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Abstract: Among various eye diseases, glaucoma is one of the leading causes of blindness. Glaucoma
is also one of the most common eye diseases in Taiwan. Glaucoma screenings can use optical
coherence tomography (OCT) to locate areas in which the retinal nerve fiber layer is thinning.
However, because OCT equipment is costly, only large hospitals with well-equipped facilities will
have OCT, and regular eye clinics cannot afford such expensive equipment. This has caused many
glaucoma patients to worsen because they cannot get an early diagnosis in regular eye clinics in
time. This paper proposes a method of using a generative adversarial network (GAN) to generate
corresponding OCT images from fundus images to assist family doctors in judging whether further
examination is needed based on the generated OCT images to achieve early detection and treatment
of glaucoma. In addition, in order to improve the classification accuracy of the system deployed
in different hospitals or clinics, this paper also proposes to use the incremental training method to
fine-tune the model. The model can be quickly applied by adding a small number of images from a
specific clinic or hospital. Experimental results show that the cosine similarity between the generated
OCT image and the real OCT image is 97.8%. Combined with the proposed transfer learning method,
the classification accuracy of the classification model reaches 83.17%. As well as the use of the
incremental method, the accuracy of identifying glaucoma is approximately 78.94%, which is 8.77%
higher than the 70.17% accuracy of the initial model. Experimental results show the effectiveness and
feasibility of our proposed method.

Keywords: deep learning; unsupervised learning; generative adversarial network; incremental learn-
ing

1. Introduction

Glaucoma, a type of optic nerve damage that can cause vision impairment and lead to
blindness, is the second most common cause of blindness worldwide. According to the
World Health Organization (WHO), more than 76 million people suffered from glaucoma
in 2020, which is expected to increase to 111.8 million by 2040 [1]. Because glaucoma has no
noticeable symptoms in the early stage, it is nicknamed the silent thief of sight [2], and 90%
of glaucoma is not detected early. If glaucoma patients are not diagnosed and treated in
time, they may be permanently blind as the optic nerve is damaged. It is crucial to develop
glaucoma detection systems for early diagnosis.

Glaucoma is mainly related to high intraocular pressure, which can cause damage
to the optic nerve. As the optic nerve degenerates, glaucoma patients’ vision gradually
narrows, eventually leading to blindness. Therefore, it is essential to monitor intraocular
pressure at any time and use instruments to diagnose glaucoma and evaluate changes in
the optic nerve objectively.

To accurately diagnose glaucoma, ophthalmologists will conduct a series of examina-
tions for patients in clinical diagnosis, including:
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(1) Intraocular pressure test: The normal intraocular pressure is 10–21 mmHg. When the
intraocular pressure is higher than 22 mmHg, the risk of glaucoma is higher.

(2) Visual field test: Visual field refers to the range that the eyes can see. Standard
Automated Perimetry (SAP) can describe the visual field of the patient’s eyes. When
a defect in the central visual field or the peripheral visual field narrows, it may be a
symptom of glaucoma.

(3) Fundus photography: In both normal people and people with abnormal optic nerves,
the vast majority have optic disc depressions, but the depression of optic discs in glau-
coma patients will increase or show different changes with the disease. Experienced
ophthalmologists use fundus photography to screen patients for possible glaucoma.
Figure 1 shows fundus OCT images of (a) healthy and (b) unhealthy retinas [3]. The
fundus image and the important parts of the eye are marked in Figure 2.

(4) Optical coherence tomography (OCT) examination: using optical principles to conduct
cross-sectional analysis of the cornea, iris, lens, retina, optic disc, optic nerve, etc., in a
non-invasive manner [3,4], as shown in Figure 3. OCT can objectively measure the
thickness of the optic nerve fiber layer to assist in the early diagnosis of glaucoma.
Ophthalmologists can also analyze the previous OCT images of patients to check for
changes in the optic nerve to monitor and control the glaucoma condition.
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The quality and resolution of OCT images have given it the nickname optical biopsy
in some literature [5]. However, in eye disease diagnosis, fundus photography and optical
tomography (OCT) are usually not performed on the patient simultaneously. Generally, the
ophthalmologist will take further OCT scanning actions when they detect any abnormalities
from the prior fundus photography.

The symptoms of glaucoma are not apparent in the early stage, and it is usually not
easy to discover. Because OCT equipment is expensive, it is not easy for small ophthalmol-
ogy clinics to afford it. Usually, only large hospitals can do in-depth OCT examinations
for glaucoma.

The use of computer-aided diagnosis in the screening and diagnosis of glaucoma from
fundus or OCT images has become a trend with the advancement of information technology.
Developing a tool for computer-aided detection of glaucoma with a high sensitivity and
low false positive rate can help ophthalmologists to provide a positive clinical diagnosis.

Therefore, this study hopes that the fundus photography and imaging equipment
can generate OCT images while taking pictures to facilitate doctors’ diagnosis and preven-
tive treatment of glaucoma. This paper proposes a glaucoma identification method that
combines generative adversarial networks and incremental learning. Utilizing techniques
from generative adversarial networks, the proposed system can generate OCT images
using only fundus images. The incremental training architecture based on transfer learning
allows us to quickly train classification models in different fields. The integrated glaucoma
recognition system will enable doctors to use the generated images to determine whether a
patient has glaucoma. This system can assist doctors in making correct judgments and also
simplifies the screening process.

Every hospital has different medical equipment from different brands and settings,
so the generated images will have different qualities. When deploying the classification
system in various hospitals, images with different quality will reduce the accuracy of the
classification model. We propose a method that uses incremental training to fine-tune the
model by adding a small number of images from a specific field to quickly and accurately
apply the model.

In this paper, we integrated the GAN model and incremental learning technology for
glaucoma detection. We conclude the main contributions of this paper are as follows:

1. The proposed method, in addition to the system’s high accuracy, can also be quickly
deployed in different fields.

2. The developed glaucoma detection software has been clinically implemented in the
Department of Glaucoma, Chang Gung Memorial Hospital, Taiwan, to assist doctors
in interpreting glaucoma in fundus images.

3. Glaucoma can be detected by fundus images and the proposed glaucoma detection
software without needing expensive OCT equipment.

The rest of this paper is organized as follows. Section 2 briefly describes the related
research. We describe the proposed method in detail in Section 3 and we present the
experimental results and further explain and discuss the results in Section 4. Finally, we
conclude this paper in Section 5.

2. Related Work

With the rapid development of deep learning technology and high-speed computing
hardware, many researchers have successively invested in computer-aided diagnosis (CAD)
systems for various diseases. For example, Heidari et al. [6,7] proposed a system for detect-
ing COVID-19, Suryani et al. [8] proposed a lung cancer diagnosis system, Shen et al. [9]
proposed a breast cancer detection system, etc. CAD systems are crucial in modern clinics
to guide the accurate detection and treatment of different diseases. It plays an outstanding
role in disease detection, clinical diagnosis, and treatment planning.

Glaucoma is an incurable eye disease that causes retinal degeneration. Although
glaucoma cannot be cured completely, its progression can be controlled if diagnosed early.
Unfortunately, early diagnosis is rare because there are no apparent symptoms in the early
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stage. Several researchers have attempted to investigate various methods and algorithms
for glaucoma detection using fundus images.

Abdullah et al. [10] described several computer-based methods for glaucoma detection.
They also introduce various datasets, such as SINDI, SCES, and SIMES, and methodolo-
gies for detecting glaucoma, such as detection of glaucoma through optic nerve head,
thresholding-based techniques, and level-set-based techniques.

Thakur et al. [11] analyzed different researchers’ optic disc and optic cup segmentation
methods and their classification in glaucoma diagnosis.

Maheshwari et al. [12] proposed an automatic glaucoma diagnosis method. They use
empirical wavelet transform (EWT) on digital images for image decomposition and extract
the desired features with correlation entropy, then use the least squares SVM (LS_SVM) to
construct the classifier.

The glaucoma detection system proposed by Acharya et al. [13] converts color images
to grayscale images with adaptive histogram equalization, and then convolutes these
images with Leung-Malik (LM), Schmid (S) and maximum response (MR4 and MR8) filters.
These convoluted textures are used to extract Local Configuration Pattern (LCP) features,
followed by k-Nearest Neighbors (kNN) for classification.

A method for optic disc (OD) segmentation based on multi-level thresholding was
proposed by Kankanala et al. [14] Retinal vessels are enhanced by convolving the image
with a linear filter, and ROIs are achieved by applying a local entropy threshold. To
segment OD regions, they implemented multilevel thresholding followed by morphological
operations. However, in this technique, the segmentation of OC, which is also essential for
glaucoma disease screening, is not considered.

Convolutional neural networks (CNNs) are able to obtain information in hierarchical
structures from images and thus can be applied to distinguish glaucomatous images
from non-glaucoma images. Mamta et al. [15] proposed an enhanced U-Net model called
G-Net to implement their glaucoma detection system, which is based on the deep learning
structure developed by CNNs.

A generative adversarial network (GAN) [16] consists of a generator and a discrimi-
nator whose purpose is to generate new data similar to some input data. The generator
tries to generate data that can fool the discriminator, and the discriminator tries to correctly
identify the generated data as fake. Bisneto et al. [17] trained a conditional generative
adversarial network (cGAN) to segment discs from retinal images to detect glaucoma. They
used taxonomic diversity and distinction indices to distinguish and classify abnormalities
in retinal images. Saeed et al. [18] reviewed the literature on the use of GAN technology to
diagnose eye diseases in recent years. They described the advantages and disadvantages of
this technology as well as future trends.

Since 1995, research on transfer learning has attracted a lot of attention and has gone by
different names, such as learning to learn, lifelong, knowledge transfer, inductive transfer,
multitask learning, knowledge consolidation, context-sensitive learning, knowledge-based
inductive bias, meta learning, and incremental/cumulative learning [19].

Incremental learning is a machine learning technique in which a model is trained to
learn new tasks over time without forgetting previously learned tasks. The main idea is to
train a model incrementally by adding new tasks one at a time rather than retraining the
model from scratch for each task. [20].

The primary method of incremental learning is to use a pre-trained model as the
starting point for a new model, and then fine-tune the model on the new task using a
smaller dataset. This process involves freezing the weights of some or all of the layers
of the pre-trained model, and then training the remaining layers on the new task. The
pre-trained model can be fine-tuned by adjusting the parameters of the model. This can
be done by unfreezing some layers and training them further or adding new layers to the
model. The fine-tuning process can be performed on the entire dataset, a subset, or even on
a new dataset.
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In this paper, we propose a method to detect glaucoma from fundus images only,
without expensive OCT equipment, and with high accuracy. In addition, when we de-
ploy the glaucoma detection system in different fields, we use the incremental learning
framework based on transfer learning to improve accuracy and shorten the time for system
deployment and fine-tuning. The proposed system can be an invaluable tool for physicians,
helping them improve the quality of diagnoses they provide to their patients.

3. Methodology

This section will introduce our proposed glaucoma detection system, including the sys-
tem architecture and operation process. We will present the details of image preprocessing,
fundus-to-OCT generator, and glaucoma classifier in the following subsections.

3.1. The Proposed System Architecture for Glaucoma Detection

As shown in Figure 4, the glaucoma detection system consists of the following three
stages:
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Stage 1. Fundus to OCT Generator Training

In order to judge whether there are glaucoma symptoms through the fundus image,
the system will first train the fundus to OCT generator with the fundus image provided by
the ophthalmologist and the corresponding OCT image. The trained generator can output
a realistic OCT image corresponding to the input image based on the input fundus image.

Stage 2. Glaucoma Classifier Training

In order to correctly classify glaucoma from OCT images, at this stage, we train the
glaucoma classifier with OCT images marked by ophthalmologists. The trained glaucoma
classifier can judge whether it is glaucoma according to the input OCT image.
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Stage 3. Incremental Learning

When deploying the trained Fundus to OCT Generator and Glaucoma Classifier to a
new field, the image quality may be inconsistent due to different brands and settings of the
fundus photography equipment, resulting in low accuracy of the model. Therefore, we use
fundus images from new fields to fine-tune the glaucoma classifier based on the spirit of
incremental learning. The general process is as follows: when the fundus image obtained
from the new field is input to the generator, the generator will output the corresponding
OCT image and then feed the OCT image to the glaucoma classifier. When the classifier’s
output is inconsistent with the doctor’s diagnosis, a small expert meeting will be held.
Through discussions with other doctors, the fundus image and the generated OCT image
will be re-judged, labeled, trained, and the glaucoma classifier will be adjusted.

3.2. Image Preprocessing

Since the Fundus images captured by the fundus camera contain many black borders,
and because of the different settings of the shooting equipment, the brightness and darkness
are inconsistent. As shown in Figure 5, in order to improve the generation quality of
the image generation model, each fundus image will be pre-processed in the following
four steps:

(1) Scale down the fundus image to 20% of the original image.
(2) Find out the location of the eyeball from the fundus image, and crop the image.
(3) Enhance the cropped fundus image.
(4) Resize the enhanced image to 256 × 256.
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3.2.1. Image Resizing

The size of the fundus image obtained by the fundus camera is 2576 × 1934. This
huge image will increase the amount of calculation when doing the Hough transform [21].
Therefore, before eyeball locating, we remove the black border of the image and then scale
down the image with the black border removed to 20% of the original image. The width of
the fundus image processed at this stage is 512. In order to speed up the model training,
the system further resizes the enhanced image to 256 × 256 for subsequent model training.

3.2.2. Eyeball Locating

Hough Transform [21] is one of the primary methods for recognizing geometric shapes
in image processing, and it is mainly used to extract geometric shapes with similar features
in images. Because the area of the fundus in the captured fundus image is a circle, in this
stage, we use the Hough transform to easily locate the part of the fundus.

As shown in Figure 6, we make the circle found by the Hough transform into an image
mask with the same size as the fundus image. Then, the fundus image is cropped according
to the position of the eyeball in the OCT image with this mask to filter out unimportant
parts of the image, as shown in Figure 7. Figure 8 shows the fundus image overlaid with
an image mask and the original OCT image.
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3.2.3. Image Enhancement

In order to make the training image clearer, we use the Contrast Limited Adaptive
Histogram Equalization (CLAHE) method [22], which can enhance the contrast of the
fundus image and make the details in the fundus image clearer. Figure 9 shows three
enhanced fundus images. The image on the left is the original image, while CLAHE
enhances the image on the right.
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3.3. Image Generation

Generative adversarial network (GAN) [16] is one of the recent most highly discussed
deep learning models. GAN is a deep neural network architecture composed of two net-
works, a generator (G) and a discriminator (D). Its core logic is that the generator and the
discriminator will enhance each other’s capabilities through an adversarial process. In this
paper, we propose a deep generative adversarial model for converting fundus images to
OCT images based on the spirit of GAN.

Figure 10 shows a schematic diagram of our proposed GAN. The training process of
the proposed GAN model is to train the discriminator first, and then train the generator. In
order for the discriminator to learn a criterion that can distinguish between real and fake
(generated) images, during discriminator training, a lot of real OCT images x are provided
and fed into the discriminator. Furthermore, the fundus image is fed into the generator
to generate the corresponding OCT image y. Then, we composite the generated OCT
image y with real OCT images x as the input of the discriminator for discrimination. The
discriminator will judge whether the composite image is real or fake (generated) according
to the criteria obtained from the previous training. If the composite image is judged to be
real, the image will be assigned a higher score (nearly 1), conversely, if it is judged to be
a fake (generated) image, the image will be assigned a lower score (nearly 0). Then, the
weights are adjusted and the process is repeated until the discriminator cannot distinguish
between real and generated images. This means that the generator has been able to create a
diverse set of OCT images that are highly similar to real images.



Appl. Sci. 2023, 13, 2195 9 of 20Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 21 
 

 

Figure 10. A schematic diagram of the proposed GAN model. 

3.3.1. The Architecture of the OCT Generator 

Figure 11 shows the architecture of the image generation model. In order to avoid the 

problem of loss of details in image generation, we refer to the concept of U-Net feature 

channels, and concat the features extracted by the second and third convolutional layers 

of the encoder to the corresponding convolutional layers of the decoder. 

 

Figure 11. The architecture of the OCT generator model. 

Since the convolutional neural network (CNN) [23] calculates the local area’s 

features, most of the feature loss problems can be solved through feature splicing. 

Furthermore, to retain more details in the generation stage, we add Non-Local Blocks [24] 

to the generative model to strengthen the information relationship between each pixel, 

allowing the generator to generate more realistic images. 

In this paper, the real and generated OCT images are denoted by x and y, 

respectively. We divide each image into 11 × 11 blocks and use the average value of image 

brightness (l), contrast (c), and structure (s) as the evaluation criteria, where M represents 

the number of image blocks. 

The multiscale structural similarity (MS-SSIM) [25] is adopted as the loss function for 

the generator model to evaluate the image quality objectively. The MS-SSIM is defined by 

Equation (1): 

Figure 10. A schematic diagram of the proposed GAN model.

3.3.1. The Architecture of the OCT Generator

Figure 11 shows the architecture of the image generation model. In order to avoid the
problem of loss of details in image generation, we refer to the concept of U-Net feature
channels, and concat the features extracted by the second and third convolutional layers of
the encoder to the corresponding convolutional layers of the decoder.
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Since the convolutional neural network (CNN) [23] calculates the local area’s features,
most of the feature loss problems can be solved through feature splicing. Furthermore, to
retain more details in the generation stage, we add Non-Local Blocks [24] to the generative
model to strengthen the information relationship between each pixel, allowing the generator
to generate more realistic images.

In this paper, the real and generated OCT images are denoted by x and y, respectively.
We divide each image into 11 × 11 blocks and use the average value of image brightness (l),
contrast (c), and structure (s) as the evaluation criteria, where M represents the number of
image blocks.



Appl. Sci. 2023, 13, 2195 10 of 20

The multiscale structural similarity (MS-SSIM) [25] is adopted as the loss function for
the generator model to evaluate the image quality objectively. The MS-SSIM is defined by
Equation (1):

L(x, y) = l(xM, yM)M ·∏M
j=1 c

(
xj, yj

)js
(
xj, yj

)j, (1)

Using Equation (1), the quality of the generated image can be determined, with a
higher score representing a higher similarity.

The brightness index equation is defined as:

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1
, (2)

where µx and µy are the average pixel values of the real and generated images x and y,
respectively, and C1 is a constant added to prevent the denominator from approaching
zero.

The image contrast index equation is defined as:

c(x, y) =
2σxσy + C2

σ2
a + σ2

y + C2
, (3)

where σx and σy are the pixel standard deviations of the real and generated images x and y,
and C2 is a constant added to prevent the denominator from approaching zero.

The structural index equation is defined as:

s(x, y) =
σxy + C3

σxσy + C3
, (4)

where σxy is the covariance of the real and generated images x and y, and C3 is a constant
added to prevent the denominator from approaching zero.

The Loss function of the generator is defined as:

Generator Loss = 1− L(x, y), (5)

3.3.2. The Architecture of the OCT Discriminator

As shown in Figure 12, the proposed system uses the Markov Discriminator [26] as
the discriminator. The difference from the CNN classifier is that the output of the last layer
is a convolutional layer instead of a fully connected layer, as shown in Figure 12. The final
output of the model is a 16 × 16 matrix. Each output in the matrix can be expressed as a
receptive field of view in the original image, and each receptive field can represent an area
in the original image, as shown in Figure 13.

The reason for using the convolution operation in the last layer is to allow the feature
matrix produced by the discriminator to be traced back to a specific region of the original
image.

In order to improve the performance of the discriminator, the mean-square error (MSE)
is used as the loss function for our Markovian Discriminator. The MSE can measure the
average between the predicted value and the real value; the smaller the value, the higher
the similarity.

Suppose the label of the real image is z, and the label of the generated image is z. In
order to measure the data distribution output by the real image and the generated image
through the discriminator, we denote the Euclidean distance between the score obtained by
feeding the real image x to the discriminator and the real image label z as Dreal, defined as
Equation (6). We also denote the Euclidean distance between the score obtained by feeding
the generated image y to the discriminator and the generated image label z as Dfack, defined
as Equation (7).

Dreal =
1

mn∑n
i=1 ∑m

j=1

(
zij − xij

)2
, (6)
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D f ake =
1

mn∑n
i=1 ∑m

j=1

(
zij − yij

)2
, (7)

where m and n are the size of the image length and width.
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This method allows the data distribution in the generated images to be closer to real
OCT images. The loss of discriminator is defined as:

Discriminator Loss =
(

Dreal + D f ake

)
× 0.5, (8)

3.4. Glaucoma Classification with Incremental Learning

This paper uses a VGG19-based model (shown in Figure 14) [27] to classify the presence
of glaucoma in OCT images. VGG mainly uses the idea of adding convolutional layers to
improve the classification ability of the model.
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Figure 14. Schematic diagram of the glaucoma classification model.

However, due to different equipment and settings in different fields, the captured
image quality is also different, which will reduce the accuracy of the classifier. Traditionally,
this problem has been solved by adding new images obtained from new fields and retrain-
ing the classifier to improve accuracy. However, this has a cost for retraining the model.
Therefore, this paper uses the transfer learning concept [28] to design a classification model
architecture for incremental learning.

The proposed transfer learning method will manually re-judge and label the results of
the glaucoma classification model by ophthalmologists and use these images as a training
set for the incremental model so that the model can learn the difference between the old
image and the new image. Therefore, the initially learned information about judging
the features of glaucoma can be transferred to the new classification model, improving
the model’s identification accuracy in the new field in a short time. Figure 15 shows the
schematic diagram of the transfer learning process.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 21 
 

 

Figure 14. Schematic diagram of the glaucoma classification model. 

However, due to different equipment and settings in different fields, the captured 

image quality is also different, which will reduce the accuracy of the classifier. 

Traditionally, this problem has been solved by adding new images obtained from new 

fields and retraining the classifier to improve accuracy. However, this has a cost for 

retraining the model. Therefore, this paper uses the transfer learning concept [28] to 

design a classification model architecture for incremental learning. 

The proposed transfer learning method will manually re-judge and label the results 

of the glaucoma classification model by ophthalmologists and use these images as a 

training set for the incremental model so that the model can learn the difference between 

the old image and the new image. Therefore, the initially learned information about 

judging the features of glaucoma can be transferred to the new classification model, 

improving the model’s identification accuracy in the new field in a short time. Figure 15 

shows the schematic diagram of the transfer learning process. 

 

Figure 15. Schematic diagram of the transfer learning process. 

We have observed from experiments that the reason for the decline in classifier 

accuracy is the result of model output weight deviation. Therefore, as shown in Figure 16, 

the transfer learning method is used for incremental learning. We freeze the feature 

extraction part of the initial model and only train the classifier for bias correction to 

improve the model’s classification accuracy. 

Figure 15. Schematic diagram of the transfer learning process.

We have observed from experiments that the reason for the decline in classifier accu-
racy is the result of model output weight deviation. Therefore, as shown in Figure 16, the
transfer learning method is used for incremental learning. We freeze the feature extraction
part of the initial model and only train the classifier for bias correction to improve the
model’s classification accuracy.

We use binary cross-entropy (BCE) to evaluate the performance of the classifier for
identifying glaucoma, where a larger value indicates a higher probability of glaucoma. The
BCE is defined as:

BCE(O, T) = − 1
N ∑N

i=1 Ti · log(Oi) + (1− Ti) · log(1−Oi), (9)

where O is the label predicted by the model, T is the real label, and N is the amount of data
in each batch.
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The proposed system uses the predicted probability (between 0 and 1) output by the
classification model as the final model prediction O with a threshold of 0.5. The larger
the value, the higher the probability of the image being glaucoma. We compare the result
judged by the classifier with the real label T to correct the model’s parameters.

4. Results and Discussion

This section presents the experimental results of our proposed glaucoma detection
system, including the effect of the OCT generator and glaucoma classifier. A comparison
with the results of other generative methods is also presented. Finally, we demonstrate the
effectiveness of implementing incremental learning in a new field.

4.1. Generation of OCT Images
4.1.1. Dataset and Experimental Environment for OCT Generation

The fundus and OCT images used in the experiment were obtained from the Depart-
ment of Glaucoma, Chang Gung Memorial Hospital. As shown in Table 1, the total number
of experimental images is 441, and we randomly divide them into 200 for training and 201
for testing at 1:1.

Table 1. Quantity of the experimental images.

Quantity Training Testing

Fundus 441 220 221
OCT 441 220 221

The fundus and OCT images were captured by the DRI OCT Triton (Swept Source
OCT, Topcon, Oakland, NJ, USA). In order to ensure the correctness of labeling, all images
in the experiment were judged by two glaucoma physicians of Chang Gung Memorial
Hospital and labeled as glaucoma or not. Before model training, ophthalmologists assist
in identifying and labeling fundus and OCT images. When testing, ophthalmologists also
review the classification results of the system. The fundus image size is 2576 × 1934, and
the OCT image size is 903 × 663.

The hardware used in the experiment is: AMD Ryzen 7 8-core CPU, 32GB DRAM, and
NVidia GeForce RTX 2080 Ti graphics card. The software environment and tools include
Microsoft Windows 10, Python, Pytorch, and OpenCV.

In this experiment, when training the generator and the discriminator, the relevant
parameters are set to 2500 training iterations, the batch size is 8, the optimizer is RMSprop,
and the learning rate is 1 × 10−3.

4.1.2. Evaluation Criteria for Generative Models

To evaluate the quality of the generated OCT images, we adopt the Peak Signal-to-
Noise Ratio (PSNR) [29], Structural Similarity Index (SSIM) [30], Multi-Scale Structural
Similarity Index (MS-SSIM), and Cosine Similarity (COSIN) [31] as the evaluation criteria.
PSNR is the ratio between the maximum value of the measured signal and the number of
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noises which affect the image. The Peak Signal-to-Noise Ratio between the real OCT image
x and generated OCT image y is defined as

PSNR(x, y) = 10 · log10

(
2552/MSE(x, y)

)
, (10)

where MSE(x,y) denotes the mean square error of the real OCT image x and generated OCT
image y, i.e.,

MSE(x, y) =
1

MN ∑N
i=1 ∑M

j=1

(
xij − yij

)2
, (11)

where M and N represent the width and height of the image, respectively. Here, the contrast
enhancement method with a smaller MSE value and larger PSNR value significantly
outperforms other contrast enhancement methods.

The Structural Similarity Index between the real OCT image x and generated OCT
image y is defined as

SSIM = l(x, y) · c(x, y) · s(x, y), (12)

where l(x,y), c(x,y), and s(x,y) represent the image brightness, contrast, and structure defined
in Equations (2)–(4).

The Multi-Scale Structural Similarity Index between the real OCT image x and gener-
ated OCT image y is defined in Equation (1).

The Cosine Similarity between the real OCT image x and generated OCT image y is
defined as

COSIN(x, y) =
x · y

‖x‖ × ‖y‖ =
∑n

i=1 xi × yi√
∑n

i=1 x2
i ×

√
∑n

i=1 y2
i

, (13)

where the real and generated OCT images are transposed into the vector space. The
similarity between real and generated OCT image pixels is obtained from the corresponding
feature vectors. The cosine, i.e., the angle between the two vectors, is closer to 1. The smaller
the angle, the more similar the generated OCT image y is to the real OCT image x.

4.1.3. Comparison with Different Generative Models

Image quality measurement methods can be roughly divided into three categories,
including pixel distance-based, correlation-based, and mean square error-based [32]. To
verify the effectiveness of the proposed image generation model, we compared it to Au-
toencoder [33], DCGAN [34], U-Net [35], and other generative models. Figure 17 presents
the results of our proposed OCR generation model and other models.

The experimental results in Figure 17 show that although the Autoencoder and DC-
GAN models can generate images similar to real OCT images, they cannot replicate the
blood vessels and other small details in the image. Similarly, the U-Net model can capture
more detail in the images but is still not ideal because it cannot handle the branches in the
blood vessels. In contrast, the images generated using the proposed OCT generative model
are smoother, more realistic, and more similar to real images.

To evaluate the OCT generation effect of different generative models, we use the
generated OCT images and the original real OCT images from the test set of 221 fundus
images and use Equations (10)–(13) to calculate PSNR, MSE, SSIM, and COSIN for each
generated OCT image and the original corresponding OCT image, and finally expressed
the results as the average value. Table 2 presents the performance comparison of various
generative models under different evaluation criteria. The proposed method achieves the
highest performance compared to other methods.
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Figure 17. (a–c) Real OCT images. (d–f) Generated OCT by Autoencoder. (g–i) Generated by DCGAN.
(j–l) Generated by Unet. (m–o) Generated by the proposed method.

Table 2. Comparison of images generated by different architectures.

SSIM PSNR MS-SSIM COSIN

Autoencoder
[33] 22.2% 65.67% 24.0% 97.7%

DCGAN [34] 22.7% 64.72% 24.7% 97.3%
U-Net [35] 21.3% 65.54% 22.4% 97.6%

Our method 27.2% 65.78% 28.7% 97.8%

Because the optic disc area on an OCT scan allows doctors to identify optic atrophy and
determine macular thickness, it plays an essential role in glaucoma screening. Therefore,
to further evaluate the effectiveness of the proposed generator, we randomly capture ten
optic disc regions of size 130 × 130 from the generated OCT images. Figure 18 shows two
OCT images generated by different methods. The images in the table are generated and
cropped to the optic disc area, and the disc size is 130 × 130.

Table 3 lists the similarity measures of the optic disc region between generated and
real OCT images. Obviously, the proposed method achieves better generative results than
other architectures.

Table 3. Similarity of the optic disc area between the generated and real OCT images.

SSIM PSNR MS-SSIM COSIN

Autoencoder
[33] 15.4% 65.16% 16.4% 98.1%

DCGAN [34] 17.8% 64.69% 18.9% 97.7%
U-Net [35] 19.3% 65.63% 19.1% 98.2%

Our method 22.4% 66.24% 21.8% 98.5%
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4.2. Classification of Glaucoma
4.2.1. Dataset and Experimental Setting for Glaucoma Classification

The dataset used for glaucoma classification consists of generated OCT images and
real OCT images. Although the generated images are similar to real OCT scans, there
are still noticeable differences, and the generated images tend to be smoother, as shown
in Figure 18. In order to improve the robustness of the image classification model, we
performed transfer learning when training the glaucoma classification model.

We first train the glaucoma classification model using the generated OCT images and
then use the real OCT images for the second training. In Table 4, we divide the images into
75% as the training set and 25% as the test set for the experiment.

Table 4. Dataset of generated OCT images.

Dataset Generated OCT Real OCT

Training set Glaucoma 208 208
Normal 115 115

Testing set Glaucoma 75 75
Normal 32 32

When training the glaucoma classifier, the VGG19 architecture is used as the classifier.
The relevant parameters are set as follows: 50 training iterations, the batch size is 16, the
optimizer uses Adam, and the learning rate is 2 × 10−5.

4.2.2. Evaluation Criteria for Glaucoma Classification Models

To evaluate the performance of the proposed classifier, we adopt evaluation criteria,
including precision, sensitivity, specificity, and accuracy. The equations for these metrics
are defined below:

Precision =
TP

TP + FP
, (14)

Sensitivity =
TP

TP + FN
, (15)

Speci f icity =
TN

TN + FP
, (16)

Accuracy =
TP + FN

TP + TN + FP + FN
, (17)

where TP represents the number of glaucoma cases that are classified as glaucoma correctly,
TN represents the number of normal cases classified as normal, FP denotes the number of
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normal cases misclassified as glaucoma, and FN denotes the number of glaucoma cases
misclassified as normal.

In general, precision indicates the general performance of the classifier [36]. Sensitivity
shows the ability to detect the correct pixels accurately [10]. Specificity means the ability
to accurately detect pixels that are not part of the region [10]. Accuracy indicates how
accurately the ground truths match the segmented result. The improved accuracy shows a
better outcome of the proposed algorithm.

4.2.3. Comparison with Different Classification Models

The primary purpose of the glaucoma classification model is to identify whether there
is glaucoma from the generated OCT images. To evaluate the performance of the VGG19
classifier for identifying glaucoma from OCT images, we trained the classifier on real OCT
images and generated OCT images separately.

As shown in Table 5, we achieved 75.70% and 84.11% accuracy when training the
classification model using only generated or real OCT images, respectively. These results
suggest that training with only generated images will yield poor results.

Table 5. Training results of the classification model.

Trained by Real
OCT

Train by Generated
OCT

Trained by Transfer
Learning

Precision 86.25% 78.82% 85.19%
Sensitivity 92.00% 89.33% 92.00%
Specificity 65.62% 43.75% 62.50%
Accuracy 84.11% 75.70% 83.17%

Furthermore, using the proposed method (shown in Figure 15), the classification
model is first trained using the generated images and then retrained using real OCT images
via transfer learning. From the experimental results shown in the rightmost column of
Table 5, the performance of the classifier is greatly improved, which indicates that the
proposed transfer learning method is indeed feasible.

In order to improve the accuracy of the VGG 19 network for glaucoma classification,
we first train the classifier by generated images so that the VGG 19 network can learn the
features of the generated images, and then the retrain classifier with real OCT images to
correct the bias accumulated during the first training.

This paper also compares the performance of our proposed transfer learning method
with RestNet-18 and DenseNet-20 for glaucoma classification. As shown in Table 6, the
transfer learning method has better classification performance.

Table 6. Comparison with other methods.

ResNet-18 DenseNet-20 The Proposed
Transfer Learning

Precision 79.76% 77.42% 85.19%
Sensitivity 89.33% 96.00% 92.00%
Specificity 46.88% 34.38% 62.50%
Accuracy 76.63% 77.57% 83.17%

4.3. Increamental Training for Glaucoma Classifier
4.3.1. Dataset and Experimental Setting for Incremental Training

In reality, due to different equipment settings in various fields, the classification
accuracy will decrease. This phenomenon can use incremental training to allow the classifier
to quickly learn the differences between old and new images and quickly transfer glaucoma
features to the new classification model.

Table 7 shows the number of image data sets used in this incremental training experi-
ment. These images are provided by the Glaucoma Department of Chang Gung Memorial
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Hospital, and the images are all fundus images. In this experiment, all fundus images were
also labeled by glaucoma physicians for glaucoma.

Table 7. Dataset of extra generated OCT images.

Dataset # of Images

Training set Glaucoma 232
Normal 92

Testing set Glaucoma 88
Normal 21

Furthermore, the experiment aims to demonstrate the effectiveness of our proposed
model by using a new dataset. We feed additional fundus images into the generator model
to generate new OCT images and use the 433 generated images at a 3:1 ratio for training
and testing, as shown in Table 8.

Table 8. Results before and after incremental training.

Trained by
Initial Model

Trained by
Incremental Model

Precision 71.70% 85.00%
Sensitivity 95.00% 85.00%
Specificity 11.76% 64.71%
Accuracy 70.17% 78.94%

In this experiment, the relevant parameters for incremental training are: the number
of the epoch is set to 50, the batch size is set to 8, the optimizer uses Adam, and the learning
rate is set to 10−5.

4.3.2. Comparison of Whether to Use Incremental Training

To verify the effectiveness of the proposed incremental training method, we use
the additional image data in Table 8 to train the glaucoma classifier. We compare the
classification results with and without incremental training, as shown in Table 8. The
classifier using the incremental training method has a better classification accuracy.

5. Conclusions

Glaucoma is an eye disease caused by damage to the optic nerve. Screening for
glaucoma is often limited to large hospitals because of the difficulty in identifying early
symptoms and the unaffordability of expensive OCT equipment in community or small-
town eye clinics.

In this paper, we propose a GAN model that can generate realistic OCT images using
only fundus images, which doctors can refer to in order to judge whether patients need
further screening, thereby increasing the chances of early detection and treatment.

Experimental results show that the cosine similarity between the OCT images gener-
ated by the proposed method and real OCT images is 97.8%. The experiments compared
with other methods also show that the performance of the proposed method is signifi-
cantly better than that achieved using autoencoders, DCGAN, and U-Net. Moreover, using
the proposed transfer learning method, the accuracy of the classification model is about
83.17%. Furthermore, using the incremental training method also increased the accuracy of
glaucoma identification to approximately 78.94%, which is 8.77% higher than the 70.17%
without incremental learning techniques, which shows that the proposed method can
effectively improve the accuracy of glaucoma classification in different fields.
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