gypsum (CaSO4·2H2O), langite (Cu4(SO4)(OH)6·2H2O), malachite (Cu2CO3(OH)2),
and posnjakite (Cu4(SO4)(OH)6·H2O) detected for the first time in the abandoned Mastricarro Barite
Mine (Catanzaro, Calabria, southern Italy). Geological conditions make this one of the few well-
preserved, partly accessible mines in the Calabria region. Numerous mineralogical species, some
beautifully crystallized, have been discovered among the alteration products of the sulfides present
within the barite veins. The newly identified crystals occur as secondary minerals in the oxidized
portions of deposits originally containing lead and copper sulfides; they are widely distributed and
are almost always detected as microcrystals. The anglesite, cerussite, gypsum, langite, malachite, and
posnjakite crystals were identified and characterized using optical microscopy (OM), micro-Raman
spectroscopy (µR), and scanning electron microscopy, combined with energy dispersive spectrometry
(SEM/EDS). The new mineral occurrences can be useful for scientific and didactic purposes; further,
for langite, malachite, and posnjakite crystals, new Raman bands, which have not been mentioned
before in the literature, were identified.
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1. Introduction

Minerals are essential for sustaining the economic development of our society, and
the increase in the world population in recent years has sparked a renewed interest in
mineral exploration. In 1964, the Southern Mining Industries (joint stock company) of
Naples explored an area in the Molino Mastricarro locality, along the Fiumarella stream,
northwest of Catanzaro (Calabria, Southern Italy), to assess the existing outcrops for
mineral exploitation. Geological investigations led to the discovery of a 1 to 3 m-thick
deposit consisting of barite veins running mainly along the porphyry–granite contact [1].
Secondary minerals with low concentrations of fluorite, galena, pyrite, chalcopyrite, and
sphalerite were also found [1–4]. Once prospecting ended in 1967, the “Mastricarro Barite
Mine” mining concession was issued to the Southern Mining Industry company: barite
exploitation began in 1968–1969, with an average production of about 80,000 tons per
year [1]. Extraction initially took place using the “cut in direction” method, which proved
unsafe for processing and resulted in medium productivity due to the geological setting of
the barite veins; the subsequent adoption of the “room and pillar” method greatly improved
both productivity and safety in the workplace. The extracted mineral, with a good degree
of whiteness, was used prevalently in the paint industry and, secondarily, as an additive in
oil drilling [2]. In 1980, the Southern Mining Industry renounced the concession because the
exploitation of the area was no longer economically viable. At the end of the exploitation
activities, work was carried out to ensure the safety of the site, including the construction
of concrete diaphragm walls to stabilize the entrances and prevent access to the tunnels [2].
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In the Mastricarro Barite Mine, minerals such as connellite, linarite, and wulfenite
were recently detected, in addition to primary minerals such as barite and galena [5,6].
This makes the Mastricarro Barite Mine particularly interesting not only for its naturalistic
value, but also for its economic potential. In recent years, the European Union has assigned
great importance to securing mineral resources for industry, as there are some 30 million
jobs depending on the availability of raw minerals that are in great demand for strategic
sectors such as renewable energy. Note that barite is present in the EU’s list of critical
raw minerals [7], and EU policies and the UNESCO strongly encourage its identification,
characterization, and subsequent mining. Currently, most of the mines and quarries in the
Calabria region are dismissed and testify to a grand monument of the Calabrian industrial
archaeology. Nowadays, the study of the Mastricarro Barite Mine represents a great
challenge for the use of available mineral resources. Therefore, the detailed knowledge
of minerals from the Mastricarro Barite Mine may also tackle the urgency of mineral
availability and supply.

This study aims to fully characterize new minerals detected for the first time in the
Mastricarro Barite Mine: anglesite, cerussite, gypsum, langite, malachite, and posnjakite.
Furthermore, the aim of this study is to explore in detail the mineral characteristics by
multi-analytical investigations to understand the relationships between the mineralogical
and physicochemical properties.

Samples were identified and characterized through optical microscopy (OM), micro-
Raman spectroscopy (µ-R), and scanning electron microscopy, combined with energy
dispersive spectrometry (SEM/EDS). In particular, micro-Raman spectroscopy allowed
us to identify and characterize minerals through rapid, non-destructive, and economic
analyses, as demonstrated by its successful use in numerous studies [8–12].

New Raman bands were identified for langite, malachite, and posnjakite. The study
provides indispensable mineralogical information for the correct exploitation and use of
anglesite, cerussite, gypsum, langite, malachite, and posnjakite, in agreement with literature
data [13–20]. The findings suggest that the Mastricarro Barite mine is a site of economic
interest. Carbonate and sulphate class minerals represent a quite valuable set of materials
in view of their relevance from a scientific and prospecting perspective and in line with
European Union policies and UNESCO purposes, which encourage the identification,
characterization, and mining of raw minerals.

2. Geological Setting

The Mastricarro Barite Mine (38◦55′19.19′ ′ N; 16◦34′25.71′ ′ E) lies west of the city of
Catanzaro (Calabria, southern Italy), in the Molino Mastricarro locality along the Fiumarella
stream (Figure 1).

A small strip of the Stilo Unit crops out in the area [21]. Mainly present in the south-
easter and southern reaches of the Calabria Peloritani Orogen, it is also present as small
strips north of the Catanzaro Line, within a series of WNW-ESE-aligned klippen extending
from Amantea (Tyrrhenian Calabria) to Catanzaro (Ionian Calabria). The Stilo Unit is
made up of metamorphic rocks (phyllites, schists, and gneisses) intruded by late Hercynian
plutonic rocks; only its southernmost outcrops consist dominantly of metamorphic rocks.

The rocks in the area of the Fiumarella Stream are mostly granodiorites and micro-
granodiorites, with subordinate aplites and porphyroid rocks, all of crustal origin and
Hercynian age [22,23], which intruded the phyllites and the gneisses, overlain by carbon-
ates and sandstones [24]. Barite veins are found in both the diorites and porphyrites,
whereas no evidence of mineralization was observed in the phyllites. This suggests that
barite formed in igneous rock fractures, finding a barrier in the metamorphic rocks [2].
Early studies by Vighi [3] found that the magmatic rocks are intersected by multiple fracture
systems, the first of which was affected by the deposition of barite and by the subsequent
mineralization of Cu-Pb sulfide. Studies on barite fluid inclusions have established that
mineralization occurred at a minimum temperature of 210 ◦C and at a minimum depth of
201 m below the paleo-watertable [2].
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tion of the object that remains in focus decreases as the shooting magnification increases. 
Some one hundred photos were taken of each mineral. The images were merged using 
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Figure 1. Location of the Mastricarro Barite Mine and geological map of the area (after [5,6]). The
red arrow indicates the barite vein in which the anglesite, cerussite, gypsum, langite, malachite, and
posnjakite crystals were found.

The Molino Mastricarro barite deposits seem to have affinity with epithermal “Precious
Metal”-type veins or even with “Kuroko”-type veins [2]. The barite veins are generally
sub-horizontal, with a thickness of up to 3 m, and have often been dislocated by subsequent
intense fracturing.

3. Materials and Methods

Samples were collected from the rocky walls near the mining area and from an ex-
ploratory tunnel dug on the orographic right of the Fiumarella Stream. The minerals mainly
represent weathered phases of galena, pyrite, and chalcopyrite in the cores of the barite
veins of the Mastricarro Barite Mine. They were initially studied under an optical stereo
microscope (Askania, GSZ 2T, Germany, fitted with a digital camera Fuji X-E2, Japan) at a
variable magnification of 4–40×. Images of the minerals were generated using the “focus
stacking” technique. The method consists of taking enough equally spaced photographs to
cover the entire area while maintaining focus. This is important since the portion of the
object that remains in focus decreases as the shooting magnification increases. Some one
hundred photos were taken of each mineral. The images were merged using Affinity Photo
software and processed to obtain the best possible framing and remove artifacts.

Crystals were subsequently studied by SEM/EDS and micro-Raman spectrometry
without pretreatment. Semi-quantitative element analysis of the minerals was performed
using an Environmental Scanning Electron Microscope FEI QUANTA 200 (FEI, Hillsboro,
OR, USA) equipped with an X-ray EDS suite comprising an EDAX-GENESIS4000 (EDAX,
Tokyo, Japan) Si/Li crystal detector. Working conditions and detector constants were
as follows: voltage 20 kV and tilt angle 0◦. For SEM analysis, each sample was coated
with graphite after being fixed on SEM stub using double-sided conductive adhesive
tape. Microanalysis (EDS) was achieved by the standardless quantification using ZAF
correction method.
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Micro-Raman analyses were performed using a Thermo Fisher DXR Raman micro-
scope (Waltham, MA, USA) equipped with OMNICxi Raman Imaging software 1.0, an
objective of 10×, a grating of 900 ln/mm (full width at half maximum, FWHM), and an
electron-multiplying charge-coupled device (EMCCD). The 532 nm line (solid state laser)
was used at an incident power output ranging from 1.8 to 7 mW.

All measurements (OM, SEM/EDS, and µ-R) were done at the Department of Biology,
Ecology, and Earth Sciences of the University of Calabria.

4. Results and Discussion
4.1. Anglesite

Anglesite is a lead sulfate (PbSO4) which takes its name from the Island of Anglesey in
the Irish Sea (Wales, UK), where it was first identified in 1783. Considerable crystals come
from Sardinia (Italy), Scotland, Australia, and Mexico. The pure mineral is colourless, but
it can take on shades of yellow to green or blue, although the latter are very rare.

Anglesite in the Mastricarro Mine is an oxidation product of galena [1–4]. In terms of
its crystal structure, anglesite is comprised of SO4 tetrahedra with Pb2+ in pseudo-eight-
to twelve-fold co-ordination with the oxygen ions [25]. In the study area, it usually has
an orthorhombic euhedral habit, at times elongated, and is colourless with a vitreous or
adamantine luster (Figure 2). In some areas, it has streaks along the main axis of elongation
(Figure 2). Colourless crystals of anglesite measure up to 2 mm in length (Figure 2) and
they occasionally show autoepitaxial growth parallel to the c axis (Figure 2). Under SEM,
all anglesite crystals appear to be euhedral and were often found nestled in cavities lined
with galena (Figure 3).
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Figure 3. (a,b) SEM image with magnification of anglesite from the Mastricarro Barite Mine (Catan-
zaro, Southern Italy) and corresponding EDS spot analysis (c) acquired in the point indicated by red
filled square.

The semi-quantitative EDS/SEM chemical analysis revealed a PbO content of 71.8 wt%
and a SO3 content of 22.6 wt%, in agreement with the existing literature data [26,27].
Moreover, copper impurities (about 5 wt%) were detected on the crystal surfaces (Figure 3).

The Raman spectrum of anglesite (Figure 4) reveals the typical bands at 1156, 1060,
978, 641, 609, 451, 439, 135, 100, and 60 cm−1 (Table 1). The relatively huge unit cell gives
ascent to a somewhat complex Raman vibrational spectrum (Figure 4). In particular, we have
the v1 (symmetric stretch of the (SO4)−2 tetrahedra) mode at 978 cm−1, the v2 (tetrahedral
symmetric bend) mode with two components at 439 and 451 cm−1, the v3 (tetrahedral anti-
symmetric stretch) mode with two components at 1156 and 1160 cm−1, and the v4 (tetrahedral
antisymmetric bend) mode at 641 cm−1 and 609 cm−1 [28–31, RRUFF ID R050408].
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Figure 4. Raman spectrum of anglesite from the Mastricarro Barite Mine (Catanzaro, southern Italy).
In the insert is the structure of the anglesite [25].

Table 1. Micro-Raman band wavenumber/cm−1 for anglesite, cerussite, gypsum, langite, malachite,
and posnjakite crystals from the Mastricarro Barite Mine (Catanzaro, southern Italy). The list shows
observed Raman bands previously reported in the literature [28–43] and in the RRUFF database [39],
as well as those here identified for the first time.

Mineral Band Wavenumber/cm−1 in Accordance
with References and the RRUFF Database

Band Wavenumber/cm−1

Highlighted in This Work

Anglesite [PbSO4] 1156, 1060, 978, 641, 609, 451, 439, 135, 100, 60 -

Cerussite [PbCO3] 1054, 837, 231, 177, 118, 105, 72, 58 -

Gypsum [CaSO4·2(H2O)] 1134, 1008, 668, 619, 493, 415, 210, 178 -

Langite [Cu4(SO4)(OH)6·2H2O] 1153, 1096, 970, 612, 506, 488, 433, 240, 181 357, 290, 265, 160, 126, 92

Malachite [Cu2(CO3)(OH)2] 1493, 1366, 1099, 1064, 718, 536, 510, 434, 353,
275, 221, 180, 154 120, 111, 79, 65

Posnjakite [Cu4(SO4)(OH)6·H2O] 1126, 1098, 1076, 972, 914, 731, 621, 612, 597,
506, 482, 422, 320, 242, 197, 141 454, 395, 158, 90

4.2. Cerussite

Cerussite is a lead carbonate (PbCO3). Its name derives from the Latin “cerussa”,
which means “white lead”. It has been employed since ancient times as a white pigment
for paints and was used as a cosmetic between 1500 and 1600, only for its toxicity to later be
discovered. Deposits are found in Sardinia (Italy), Australia, and Tsumeb (Namibia, Africa).

Lately, the rising demand for lead metal has generated new processes to extract lead
from cerussite (PbCO3) or from other oxidation products of lead ores such as anglesite
(PbSO4). Cerussite is isostructural with an aragonite-type structure in which (CO3)2– groups
(slightly planar) along c point alternately to the +b and −b directions, while layers of nine-
co-ordinated Pb2+ are parallel to (001), and the atoms occur approximately in the positions
of hexagonal close packing [44].

Among the alteration minerals found in the Mastricarro Barite Mine, cerussite, an
oxidation product of galena, is certainly the most widespread [1–4]. Cerussite occurs as
perfectly formed crystals with a squat prismatic to elongated prismatic habit and often
shows star-shaped twinning. A bipyramidal habit has occasionally been observed. The
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colour ranges from transparent to white to grey, and the luster is usually adamantine,
although opaque crystals are often observed. The crystals, all measuring up to 2 × 1 mm
in size, show three different morphologies: well-formed prismatic crystals (Figure 5a),
V-twinned crystals (Figure 5b), or straw aggregates. These last two morphologies are
similar to those of the cerussite samples found at Tsumeb (Namibia, Africa).
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Figure 5. Optical images of cerussite from the Mastricarro Barite Mine (Catanzaro, southern Italy):
(a) aggregates of prismatic colourless cerussite crystals; (b) V-twinned cerussite.

Under SEM, the cerussite crystals appeared to lack a regular morphology, and showed
the formation of block aggregates (Figure 6). An EDS semi-quantitative analysis performed
on the cerussite crystal (Figure 6) highlighted a chemical composition made of 80.2 wt%
PbO and 17.5 wt% CO2, in accordance with data from the literature [27,33].
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In the Raman spectrum shown in Figure 7, the Raman active ν1 (carbonate symmetric
stretching) and ν2 (carbonate symmetric bending) modes are, respectively, observed at
1051 and 837 cm–1. In addition, the spectrum highlighted the other typical cerussite Raman
bands at 231, 177, 118, 105, 72, and 58 cm−1 (Figure 7, Table 1) in agreement with the data
reported in the literature [28, 33, 34; RRUFF ID R060017].
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4.3. Gypsum

Gypsum is a calcium dihydrate sulfate (CaSO4·2H2O). One of the oldest known
minerals, it has found very widespread use in cultural heritage, construction, medicine,
and industry. Gypsum deposits are visible in numerous localities, especially in Germany,
France, Austria, and Italy. The mineral is usually found in sedimentary evaporite deposits,
but it can also form as a product of sulfide oxidation. The structure of gypsum is based
upon a pair of adjacent layers parallel to (010) which contain Ca ions and tetrahedral SO4
ions. Between successive pairs of layers, the water molecules are located in such a way that
they are hydrogen-bonded to oxygens of SO4 groups [45]. Each Ca ion is co-ordinated by
six oxygens of sulphate groups and by two water molecules [30].

In the Mastricarro Barite Mine, it is a by-product of pyrite oxidation, which gives rise
to single crystals and, more often, to aggregates of elongated monoclinic crystals (Figure 8a).
Usually colourless, sometimes tending towards white, the crystals have a glassy sheen and
longitudinal streaks (Figures 8b and 9). The largest crystal measures 3 mm in length, the
smallest a few microns.

The EDS semi-quantitative chemical analysis (Figure 9) revealed that gypsum crystals
contain about 38 wt% CaO and about 59 wt% SO3. The data highlight a shift from the
stoichiometric composition of gypsum, with a SO3/CaO ratio of 1.55 instead of 1.60, which
is the theoretical value. This shift is due to the inability of the EDS/SEM analysis to
detect the water content (generally about 21 wt%). Gypsum exhibits lamellar morphologies
characterized by parallel intergrowth in which the monoclinic symmetry is clearly observed
(Figure 9).
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Figure 9. SEM image and corresponding EDS spot analysis (empty red square) of a gypsum crystal
from the Mastricarro Barite Mine (Catanzaro, southern Italy). The red arrow indicates the monoclinic
character of the gypsum crystals.

In the Raman spectrum shown in Figure 10, it is possible to observe the typical gypsum
bands at 1134, 1008, 668, 619, 493, 415, 210, and 178 cm−1 (Table 1). In particular, the highest
band at 1008 cm−1 corresponds to the sulfate symmetric stretching mode (v1), while the
bands of medium intensity, assigned to the ν2 sulfate symmetric bend mode, were registered
at 415 and 493 cm−1. The band at 1134 cm−1 is linked to the sulfate antisymmetric stretching
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mode (ν3) while the bands at 619 and 668 cm−1 correspond to the sulfate antisymmetric
bending mode (ν4) [28, 30, 35; RRUFF ID R0400299].
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Italy). In the insert is the structure of the gypsum [45].

4.4. Langite

Langite is a hydrated copper sulfate (Cu4(SO4)(OH)6·2H2O) that forms through the
oxidation of sulphides in copper deposits. It owes its name to Victor von Lang, a Vienna
University physicist and crystallographer who discovered it in 1864. Cornwall (England,
UK) is the type locality for langite. It normally occurs as small blue, sometimes greenish-
blue, crystals or patinas with a vitreous luster. The crystal structure of langite consists of
double layers of close-packed OH- ions with Cu2+ ions in octahedral co-ordination. Among
the double layers, there are sulphate groups (SO4) linked to one side of the layers by corner
sharing. The SO4 tetrahedra are linked to one another by the hydrogen bonds of H2O
molecules and are also connected to the Cu-OH layers by H+ bonds [40,46].

Often in association with other minerals such as posnjakite, it is present in the Mas-
tricarro Barite Mine as a chalcopyrite alteration product. Langite is present as perfectly
formed light blue, elongated prismatic crystals up to 1 mm in length; twinned crystals are
sometimes arranged in a fan pattern (Figure 11).

As for its chemical composition, major elements include Cu and S (Figure 12), with
a CuO/SO3 ratio equal to 3.5. Again, this value slightly deviates from the stoichiometric
chemical composition of langite; the lower value (1.90) is due to the water content (19 wt%),
which is not detected by EDS/SEM analysis. Langite crystals under SEM show euhedral
shapes, in which the monoclinic symmetry is clearly evident (Figure 12).



Appl. Sci. 2023, 13, 2200 11 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 20 
 

 
Figure 11. Optical image showing light blue monoclinic langite crystals from the Mastricarro Barite 
Mine (Catanzaro, southern Italy) arranged in a radial pattern. 

As for its chemical composition, major elements include Cu and S (Figure 12), with a 
CuO/SO3 ratio equal to 3.5. Again, this value slightly deviates from the stoichiometric 
chemical composition of langite; the lower value (1.90) is due to the water content (19 
wt%), which is not detected by EDS/SEM analysis. Langite crystals under SEM show eu-
hedral shapes, in which the monoclinic symmetry is clearly evident (Figure 12).  

Figure 11. Optical image showing light blue monoclinic langite crystals from the Mastricarro Barite
Mine (Catanzaro, southern Italy) arranged in a radial pattern.

Raman spectroscopy confirms the presence of this mineral. Figure 13 shows the
langite Raman spectrum where, in agreement with the spectra reported in the literature
[36–40; RUFF ID R060090], it is possible to observe its typical bands at 1153, 1096, 970,
612, 506, 488, 433, 240, and 181 cm−1 (Table 1). In particular, the following are visible: the
(SO4)2- symmetric stretching mode (v1) at 970 cm−1, the antisymmetric stretching mode
(v3) at 1096 and 1153 cm−1, the symmetric bending mode (v2) at 506, 488, and 433 cm−1,
and the antisymmetric bending (v4) band at 612 cm−1. The Raman spectrum of the low-
wavenumber region shows bands at 240 and 181 cm−1, which are characteristic of the basic
copper sulphates [36]. Furthermore, Raman spectroscopy highlighted new bands at 357,
290, 265, 160, 126, and 92 cm−1, which have not been mentioned before in the literature.

4.5. Malachite

Malachite is a copper carbonate hydroxide (Cu2CO3(OH)2) occurring as a secondary
mineral in the oxidized zones of copper ore deposits. The essential features of the malachite
structure are based on Cu2O6 dimers bonded to CO3 groups [47]. Its name comes from the
Greek “malache”, which means “mallow”, an herb with green leaves. Since antiquity, mala-
chite was used as a green pigment and as an ornamental stone as well as a primary source
of copper [35,41,42]. Malachite deposits are found in Africa, Russia, Australia, and United
States. The malachite identified in the Mastricarro Barite Mine is a chalcopyrite alteration
product with an intense green color and vitreous-silky luster that often occurs on irregular
pale white aggregates of cerussite crystals (Figure 14a). It forms dome-shaped aggregates
of needle-like crystals up to 0.5 mm in size. A double-rosette aggregate morphology was
also observed (Figure 14b). This morphology is very similar to that found in Morocco and
at the Tsumeb Mine in Namibia.
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Figure 14. Optical images showing malachite crystals from the Mastricarro Barite Mine (Catanzaro,
southern Italy): (a) white acicular tufts of cerussite and dome-shaped aggregates of green needle-like
malachite crystals; (b) double rosette aggregate of green needle-like malachite crystals.

A qualitative EDS/SEM analysis of single crystals (Figure 15) revealed that the chemi-
cal composition of malachite is generally close to the ideal one, with 74.7 wt% CuO and
23.9 wt% CO2. Samples also contain minor impurities of Si, Mg, and Ca at the surface of
the crystals as EDS detected (Figure 15). Malachite often grows on pseudo-circular holes
and exhibits a lamellar habit (Figure 15).



Appl. Sci. 2023, 13, 2200 14 of 19

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 20 
 

23.9 wt% CO2. Samples also contain minor impurities of Si, Mg, and Ca at the surface of 
the crystals as EDS detected (Figure 15). Malachite often grows on pseudo-circular holes 
and exhibits a lamellar habit (Figure 15).  

 
Figure 15. SEM image and corresponding EDS spot analysis (red filled square) of malachite crystals 
from the Mastricarro Barite Mine (Catanzaro, southern Italy). 

The Raman spectrum of malachite contains modes of three separate vibrational 
groups: OH, CO3, and Cu–O [43]. In Figure 16 are visible the typical malachite bands at 
1493, 1366, 1099, 1064, 718, 536, 510, 434, 353, 275, 221, 180, and 154 cm−1 (Table 1), in agree-
ment with spectra reported in the literature [28,35,39,43]. In particular, the CO3 symmetric 
stretching mode (v1) is observed at 1099 and 1064 cm−1, the v3 mode at 1493 cm−1, and the 
v4 mode at 718 cm−1; the OH stretching modes are visible at 536, 434, 275, and 221 cm−1, 
while for the Cu ion, there is a band at 353 cm−1. Moreover, in this case, new Raman bands 
at 120, 111, 79, and 65 cm−1 (Table 1), that have not been previously described in the liter-
ature, were highlighted.  

Figure 15. SEM image and corresponding EDS spot analysis (red filled square) of malachite crystals
from the Mastricarro Barite Mine (Catanzaro, southern Italy).

The Raman spectrum of malachite contains modes of three separate vibrational groups:
OH, CO3, and Cu–O [43]. In Figure 16 are visible the typical malachite bands at 1493, 1366,
1099, 1064, 718, 536, 510, 434, 353, 275, 221, 180, and 154 cm−1 (Table 1), in agreement with
spectra reported in the literature [28,35,39,43]. In particular, the CO3 symmetric stretching
mode (v1) is observed at 1099 and 1064 cm−1, the v3 mode at 1493 cm−1, and the v4 mode
at 718 cm−1; the OH stretching modes are visible at 536, 434, 275, and 221 cm−1, while for
the Cu ion, there is a band at 353 cm−1. Moreover, in this case, new Raman bands at 120,
111, 79, and 65 cm−1 (Table 1), that have not been previously described in the literature,
were highlighted.
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4.6. Posnjakite

Posnjakite is a basic hydrated copper sulphate Cu4(SO4)(OH)6·(H2O). A secondary
mineral which forms through the oxidation of copper sulphide deposits, it can be consid-
ered an alteration product of chalcopyrite. It was named after Eugene Waldemar Posnjak, a
geochemist who worked at the Geophysical Laboratory (Washington, USA) and investi-
gated the CuO-SO3-H2O system. Numerous deposits are found in the Karaganda Region
(Kazakhstan), often used as a pigment [40–42]. The posnjakite structure consists of sheets
of copper-distorted octahedra, parallel to (001), with sulfate groups connected to one side
of the pseudo-octahedral sheet by corner sharing. The resultant composite octahedral–
tetrahedral sheets are assured by hydrogen bonds [40]. Posnjakite normally occurs as
small tabular crystals frequently associated with langite [40]. Elongated prismatic crystals
can be found in the Mastricarro Barite Mine (Figures 17a and 18): these sometimes form
sub-globular aggregates (Figure 17b), which grow by oxidation of the chalcopyrite.
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Figure 17. Optical images showing posnjakite crystals from the Mastricarro Barite Mine (Catanzaro,
southern Italy): (a) hundreds of tiny pale-green elongated prismatic crystals forming sprays of
posnjakite; (b) spherical aggregates of elongated tabular posnjakite crystals.

Posnjakite is usually pale green with a vitreous luster and individual crystals are rarely
greater than 0.5 mm long. The chemical composition of the crystals, which appear spongy
under the SEM (Figure 18), reveals a CuO/SO3 ratio of 3.93, which is very close to the
theoretical stoichiometric ratio (3.97); furthermore, a low amount of Al was present as an
impurity (Figure 18).

The Raman spectrum of the posnjakite crystals shows considerable complexity (Figure 19—
Table 1), in agreement with the data reported in the literature [36,37; RRUFF ID R070316], with
its typical bands at 1126, 1098, 1076, 972, 914, 731, 621, 612, 597, 506, 482, 422, 320, 242, 197, and
141 cm−1 (Table 1). In particular, it is possible to observe the (SO4)2- symmetric stretching
mode (v1) at 972 cm−1 and the antisymmetric stretching mode (v3) at 1126, 1098, and
1076 cm−1. More complex is the bending region that shows bands at 511, 482, 447, 422, 386,
and 363 cm−1 for the symmetric bending mode (v2), and bands at 621, 6012, and 597 cm−1

for the antisymmetric bending mode (v4).
As with langite and malachite, in this case as well, Raman spectroscopy detected

further bands at 454, 395, 158, and 90 cm−1 (Table 1), which have not been highlighted
previously in the literature.



Appl. Sci. 2023, 13, 2200 16 of 19Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 20 
 

 
Figure 18. SEM image and corresponding EDS spot analysis (red filled square) of spongy-looking 
posnjakite crystals from the Mastricarro Barite Mine (Catanzaro, southern Italy). 

Posnjakite is usually pale green with a vitreous luster and individual crystals are 
rarely greater than 0.5 mm long. The chemical composition of the crystals, which appear 
spongy under the SEM (Figure 18), reveals a CuO/SO3 ratio of 3.93, which is very close to 
the theoretical stoichiometric ratio (3.97); furthermore, a low amount of Al was present as 
an impurity (Figure 18). 

The Raman spectrum of the posnjakite crystals shows considerable complexity (Fig-
ure 19—Table 1), in agreement with the data reported in the literature [36,37; RRUFF ID 
R070316], with its typical bands at 1126, 1098, 1076, 972, 914, 731, 621, 612, 597, 506, 482, 
422, 320, 242, 197, and 141 cm−1 (Table 1). In particular, it is possible to observe the (SO4)2- 

symmetric stretching mode (v1) at 972 cm−1 and the antisymmetric stretching mode (v3) at 
1126, 1098, and 1076 cm−1. More complex is the bending region that shows bands at 511, 
482, 447, 422, 386, and 363 cm−1 for the symmetric bending mode (v2), and bands at 621, 
6012, and 597 cm−1 for the antisymmetric bending mode (v4). 

As with langite and malachite, in this case as well, Raman spectroscopy detected fur-
ther bands at 454, 395, 158, and 90 cm−1 (Table 1), which have not been highlighted previ-
ously in the literature. 

Figure 18. SEM image and corresponding EDS spot analysis (red filled square) of spongy-looking
posnjakite crystals from the Mastricarro Barite Mine (Catanzaro, southern Italy).
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5. Conclusions

Anglesite, cerussite, gypsum, langite, malachite, and posnjakite crystals have been
detected for the first time in the abandoned Mastricarro Barite Mine, located northwest of
Catanzaro (Calabria, southern Italy). These minerals, here representing alteration products
of pyrite, chalcopyrite, and galena, were characterized for both local and global compar-
isons. Data reported in this work can be used by researchers to compare the composition
and morphological features of other anglesite, cerussite, gypsum, langite, malachite, and
posnjakite crystals in other parts of the world and/or in similar geological environments.
Due to their outstanding characteristics, these minerals or bearing elements (i.e., Pb) are
used in several industrial applications. It is worth mentioning that lead can be extracted
from cerussite and anglesite [48,49] and that gypsum is used in various industrial sectors
such as cement, paper, and rubber. It should be emphasized that most green pigments are
based on copper compounds such as langite, posnijakite, and malachite [41,42]. In addi-
tion, these basic copper sulphates are of interest for their presence in many environmental
situations such as copper pipe corrosion, the restoration of brass and bronze objects and of
frescoes, and the leaching from waste mineral dumps [36].

In the case of langite, malachite, and posnjakite, Raman spectroscopy allowed us to
identify new Raman bands that have never been reported before in the literature. This is an
important contribution to the expansion of existing Raman databases, which can support
both mineralogical and geological research. The observation of additional bands may be
attributed to a number of factors, including element impurities, local stress in the crystals,
and crystal orientation effects.

This study suggests that the Mastricarro Barite mine could be a site of economic
interest. Carbonate and sulphate minerals represent a quite valuable set of materials in
view of their relevance in ore prospecting and economic applications. In recent years, the
European Union has encouraged the identification, characterization, and the mining of raw
minerals that are in great demand for strategic sectors. Mineralogical data from this work
is indispensable for the correct exploitation and use of these minerals.

The study and the characterization of these minerals are important not only from a
scientific and economic standpoint, but also for the beauty of the specimens, which may be
put on display or sold to collectors.

All these aspects highlight the scientific, economic, and naturalistic importance of the
Mastricarro Barite Mine. The findings from this study may also be used to promote the
Fiumarella Stream locality in accordance with the Convention on the Protection of the World
Cultural and Natural Heritage adopted by the UNESCO in 1972. Finally, in our opinion,
our multi-analytical study succeeded in highlighting the intrinsic properties of important
valuable minerals. In conclusion, in the context of the mineral resources efficiency policy
of Europe, minerals from Mastricarro Barite Mine (Calabria, southern Italy) may play a
strategic role not only in the local economy, but also in the societal progress, as well as in
monitoring available minerals and planning their sustainable use.
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