
Citation: Dimitrakopoulos, G.N.;

Kakkos, I.; Anastasiou, A.;

Bezerianos, A.; Sun, Y.; Matsopoulos,

G.K. Cognitive Reorganization Due

to Mental Workload: A Functional

Connectivity Analysis Based on

Working Memory Paradigms. Appl.

Sci. 2023, 13, 2129. https://doi.org/

10.3390/app13042129

Academic Editor: Flavia Ravelli

Received: 21 December 2022

Revised: 30 January 2023

Accepted: 2 February 2023

Published: 7 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Cognitive Reorganization Due to Mental Workload: A
Functional Connectivity Analysis Based on Working
Memory Paradigms
Georgios N. Dimitrakopoulos 1 , Ioannis Kakkos 2,3 , Athanasios Anastasiou 2 , Anastasios Bezerianos 4 ,
Yu Sun 5,6 and George K. Matsopoulos 2,*

1 Bioinformatics and Human Electrophysiology Lab (BiHELab), Department of Informatics, Ionian University,
49100 Corfu, Greece

2 Biomedical Engineering Laboratory, School of Electrical and Computer Engineering,
National Technical University of Athens, 15780 Athens, Greece

3 Department of Biomedical Engineering, University of West Attica, 12243 Athens, Greece
4 Hellenic Institute of Transport, Center for Research and Technology Hellas, 57001 Thessaloniki, Greece
5 Key Laboratory for Biomedical Engineering of Ministry of Education of China, Zhejiang University,

Hangzhou 310027, China
6 State Key Laboratory for Brain-Computer Intelligence, Zhejiang University, Hangzhou 310027, China
* Correspondence: gmatso@biomed.ntua.gr

Abstract: Mental workload has a major effect on the individual’s performance in most real-world
tasks, which can lead to significant errors in critical operations. On this premise, the analysis and
assessment of mental workload attain high research interest in both the fields of Neuroergonomics
and Neuroscience. In this work, we implemented an EEG experimental design consisting of two
distinct mental tasks (mental arithmetic task, n-back task), each with two conditions of complexity
(low and high) to investigate the task-related and task-unrelated workload effects. Since mental work-
load is an intricate phenomenon involving multiple brain areas, we performed a graph theoretical
analysis estimating the Phase Locking Index (PLI) in four frequency bands (delta, theta, alpha, beta).
The brainwave-dependent network results show statistically significant reductions in clustering
coefficient, characteristic path length, and small-worldness metrics with higher workload in both
tasks across several bands. Moreover, functional connectivity analysis indicates a task-independent
fashion of the brain topological re-organization with increasing mental load. These results revealed
how the brain network is re-organized with increasing mental workload in a task-independent way.
Finally, the network metrics were used as classification features, leading to high performance in
workload level discrimination.

Keywords: EEG; mental workload; brain network; functional connectivity

1. Introduction

In general, performing cognitive tasks with increased difficulty requires more brain
resources, leading to higher mental workload. On this premise, a large number of stud-
ies have been dedicated in the assessment of mental workload, especially in the field of
Neuroscience [1,2]. To that end, a variety of cognitive tasks have been applied [3] (with
different complexity conditions) to assess mental workload, ranging from working memory
manipulations (e.g., n-back, mental arithmetic) and operator performance (e.g., NASA
multi-attribute task battery) to simulations of real-life settings (e.g., car driving [4,5], aircraft
flying [5,6], and air traffic monitoring [7] simulations). Furthermore, brain activity record-
ing modalities provide evidence of the complex neurophysiological mechanisms governing
cognitive load and subsequently, mental exhaustion. As such, electroencephalography
(EEG) is the most common method employed, allowing the monitoring of the brain electri-
cal activity with high-temporal resolution in a non-invasive manner. In this regard, several
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studies have examined the brain properties in high-mental-load conditions, utilizing EEG-
based features both in the time (such as event-related potentials (ERPs) [8], and in frequency
domain, such as power spectral density (PSD) [3]). Furthermore, recent development of
mobile dry electrodes EEG devices allow monitoring of real-time activities such as car
driving [9,10] and aircraft piloting [11]. Nevertheless, the usually smaller number of dry
EEG sensors (in few scalp areas), deter the complete comprehension of the underlying
mechanisms involved in mental workload management by the brain.

Due to the complexity of the higher cognitive functions and the intricate flow of
information between multiple brain regions, graph theory can provide an insightful ap-
proach on the brain functional reorganization regulating cognitive load [12,13]. As such, the
functional connections paired with Artificial Intelligence (AI) frameworks can shed light
on the mental workload neural characteristics, as well as to predict the mental workload
impact of tasks in everyday life. On this premise, our previous works investigate the
human brain connectome, employing brain networks as classification features for mental
workload level prediction in both sensor [14] and source spaces [15]. In other relevant
study [16], the Weighted Phase Lag Index (WPLI) networks were used to assess mental
workload in dual-task walking. Furthermore, in [6], mental workload in three levels was
examined in a flight simulation scenario, revealing different functional connectivity pat-
terns in 2D and 3D environments. Another approach for classification of multilevel mental
workload is to create a fusion of features based on power, functional connectivity, and
network metrics therefore allowing greater variability of the inputs of the classification
procedure [17]. In a similar fashion, a combination of EEG and functional near-infrared
spectroscopy (fNIRS) has been utilized to construct brain connectivity networks, subse-
quently used to classify multi-level mental workload [18]. More recently, a study using a
deep learning classifier examined three brain connectivity methods, Phase Transfer Entropy
(PTE), Mutual Information (MI), and Phase Locking Value (PLV), with the latter providing
superior performance [19]. To that end, several studies utilize a combination of different
task in order to find common patterns, unrelated to the task performed (usually employing
cross-task classification, where machine learning models trained on one task and tested
on another) [20,21]. For instance, in a recent study, recurrent 3D convolutional neural
networks were trained on spatial n-back and mental arithmetic tasks based on spatial,
spectral and temporal features [22]. Similarly, in [23], four mental workload tasks were
evaluated with a dynamic network analysis. Interestingly, in several studies network
metrics have been used as input in classification exploiting their ability to discriminate
between conditions. These usually include degree, clustering coefficient, characteristic
path length and small-worldness [24,25]. This is not limited to mental workload but also
in a variety of different tasks across different conditions. The most common examples of
network metric classification involve prediction in tasks such as intention decoding [26]
and diagnosis of diseases, such as major depressive disorder [27], essential tremor [28], and
Parkinson’s Disease [29].

In this work, a two-workload-level (low and high) EEG experiment was carried out,
employing two separate working memory (WM) tasks; i.e., an n-back and an arithmetic
task. The recorded EEG data were utilized to create a Phase Lag Index (PLI) functional
connectivity network, allowing to estimate graph theory metrics. Results showed statis-
tically significant differences in the clustering coefficient, characteristic path length, and
small-worldness network metrics, revealing different topological organization of the brain
with increased mental workload. Subsequently, the network metrics were utilized as classi-
fication features for the discrimination between low- and high-mental-load levels, attaining
high performance (over 0.70 classification accuracy in both tasks).

2. Materials and Methods
2.1. Participants

This study included 40 participants (17 males, 23 females, mean age = 21.6 ± 1.6 years),
all right-handed and with normal or corrected-to-normal vision. Exclusion criteria included
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no history of mental diseases or ADHD, sleep disorders, or long-term medication intake,
while participants were asked to sleep at least 7 h before the experiment and not to con-
sume caffeine or alcohol. An approval decision was given by the Institutional Review
Board of the National University of Singapore (NUS). All participants provided written
informed consent.

2.2. Experimental Design

In this study, two working memory (WM) cognitive tasks, n-back and mental arith-
metic with two levels of complexity, low- and high-workload levels) were used (Figure 1a).
The E-Prime 2.0 software (Psychology Software Tools Inc., Pittsburgh, Pennsylvania, USA)
was used for stimulus presentation. The two tasks were performed two times each with
random order. A button was required to be pressed for both target and non-target stimuli,
while no feedback was provided.
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Figure 1. (a) The experimental design with two tasks and two mental workload levels. The target
trials are indicated in red font. (b) The analysis flowchart.

2.2.1. n-Back Task

Two versions of n-back task were employed for n = 0 and n = 2, corresponding to low-
and high-workload levels. In 0-back condition, it was requested from the participants to
respond to the presence of letter X, while in 2-back to the uppercase letter shown two trials
earlier. Each session contained 150 trials, with 30% of them being the target stimuli. All
stimuli were displayed for 0.5 s followed by a fixation cross for 1.5 s.

2.2.2. Mental Arithmetic Task

The addition of two numbers with one-digit and three-digit numbers were employed
as low- and high-workload levels, respectively. After showing the addition, either the
correct sum or a number close in value was shown. The subjects were asked to identify if
the addition result was correct or not. Each session contained 25 trials (12 target stimuli).
The additions were displayed for 5 sec followed by a fixation cross for 4 s and the answers
were shown for 2 s followed by a fixation cross for 2 s.

2.3. Data Recordings and Preprocessing

EEG data were acquired from 62 Ag/AgCl scalp electrodes according to the inter-
national 10–20 system using ASA Lab (ANT B.V., Hengelo, The Netherlands). Electrode
impedance was kept below 10 kΩ throughout the experiment and the sampling frequency
was 256 Hz. Additionally, horizontal and vertical electrooculograms (EOG) were acquired.
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The EEG preprocessing steps involved F-IR band-pass filtering (1–40 Hz), re-referencing
to the average of all electrodes and noise removal. The noise from eye movement was
eliminated by performing independent component analysis (ICA) [30] and rejecting the
components which were highly correlated with the EOG signals. Data were detrended and
epochs were extracted based on stimuli and baseline was removed based on (−100 ms,
0 ms) interval before stimulus presentation. Only epochs that corresponded to correct
answers by the participants were selected for further analysis in order to alleviate men-
tal workload-irrelevant cognitive stimuli [31]. All preprocessing steps were performed
using the EEGLAB toolbox [32] in MATLAB version 2019b (Mathworks Inc., Natick, Mas-
sachusetts, USA). An overview of all processing steps is provided in Figure 1b.

2.4. Brain Connectivity Estimation

In order to study the brain response to mental workload, weighted brain networks
were constructed between all electrodes using the PLI method [33]. EEG signals were
divided in delta (δ, 1–4 Hz), theta (θ, 4–7 Hz), alpha (α, 8–12 Hz), and beta (β, 13–30 Hz)
frequency bands. A PLI brain network was created for each subject, task, and frequency
band. For a pair of electrodes i, j, PLI is defined as:

Wij =
1
T

T

∑
t=1

∣∣sign
(

ϕi(τ)− ϕj(τ)
)∣∣ (1)

where ϕ is the phase obtained by Hilbert transformation and T is the number of time points.
PLI indicates the degree of synchronization between a pair of channels and ranges in the
interval (0, 1).

2.5. Network Analysis

To investigate the task-independent network properties and deepen our perception
in regards of the workload-related reorganization of the underlying brain structures, we
used graph theoretical analysis to detect task-independent workload-related common
topological patterns. Small-world properties were originally proposed by Watts and
Strogatz as the concept of connected adjacent subsets of vertices contained within the
network, indicated by higher local clustering coefficient and equivalent characteristic path
length compared with random networks [34]. Hence, small-world parameters—including
clustering coefficient, characteristic path length, and small-worldness—were estimated
in this work. The estimation of these graph theoretical metrics was performed using the
Brain Connectivity Toolbox [35]. The grand network average of all trials was calculated
for each subject, estimating a mean network for each task, workload level, and condition.
A common sparsity was applied to all networks (i.e., keeping a specific percentage of the
connections with highest weights) before computing the network metrics to ensure the
equivalent wiring cost. Here, we used a wide range of sparsity (15–30% with 1% step)
in order to reduce the dependency of any significant differences in network topology on
the arbitrary choice of a single threshold. Then, we calculated the integral of the network
metrics with respect to sparsity—i.e., the area under curve (AUC)—for the following
statistical analysis [36].

Let G be a weighted directed network with N nodes (N = 62 in this work), wij the
weight of the edge from node i to j as calculated by PLI functional connectivity and H the
adjacency matrix (Hij = 1 if wij 6= 0).

Clustering coefficient quantifies the degree of local neighborhoods to form a complete
network. Clustering coefficient Ci of a node i is defined as [37]:

Ci =
∑j 6=i,k 6=i,k 6=j

(
w1/3

ij + w1/3
ji

)(
w1/3

jk + w1/3
kj

)(
w1/3

ik + w1/3
ki

)
2
[
(H + HT)i((H + HT)i − 1)− 2H2

ii
] (2)
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The clustering coefficient C of the network is the average of the clustering coefficient
across all nodes:

C =
1
N

N

∑
i=1

Ci (3)

Characteristic path length quantifies how efficiently information is transferred in a
network [35]. The shortest path length Lij from node i to node j is defined as the minimum
number of directed edges connecting the two nodes. The characteristic path length L of a
network is defined as the average of the shortest path length between all node pairs:

L =
1

N(N − 1) ∑
i 6=j

Lij (4)

Small-worldness is a measurement to evaluate the small-world properties and is
defined as the ratio of the normalized clustering coefficient to the normalized characteristic
path length. The normalization is performed based on matched random networks [38]:

σ =
C

Crand
/

L
Lrand

(5)

where Crand and Lrand represent the mean clustering coefficient and the mean characteristic
path length of the random networks. Here, 100 random networks were created, which were
derived from the original brain network by randomly shuffling the edges while preserving
the number of nodes and edges, degree distribution, and connectedness.

2.6. Statistical Analysis

The Shapiro–Wilk test was performed to ensure that the network metrics were nor-
mally distributed. Then, a repeated-measures two-way ANOVA test was performed for
each metric with factors the workload level and the task. For significant cases, a post-hoc
paired t-test was performed. For all tests, a significance threshold of 0.05 was used.

2.7. Classification

The aforementioned metrics were used as features for classification of mental work-
load. In total 12 features were extracted (three metrics by four frequency bands), while
the integrated value across sparsity level was used. The classification algorithms were
K-nearest neighbors (KNN) using K = 15, support vector machines (SVM) with radial
basis function kernel, and random forest (RF) with 100 trees. Training and testing were
performed with 10-fold cross-validation, while whole subject data were assigned either to
training or to testing subset. Data were normalized (as centralized values) per subject to
account for individual differences by subtracting the mean of each feature.

3. Results
3.1. Network Topology

In Figure 2, the 100 edges with highest PLI value are shown on scalp maps for each
task, workload condition and frequency band. Most of the connections are located in
parietal–occipital areas as well as in frontal areas, while few connections are present in
central and temporal areas. Of note, the interactions are about equally distributed across
the two hemispheres.
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3.2. Network Metrics Analysis

The global topological alterations of the estimated brain network were quantitatively
examined via graph theoretical analysis. Particularly, small-world network properties—
including clustering coefficient, characteristic path length, and small-worldness—were
estimated. The network metrics (averaged across participants) for each task and workload
level are shown for 30% sparsity in Figure 3. Some differences in values are observed for
each task, due to their different demands. It seems there is little difference across frequency
bands. However, in almost all cases, it is obvious that metric values are decreasing with
increased workload level. Similar patterns were observed in other sparsity levels.

Statistical analysis was performed via a repeated-measures two-way ANOVA to assess
the workload effects on brain network reorganization. The AUC of each metric over sparsity
level was calculated and was used for statistical analysis for all participants together. Data
were normally distributed according to Shapiro–Wilk test (p > 0.05). Given that our primary
objective was to reveal task-independent mental workload influence on brain activities, we
focus mainly on the workload effects (Table 1). Specifically, for the clustering coefficient, a
significant workload effect was found for all frequency bands (p < 0.05) and the post-hoc
paired t-test revealed significant decrement for all bands for the n-back task (p < 0.05)
and in θ and α for the mental arithmetic (p < 0.05). For the characteristic path length, a
significant workload effect (F1,316 = 4.50, p = 0.04) as well as significant interaction of task
and workload factors (F1,316 = 4.75, p = 0.03) were detected in β band, although the t-test
analysis presented significant decrement only for the n-back task (t79 = 3.20, p = 0.002).
Finally, the small-worldness metric displayed significant workload effects in θ (F1,316 = 8.61,
p = 0.004) and α bands (F1,316 = 7.69, p = 0.006), with the post-hoc analysis further confirming
the significant decrement for both tasks (p < 0.05). In all statistically significant cases, a
common trend was observed—i.e., a decrement of the network metric values—revealing
the way of brain network reconfiguration with the increase in workload levels.
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(LW) and high workload (HW) conditions. Network sparsity was set to 30%. Significance level is
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Table 1. Statistical results for the network metrics (ANOVA—workload factor F1316).

Frequency
Workload Effect (F-Value (p-Value))

Clustering Coefficient Char. Path Length Small-Worldness

Delta 5.91 (0.016) 2.495 (0.115) 2.581 (0.109)
Theta 12.618 (<0.001) 1.153 (0.284) 8.607 (0.004)
Alpha 7.785 (0.006) 0.027 (0.869) 7.694 (0.006)
Beta 5.491 (0.02) 4.498 (0.035) 2.184 (0.141)

Note: Fonts in bold indicate the statistically significant effects p < 0.05.

3.3. Classification

Since the metrics showed high capabilities of separating mental workload, they were
used as classification features. Indeed, satisfactory classification performance was achieved
(Table 2). Best performance was obtained by the RF algorithm for the n-back task (75%) and
KNN for the arithmetic task (70%). The confusion matrices are displayed in Figure 4. We
observe that the falsely classified instances are equally distributed between the two classes,
indicating no bias towards a specific class.
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Table 2. Classification accuracy (mean and standard deviation across 10 folds).

Algorithm n-Back Arithmetic Task

SVM 0.733 (0.099) 0.671 (0.088)
KNN 0.731 (0.073) 0.702 (0.091)

RF 0.748 (0.124) 0.625 (0.090)

Appl. Sci. 2023, 13, x FOR PEER REVIEW 8 of 12 
 

 

Table 2. Classification accuracy (mean and standard deviation across 10 folds) 

Algorithm n-Back Arithmetic Task 
SVM 0.733 (0.099) 0.671 (0.088) 
KNN 0.731 (0.073) 0.702 (0.091) 

RF 0.748 (0.124) 0.625 (0.090) 

 
Figure 4. The confusion matrix for each classifier and task. 

4. Discussion 
In this work, mental workload was examined across two different working memory 

tasks, n-back, and mental arithmetic. Towards this aim, brain connectivity was estimated 
employing PLI method. The connections with highest strength are mostly located on pa-
rietal-occipital areas as well as in frontal areas. This pattern appears in all task and work-
load conditions across all frequency bands. Similar findings have been reported in litera-
ture. In a large meta-analysis of 85 brain imaging studies utilizing functional magnetic 
resonance imaging (fMRI) and positron emission tomography (PET) on various types of 
n-back tasks, bilateral frontal and parietal regions were found most frequently activated 
[39]. Regarding the frequency bands related with mental workload, in an EEG study [40] 
frontal areas were activated in δ, θ, α, and β bands, while parietal-occipital areas were 
activated in θ, α, and β bands. In an EEG experiment [16], mental workload was found to 
affect functional connections between Fz and parietal areas in high alpha band, while in 
[41] frontal theta activity was found to be highly associated with mental workload. Isola-
tion of specific locations and frequency bands is important for efficient real-time perfor-
mance, for example frontal EEG from a single channel EEG device (Fp1 electrode) was 
used for mental workload monitoring in four cognitive and motor tasks [42]. 

Examining the complex brain topological architectures of the PLI network, signifi-
cant alterations were observed in the clustering coefficient, characteristic path length as 
well as in small-worldness metrics. Decrements in clustering coefficient indicate that the 
network is becoming less dense locally, i.e., the neighbor nodes tend to become less con-
nected. Decrements of characteristic path length indicate that remote nodes become more 
connected. Combining those two observations—since the number of edges is the same in 

Figure 4. The confusion matrix for each classifier and task.

4. Discussion

In this work, mental workload was examined across two different working memory
tasks, n-back, and mental arithmetic. Towards this aim, brain connectivity was estimated
employing PLI method. The connections with highest strength are mostly located on
parietal-occipital areas as well as in frontal areas. This pattern appears in all task and
workload conditions across all frequency bands. Similar findings have been reported in
literature. In a large meta-analysis of 85 brain imaging studies utilizing functional magnetic
resonance imaging (fMRI) and positron emission tomography (PET) on various types of
n-back tasks, bilateral frontal and parietal regions were found most frequently activated [39].
Regarding the frequency bands related with mental workload, in an EEG study [40] frontal
areas were activated in δ, θ, α, and β bands, while parietal-occipital areas were activated
in θ, α, and β bands. In an EEG experiment [16], mental workload was found to affect
functional connections between Fz and parietal areas in high alpha band, while in [41]
frontal theta activity was found to be highly associated with mental workload. Isolation
of specific locations and frequency bands is important for efficient real-time performance,
for example frontal EEG from a single channel EEG device (Fp1 electrode) was used for
mental workload monitoring in four cognitive and motor tasks [42].

Examining the complex brain topological architectures of the PLI network, significant
alterations were observed in the clustering coefficient, characteristic path length as well as
in small-worldness metrics. Decrements in clustering coefficient indicate that the network
is becoming less dense locally, i.e., the neighbor nodes tend to become less connected.
Decrements of characteristic path length indicate that remote nodes become more connected.
Combining those two observations—since the number of edges is the same in all networks
in a specific sparsity level—the conclusion is that the network is rewired, and more edges
are present between remote nodes, making more efficient long-range communication.
The fact that communication between remote nodes is improved might be the effect of
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increased task demands, in the sense that more brain resources are required to perform a
more difficult task. Decrement of small-worldness shows that the clustering coefficient has
decreased at a larger rate than the characteristic path length. Thus, higher workload has
more negative impact on local communication than improvement of global communication.

In detail, concerning clustering coefficient, a significant workload effect was apparent
for all frequency bands and particularly a converse correlation with cognitive load levels
was observed for θ and α frequency bands in the mental arithmetic and in all bands for
the n-back, presenting a less clustered network with increasing task difficulty. Consistent
with this observation, other studies also report a reduction in the local density of connec-
tions with respect to increased cognitive effort especially for WM task [43,44] indicating
a functional segregation of the brain network. In a similar manner, the small-worldness
metric demonstrated significant effects in θ and α bands with regard to mental load in
both tasks. On the grounds of this, the small-world network organization indicates the
coordination between the dispersed cognitive resources and the level of global network
integration in high-demand WM tasks [45]. Consequently, the θ and α small-worldness
decrement relative to workload augmentation is in agreement with analogous reports from
task condition complexity modulation, illustrating that the brain network is shifting away
from small-world organization [43]. Another important matter is the fact that a significant
interaction of task and workload in the characteristic path length for β band was identified,
although the divergence was distinguishable by the post-hoc analysis only with reference
to the n-back task. As such, this decrement in the path length could be an indication of the
variability of performance on WM, being more pronounced in the n-back, while implying
an enhancement in the topological efficiency of information transfer between and across
remote brain regions [46,47].

Finally, classification was performed, utilizing the network metrics as features. The
highest accuracy obtained was 75% for n-back task and 70% for arithmetic task. Of note, a
very small number of features was used, which eliminates the need for feature selection
and enables fast predictions. We note that the accuracy is high compared to chance level
(50%); however, higher accuracy would be required for real-life applications. In the lit-
erature, accuracy up to 94% has been reported for similar tasks based on more complex
feature selection and extraction schemes [14]. As such, while the network metrics provide
consistent evidence about the brain re-organization, their values differ across tasks and
participants, which has the effect of reduced classification efficiency. Despite this, network
metrics alone have not been used as a feature for mental workload classification (and are
usually combined with other types of features/characteristics) to the best of our knowledge.
The performance of the machine learning methods employed in this study, illustrates
the efficiency of graph theoretical measures in workload assessment. In the future, more
sophisticated classifiers—such as deep neural networks—can be tested, in order to achieve
higher performance, as well as to estimate additional network metrics. Furthermore, these
network metrics can be combined with other types of features, such as power spectral
density or network weights.
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