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Abstract: The article presents an adaptation of a parametric diagnostic method based on the square
of the amplitude gains model, which was tested in experimental studies on bearing damage detection
(outer race, inner race, bearing balls damage). The described method is based on the shaft displace-
ment signal analysis, which is affected by vibrations coming from the bearings. The diagnostic
model’s parameters are determined by processing the signal from the time domain to the frequency
domain in a few steps. Firstly, the recorded signal is divided into two observation periods, next the
analytical autocorrelation functions are determined and approximated by a polynomial. Then, the
diagnostic thresholds are adopted, and the model parameters are converted into damage maps that
are easy to interpret and assess the technical condition of the bearings. The presented method shows
the technical condition of bearings in a qualitative way. Depending on the received color damage
maps, it is possible to determine their level of wear. Green and blue indicate poor wear or no damage,
red indicates increased wear, and black clearly indicates a damaged bearing.

Keywords: bearing; bearing outer race; bearing inner race; diagnostic model; diagnostics; bearing
damage; the square of the amplitude gain

1. Introduction

Bearing failure diagnostics is an important part of rotating machinery maintenance. Ac-
curate and early bearing damage detection contributes to safer and more efficient machine
exploitation [1–12].

Following many hours of bearing operation, the impact of excessive vibrations in
combination with limited lubrication of machine parts leads to bearing damage: outer race,
inner race, damage to the cage, and rolling elements (balls). If left undetected for some
time, this mechanical damage can cause equipment failure and, consequently, unscheduled
downtime. Therefore, timely intervention or preventive maintenance is vital to keeping
rotating equipment running efficiently.

Recently, there have been many techniques that can be used to monitor bearing health,
such as vibration monitoring [13–29], noise monitoring [30–32], temperature monitor-
ing [33–35], and residual wear analysis [36–39]. However, vibration monitoring is the most
effective technique—single-point defects produce successive pulses with each contact of
the damage with the rolling element, and each contact can excite a high-frequency reso-
nance in the overall structure. The mentioned analysis allows for detecting, locating, and
distinguishing various types of damage from the moment of its occurrence before they
become critical and dangerous. These damages can be dispersed or localized [22].

Unfortunately, the vibration signal does not only contain signals originating directly
from the bearing. It also contains vibration signals from cooperating elements, e.g., shafts or
another mechanism. Their misalignment, unbalance, stiffness, clearance, and friction will
also affect the recorded signal coming from the bearings. Therefore, modern diagnostics
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require techniques of advanced signal processing: fast Fourier transform (FFT) [40–50],
cepstrum analysis (CA) [51–53], short time Fourier transform (STFT) [54,55], Wigner–Ville
Distribution (WVD) [54–56], the envelope analysis (EA) [57,58], and wavelet transform
(WT) [58–62], and various advanced models based on artificial intelligence [63–80].

Vibration data analysis mainly includes the time domain, frequency domain, time-
frequency domain, and other analysis methods, but the vast majority are based on time-
frequency analysis.

The authors also developed time-frequency methods. In their work, they proved the
effectiveness of parametric methods: in the form of a square signal amplitude amplification
and an original model in the form of a difference in phase shifts of signals for diagnosing
shafts and compressors of aircraft engine turbines.

A mathematical model of a square of amplitude gains for diagnostic purposes was
first presented in 2004 [81]. Lindstedt and Kotowski presented its application for detecting
damage to an aircraft engine blade in stationary conditions (removal of the blade from the
engine required). The vibration signal was generated by modal hammer impact. In 2007,
Kotowski and Lindstedt [82] presented a complete study with an analysis of the impact of
this model’s parameters on the damage type and location.

The next stage of the method development took place at the Air Force Institute of
Technology (ITWL) in Warsaw (Poland) in 2009 [83,84]. The article presents the mathe-
matical basis for adapting the method to diagnostics during a rotating machine operation.
However, this approach has not been experimentally verified. In 2010, Lindstedt and
Grądzki [85] determined the parameters of the diagnostic model from the recorded signal
from the inductive sensor. In 2012, Grądzki [86] in his doctoral thesis, presented exten-
sive research on the compressor blade of the S0–3 turbine engine during its operation.
An analysis of the impact of changes in the environment represented by the rotational
speed on the changes of model parameters was carried out, and color damage maps were
used to analyze the technical condition. For verification, a new diagnostic model in the
form of a difference in phase shifts of signals was also developed and tested. Endoscopic
measurements additionally verified all results.

In 2018, the authors [87], using a parametric diagnostic model of a difference in
phase shifts of signals, presented an analysis of the technical condition of the entire rim of
SO-3 compressor blades. In 2020 [88], they presented another model modification, which
allowed both to examine the technical condition of the blade and its stationary condition
during operation.

The model of a square of amplitude gains has also been implemented for shaft diag-
nostics during their operation [89]. The authors showed the effectiveness of the damage
map to verify the different types of shaft damage in simulation and experimental research.

In the presented article, the authors adapted the square of amplitude gains method
to detect bearing damage (outer race, inner race, bearing ball damage at different depths).
Firstly, a recorded signal of shaft displacement is divided into two observation periods.
Then, the analytical autocorrelation functions are determined and approximated by a poly-
nomial. On their basis, the Fourier transform is used to convert to the spectral (frequency)
form. Thanks to this, it is possible to determine the parameters of the model to which
fixed statistical diagnostic thresholds are assigned. The last step is to convert the model
parameters into color damage maps that are easy to analyze and interpret.

At this stage, the proposed method allows for early detection of bearing technical
conditions (damaged or undamaged). However, based on the parameter values, the authors
cannot indicate the type of damage.

The article is presented as follows: The introduction is presented in Section 1. Section 2
describes the mathematical procedure for determining the model’s parameters and obtain-
ing color damage maps of the bearings. Section 3 presents the measurement stand and
describes the objective and scope of the tests. Section 4 presents the experimental results of
the tests carried out and compares the results obtained (by using FFT analysis and a square
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of the amplitude gains method) for the undamaged and damaged bearings. Conclusions
and discussions are in Section 5.

2. Condition Monitoring Based on the Squared Amplitude Gain of Signals

The mathematical foundations of the method are described in detail in [89].
To use the proposed diagnostic model to monitor the condition of the bearings, sig-

nals of rotor displacements near the supporting bearings during machine operation are
measured and sampled. It is assumed that the rotor is undamaged, its state remains un-
changed, and various bearing damage variants are introduced simultaneously. In this way,
researchers determine the condition of the bearings, using the method described in the
article based on the rotor displacement signals. Finally, as a result of using the method,
damage maps characterizing the technical condition of the bearings are obtained.

In the first step of analyzing the signals obtained from the experimental studies, the
time interval T02, hereinafter referred to as a cycle, is determined for every single revolution.
This interval corresponds to a full revolution of the shaft reduced on the outer parts of the
intervals by several samples so that successive cycles do not overlap. Then the interval T02
is divided into two separate time intervals T01 and T12 (sample sets). Point T1 is common
for both ranges and marks the moment when the shaft surface is farthest from the sensor
face (Figure 1).
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Figure 1. Dividing the signal into two sub-periods T01 and T12.

Each cycle’s number of signal samples must be identical and selected to ensure the
proper statistical evaluation of the measured operational signals. For the tested rotational
speed, the intervals T01 and T12 contain the same number of signal samples, and these
intervals do not overlap. Frequency leakage was reduced by scaling each interval by a
Hanning window.

For the displacement signal y(t) in the assumed time intervals T01 and T12, estimates
of the autocorrelation functions Ryy

T01 and Ryy
T12, are determined, which are then approxi-

mated by analytical expressions (polynomials), ensuring a fit above 0.997.
The correlation function takes the form:

Ryy(τ) = anτn + . . . + a4τ4 + a3τ3 + a2τ2 + a1τ + a0 (1)

where: a0, a1, . . . an—coefficients of the polynomials, n = 0, 1, 2, 3, . . . , r.
The order n of the polynomials should be selected carefully—a too low order will

result in inaccurate approximations, a too high order will result in an excessive number of
polynomial coefficients and longer calculation times.

The described parametric diagnostic model is based on the functions of the spectral
density of the power of the registered rotor vibration signal y(t) in two time intervals (T01,
T12) and the environment x(t). It is assumed that the rotor work signals y(t) and the envi-
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ronment x(t) are stochastic and the disturbed time courses are expressed by autocorrelation
functions Rxx(τ) and Ryy(τ).

Based on the analytical forms of the auto-correlation function, the corresponding
power auto-spectral density functions Syy

T01(jω) and Syy
T12(jω) are determined using the

Fourier transform:
ST01

yy (jω) = F(RT01
yy (τ)) (2)

ST12
yy (jω) = F(RT12

yy (τ)) (3)

In the next step, it is assumed that the power densities of the environment signal
x(t) in time T01, T12–Sxx

T01(jω), and Sxx
T12(jω) have been determined (in the same way

as Syy). Since the observation times are very close to each other, it can be assumed that
the environment has not changed at that time; therefore Sxx

T01(jω) ∼= Sxx
T12(jω). Based

on the above condition, a parametric diagnostic model can be determined in the form of
the quotient of the power density function (square of the amplitude gains), allowing to
eliminate the environment:

A2
T12T01(ω) =

ST12
yy

��ST12
xx

ST01
yy

��ST01
xx

ST12
xx
∼=ST01

xx−−−−−−→
ST12

yy

ST01
yy

=
A∗0 + A∗1s + A∗2s2 + . . . + A∗nsn

B∗0 + B∗1 s + B∗2 s2 + . . . + B∗nsn (4)

where: s—complex variable, s = jω; Ai*, i = 0, 1, . . . , n—numerator estimates parameters;
Bi*, i = 0, 1, . . . , n—denominator estimates parameters; n—polynomial order.

Despite the elimination of the environment, the parameters of the A2
T12T01 model

are directly related to the change in the technical condition of the rotor system supported
on bearings. Therefore, a characteristic feature of the A2

T12T01 model is that it does not
require the measurement of environmental signals. However, it is indirectly considered by
conducting diagnostic tests (two observation periods, determining the diagnostic model as
a quotient of diagnostic models combining diagnostic signals and any environment with
technical condition parameters).

Parameters of the numerator (Ai) and denominator (Bi) of the model are determined
for each cycle of the rotating shaft, thus creating a matrix of parameters, describing the
technical condition of the bearings during the operation-a damage map. The mean value µ
and the standard deviation σ are determined for the corresponding model parameters from
each cycle (e.g., A0 for each cycle—the first column in the matrix of parameters). On their
basis, statistical diagnostic thresholds of the forms µ ± σ, µ ± 2σ, µ ± 3σ are determined.

Then, the determined values of Ai and Bi parameters are compared to the determined
diagnostic thresholds and changed to the appropriate color (Table 1), creating the so-called
damage maps of the technical condition of the object:

• green color if the parameter value did not exceed µ ± σ,
• blue color if the parameter value exceeded µ ± σ,
• red color if the parameter value exceeded µ ± 2σ,
• black color if the parameter value exceeded µ ± 3σ.

Table 1. Legend for the damage maps.

The Predominant Color in
the Damage Map Technical Condition Stationary Condition

Black and red “Serious failure” “Strong” changes of bearing
technical condition

Red “Excessive wear” “Weak” changes of bearing
technical condition

Green and blue “Slight or no wear” “Slight” changes of bearing
technical condition
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This way, a damage map of the bearing is obtained, showing its technical condition.
For example, if there are many black colors, the bearing is damaged, red means increased
bearing wear, and green and blue colors mean little or no wear. This approach shows an
unambiguous picture of the bearing damage assessment.

3. Experimental Test Stand

The proposed damage detection method was experimentally verified on the stand
operated at the Bialystok University of Technology (Figure 2 and Table 2). The main element
of the test stand is the rotor mounted on two ball bearings (1a–on the brake side and 1b–on
the drive side), driven by an electric motor (2) with adjustable speed (up to 2000 rpm).
The rotor consists of three parts: the middle part is a replaceable shaft (3), and the outer
parts are the drive shaft and the braking shaft supported on the bearings. The shafts are
connected into one rotor using conical fits and flanges with bolts ensuring, on the one hand,
the axial symmetry of the rotor and, on the other, quick and simple reconfiguration of the
shafts. Mass discs (4) are attached to the outer shafts. At the shaft’s end, an electromagnetic
brake (7) enables the torsional load introduction. The radial positions of the shaft near both
bearings are measured by eddy current sensors placed in the horizontal and vertical planes,
two at each bearing. Variants of the bearing damage were implemented in the support
closer to the drive (1b).
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Figure 2. Measurement test rig: 1—ball bearings (a—on the brake side, b—on the drive side);
2—motor; 3—shaft; 4—mass disc; 5—accelerometers; 6—eddy current sensors; 7—electromagnetic
brake; 8—control panel.

Table 2. Experimental test stand parameters.

Parameter Description Value [Unit]

Bearing type SKF 1207K EKTN9
Rotational speed max 2 000 [rpm]

Shaft critical speed 3200 [rpm]
Load torque

No external forcesRadial force
Sampling time 60 [s]
Sampling rate 8192 [Hz]
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The object of the tests was the SKF 1207K bearing (Figure 3) with the parameters listed
in Table 3:

Table 3. Parameters of ball bearing SKF 1207K EKTN9 [90].

Parameter Value [Unit]

Manufacturer’s model 1207 EKTN9
Outer diameter 72 [mm]
Inner diameter 35 [mm]

Outer ring periphery diameter 60.9 [mm]
Inner ring periphery diameter 47 [mm]

Width 17 [mm]
Weight 0.32 [kg]

The bearings were tested in five configurations: undamaged, with cut outer and inner
race, with the cut ball at a depth of 1, 2, and 3 mm and width 0.3 mm. The registration of
the diagnostic signals was implemented by eddy current sensors, positioned radially to the
rotating shaft in the vertical Y and horizontal X axes (two sensors at each bearing).

The tested bearing is shown in Figure 3a and the types of its damage are presented in
Figure 3b–f.
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Figure 3. Ball bearing SKF 1207K: (a) undamaged; (b) with cut outer race; with the cut ball at the
depthof: (c) 1 mm; (d) 2 mm; (e) 3 mm; (f) with cut inner race.

4. Experimental Results

To better show the type and influence of the simulated bearing faults on the measured
vibrations, the authors prepared an FFT analysis of all damage signals for 900 rpm.

The frequencies of bearing 1207K, calculated for speed 900 rpm, are shown in Table 4:
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Table 4. Frequencies of ball bearing SKF 1207K EKTN9 [90].

Parameter Value [Unit]

Rotational frequencies:
Inner ring 15 [Hz]
Outer ring 0 [Hz]

Rolling element set and cage 6.285 [Hz]
The rolling element about its axis 44.581 [Hz]

Frequencies of over-rolling:
A point on the inner ring 130.72 [Hz]
A point on the outer ring 94.28 [Hz]

Rolling element 89.162 [Hz]

Based on the expected frequencies (Table 4) and the obtained frequency characteristics
(Figures 4 and 5), the bearing faults are visible. However, the damages are not significant
in the frequency characteristics, this is due to the narrow cut on the bearing elements.
More significant bearing faults are visible in the amplitude change and new frequencies
appearance [41]. However, the authors wanted to introduce minor damage.
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Figure 5. The FFT analysis of the recorded shaft displacement signal influenced by the vibration
signal coming from bearing (brake side) SKF 1207K: (a) with cut inner race; (b) with cut outer race;
with the cut ball at the depth of: (c) 1 mm; (d) 2 mm; (e) 3 mm.

Upon determining the frequency characteristic, the analysis was carried out using a
squared amplitude gain method.

Examples of displacement signals of one shaft revolution obtained at the sampling
frequency of 8192 Hz for each variant of bearing damage are shown in Figure 6.

The recorded experimental signals included the course of shaft vibrations during
rotation for 60 s after the stabilization of the set rotational speed. In addition, measure-
ments were carried out for rotational speeds from 100 every 100 to 2000 rpm and for each
damage variant.

The shaft vibration signal from each sensor, containing many successive shaft revolu-
tions, was divided into single revolutions. The analysis of the results was presented for
the rotational speed of 900 rpm, and the signals were recorded for eddy current sensors
located radially to the shaft in the vertical axis.

For the exemplary speed of 900 rpm, 900 cycles were obtained, corresponding to the
number of shaft revolutions per minute. In each analysis, the first and last cycles were
discarded, assuming they could represent an incomplete shaft rotation. For each of the
cycles, the procedure was performed following the description of the model (Section 2).
First, the Hanning window was used, and then the signal autocorrelation was determined.
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The autocorrelation result was approximated by a polynomial, where the coefficient of
determination R2 measured the level of the polynomial fit. Following some preliminary
calculations, the order of approximating polynomials of the auto-correlation function was
chosen as n = 5, which gives the coefficient of determination R2 > 99.97%. Adoption of the
lower orders of polynomials leads to lower values of the coefficients of determination (i.e.,
less accurate approximations). Higher orders do not noticeably improve the approximation
accuracy (because it is already close to 1), but they significantly extend the calculation time
and the number of coefficients to analyze.
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Figure 6. The recorded shaft displacement signal influenced by the vibration signal coming from the
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Examples of auto-correlation functions and their fifth-order polynomial approxima-
tions in two observation zones of the selected cycle of the rotor displacement signal (from
Figure 1) are shown in Figure 7.
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on a depth of 1 mm) with the matching curve: (a) during the observation period T01; (b) during the
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The damage map of the bearing technical condition consists of the 30 cycles, randomly
selected (which is a statistical sample) from all (for a speed of 900 rpm, 900 cycles) recorded
cycles, for a given speed. It is expected that the damage maps obtained for each draw will
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give the same picture of the technical condition of the bearing (which will confirm the
method’s effectiveness).

First, a damage map was created for the undamaged bearing. The diagnostic thresh-
olds set for it were the reference thresholds used for damaged bearings. The damage map
contains 30 rows marked with numbers of randomly selected cycles and 12 columns, which
consist of coefficients of 5th-order polynomials (six coefficients each) for the numerator
and denominator of the model. Comparing the model results for different damage variants
is possible, using only the same degree of the matching polynomial. The numbers of the
damaged bearings cycles were the same as for the previously randomly selected cycles of
the undamaged bearing.

The technical condition of the bearing is represented by 12 coefficients: six in the first
observation period (T01) and six in the second observation period (T12). These zones are visi-
ble as the left and right parts of the technical condition damage maps (Figures 8a–f and 9a–f),
separated by a thick black line.
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Figure 9. The damage map of bearing (brake side) SKF 1207K: (a) undamaged; (b) with a damaged
outer race; with the cut ball at the depth of: (c) 1 mm; (d) 2 mm; (e) 3 mm; (f) with cut inner race.

Based on Figures 8 and 9, it can be seen that the technical condition of each bearing is
clearly and unambiguously indicated on the damage maps obtained. Dominant red and
black fields are characteristic of severely damaged bearings. Moreover, the undamaged
bearing is dominated by blue and green. Since damage thresholds are based on statistics,
slight variations between the colors of a given damage map are possible. Therefore,
it is important to analyze the map globally for a reasonable number of rotation cycles
(map rows).

Damage maps can present the technical condition of all analyzed bearings in a concise,
graphical form. Based on the generated maps (Figures 8 and 9), it is possible to present
a quantitative form of the technical condition. Collective graphs of quantitative analysis
(Figure 10) will facilitate the comparison of damage maps in terms of the increase in the
number of black and red fields and the decrease in green in relation to the increasing damage.
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Figure 10. Collective characteristics of the damage maps of the SKF 1207K bearing from the side of:
(a) the drive (b) the brake for the shaft speed of 900 rpm.

Figure 10 presents a quantitative summary of all tested bearing variants at the rotor
speed of 900 rpm (Figure 10a-bearing closer to the brake, 10b-bearing closer to the drive).
Bearing variants are marked on the horizontal axis (a–undamaged bearing; b–with a
damaged outer race; with the cut ball at the depth of: c–1 mm; d–2 mm; e–3 mm; f–with a
damaged inner race), and on the vertical axis the number occurrences of a given color. It
can be seen in both types of figures that the undamaged variant significantly dominates
over the others in the case of the threshold not exceeding µ ± σ (green), while the values of
the thresholds indicating damage have the lowest. It can also be noticed that in the case
of bearing balls with cuts 1, 2 and 3 mm deep, the threshold µ ± σ decreases (green) while
the threshold µ ± 2σ increases (black). High values of black and red colors are visible for the
variant of the bearing’s outer race damage, as a result of which, during the rotation of the
shaft, all of the balls in the bearing hit the discontinuity of the race, generating vibrations.
The highest values of black color can be seen for the bearing with the cut inner race. In this
case, balls more frequently hit the cut point on the inner race than in the outer race.

Summarizing the results presented in the collective characteristics (Figure 10), the
number of occurrences of the black, red, blue, and green color fields is collected in Table 5.
As can be seen from the damage maps, where the damage to the ball was 1 mm deep
(Figure 9c) and 2 mm deep (Figure 9d), it is difficult to see an increase in the number of
parameters. Therefore, a good complement to the damage maps of the technical condition
is their quantitative analysis, from which it is already clear that there was an increase in the
number of red and black fields between the indicated damage.

Table 5. Number of color fields in subsequent damage maps presented in Figures 8 and 9.

Selection Bearing No 1 Bearing No 2

black red blue green black red blue green

Undamaged bearing 0 11 77 272 1 13 117 229
Damaged outer race 101 53 96 110 149 31 57 123

Cut ball at a depth of 1 mm 6 40 102 212 63 42 113 142
Cut ball at a depth of 2 mm 6 43 109 202 91 56 81 130
Cut ball at a depth of 3 mm 35 34 107 184 157 39 66 96

Damaged inner race 259 18 34 49 256 9 41 54

The presented results reflect the technical condition of the bearing. In its current
form, the method cannot determine the type of bearing damage based on the damage map,
e.g., damage to the bearing ball to a depth of 1 or 3 mm. However, it is very effective for
detecting when a bearing goes from a usefulness condition to failure (damage).



Appl. Sci. 2023, 13, 2160 13 of 16

5. Summary

The parametric method of bearing failure detection presented in the article is based
on auto-correlation and power spectral density functions. The signal is analyzed in two
separate periods. When the space between the analyzed intervals is close to each other, the
influence of external disturbances is eliminated. Therefore, each change in the parameters of
the diagnostic model should be interpreted as a change in the machine’s technical condition.

Markings of bearing damage are decipherable and presented in the form of character-
istic color maps, where dominant green and blue indicate an undamaged bearing or very
low wear, red—increased wear, or black—bearing damage. The exact location of the colors
on the damage maps may vary as the diagnostic thresholds are determined by the mean
and standard deviation, i.e., statistical parameters. Therefore, it is not the exact locations
that are important but the predominance of a particular color. It should also be noted that
the described parametric method should not be used on small datasets because it requires
the determination of diagnostic thresholds based on statistical operations.

The experimental results confirmed that the method can reliably detect bearing dam-
age. Furthermore, the method is simple and uses only measured vibration data (signal
from one sensor is sufficient). Therefore, preliminary preparation of the rotor for testing is
not required. Furthermore, displacement is measured on the shaft, so the bearing could be
inaccessible or difficult to reach. In addition, the machine can be continuously monitored
online. This conclusion allows for the future practical implementation of the method.

At the current stage of development, the method can only warn about the detection of
bearing damage (the method cannot indicate the type of damage). Therefore, informing
the maintenance staff about the need to carefully look at the bearing (when blue and red
colors dominates) or to replace it (when the damage map is mostly red and black) becomes
a possibility.

The next stages of the method developed in diagnosing bearings will be continued in
subsequent articles.
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