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Nikola And̄elić *,† , Sandi Baressi Šegota † , Matko Glučina and Zlatan Car
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Abstract: The Super Cryogenic Dark Matter Search (SuperCDMS) experiment is used to search for 
Weakly Interacting Massive Particles (WIMPs)—candidates for dark matter particles. In this 
experiment, the WIMPs interact with nuclei in the detector; however, there are many other interactions 
(background interactions). To separate background interactions from the signal, it is necessary to 
measure the interaction energy and to reconstruct the location of the interaction between WIMPs 
and the nuclei. In recent years, some research papers have been investigating the reconstruction of 
interaction locations using artificial intelligence (AI) methods. In this paper, a genetic programming-
symbolic regression (GPSR), with randomly tuned hyperparameters cross-validated via a five-fold 
procedure, was applied to the SuperCDMS experiment to estimate the interaction locations with 
high accuracy. To measure the estimation accuracy of obtaining the SEs, the mean and standard 
deviation (σ) values of R2, the root-mean-squared error (RMSE), and finally, the mean absolute error 
(MAE) were used. The investigation showed that using GPSR, SEs can be obtained that estimatethe 
interaction locations with high accuracy. To improve the solution, the five best SEs were combined 
from the three best cases. The results demonstrated that a very high estimation accuracy can be 
achieved with the proposed methodology.

Keywords: cross-validation; genetic programming; interaction location; SuperCDMS; symbolic 
regression

1. Introduction

The Cryogenic Dark Matter Search (CDMS) can be described as a series of specially
designed experiments that are used to detect Weakly Interacting Massive Particles (WIMPs),
i.e., dark matter, using an array of semiconductor detectors at extremely low temperatures
(mK). The exact definition of WIMPs does not exist; however, they are described as hy-
pothetical new elementary particles (candidates for dark matter) that interact via gravity
and other forces and are not part of the Standard Model. The product of every particle
interaction in the germanium and silicon substrate produces ionization and phonons, which
are measured using CDMS detectors [1]. The measurement of ionization and phonons
determines the energy deposited in the crystal for each interaction and provides informa-
tion on which kind of particle caused the event. Every particle’s interaction with atomic
electrons (electron recoils) and atomic nuclei (nuclear recoils) results in different ratios of
ionization and phonon signals. The majority of particle interactions are electron recoils,
while WIMPs are expected to be nuclear recoils. Although the WIMP scattering events are
unique, they are rare when compared to the vast majority of unwanted interactions.

Two types of experiments exist, i.e., CDMS and SuperCDMS. The CDMS experiment
provided the most-sensitive test of potential WIMP–nucleon interactions, as reported
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in [2,3]. The XENON experiment [4] later surpassed the CDMS experiment. The Super-
CDMS experiment [5] is the successor of the CDMS, which uses new and improved de-
tectors and an increased target mass to improve sensitivity by a factor of 5–8 factor and is
limited by the residual cosmogenic background at the current location.

One of the challenges in CDMS and SuperCDMS experiments is the detection accuracy
of particle interactions and the reconstruction of particle interaction locations, which could
be greatly improved with the use of machine learning (ML) algorithms. In recent years,
scientists have implemented various ML algorithms to estimate or detect dark matter using
data obtained from CDMS/SuperCDMS experiments. Some of these research papers are
briefly described in the following subsection.

1.1. Application of ML Algorithms in CDSM/SuperCDSM Experiments

A semi-supervised ML approach to dark matter search was proposed in [6]. This
paper used a convectional auto-encoder and semi-supervised convolutional neural network
(CNN) to directly detect dark matter. A deep convolutional neural network (DCNN) was
used in [7] to solve the tasks of retrieving Lagrangian patches from which dark matter
halos will condense. The results of the investigation showed that, if the proposed methods
were properly tuned, they can outperform likelihood-based methods. The recurrent neural
network (RNN) was implemented on the trigger FPGA to maximize the sensitivity to the
low-mass dark matter of the SuperCDMS SNOLAB experiment [8]. By doing so, the energy
estimator based on the combined information of filtered traces from individual detector
channels was improved. With the performed modifications, the trigger threshold was
lowered by 22%. The deep learning method was proposed in [9] to map the 3D galaxy
distribution in hydrodynamic simulations and the underlying dark matter distribution.
In this research, as two-phase CNN was used to generate fast galaxy catalogs, and the
results were compared with traditional cosmological techniques. The proposed method
outperformed the traditional techniques. Gradient-boosted trees were used in [10] to model
dark matter halo formation. In [11], the Bayesian optimization for likelihood-free inference
(BOLFI) algorithm was used to reconstruct the two-dimensional position and to determine
the size of the interaction charge signal. The results showed that the BOLFI algorithm
provides improved accuracy of 15% in reconstruction when compared in the case of events
at large radii (R > 30 cm, the outer 37% of the detector). The investigation also showed that
the proposed algorithm provided smaller uncertainties compared to other methods.

1.2. Definition of Novelty and the Research Hypotheses

From the previous short literature overview, complex ML models such as DNN have
been used in CDMS detectors’ investigation. Although the estimation results were high,
the problem is that these algorithms require substantial computational resources. Another
problem is that these types of ML methods cannot be easily expressed as an equation.

The authors present a novel approach through the use of genetic programming-
symbolic regression (GPSR), which was applied to determine equations that can accurately
reconstruct the particle interaction locations in the SuperCDMS. A public dataset [12] pro-
vided by a team from the University of Minnesota was used in the research. In comparison
to the reviewed research, the research questions can be posed as follows:

• Can an SE be obtained using GPSR that can accurately reconstruct the locations of the
interactions in SuperCDMS detectors?

• Is it possible to obtain a set of robust SEs using GPSR with randomly tested hyper-
parameters and validated through k-fold cross-validation that can reconstruct the
locations of the interactions in the SuperCDMS with high accuracy?

• Is it possible to achieve even higher estimation accuracy in the reconstruction of the
locations’ interactions by combining multiple SEs that were obtained from different
GPSR executions?

• Are all input variables required as model inputs to accurately reconstruct the interac-
tion locations?
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The presented paper consists of the following sections, i.e., the Materials and Methods,
Results, Discussion, and Conclusions. In the Materials and Methods, the detailed dataset
description is provided with statistical analysis following the description of the research
methodology. In this section, the used method is described. In the Results Section, the best
set of SEs obtained after five-fold cross-validation (5-CV) is shown with GPRS hyperpa-
rameters used to obtain them. Within the Discussion, the obtained models and results of
the statistical analysis are further presented and discussed. Based on the hypotheses, pre-
sented results, and discussion, the Conclusions are given in the final section. Besides that,
the Conclusions Section provides the pros and cons of the proposed method and possible
directions for future work.

2. Materials and Methods

The materials, namely the dataset, are given a short description with a basic statistical
analysis. Based on the dataset description, a research methodology is provided in which
detailed steps are given. Then, the GPSR algorithm is described, as well as the process of
developing a random hyperparameter search (RHS) method and the process of obtaining
the SEs through the use of the 5-CV. Finally, the computational resources used in this
research are described.

2.1. Dataset Description

For this investigation, the publicly available dataset from Kaggle [12] was used.
The dataset was provided by the team from the University of Minnesota, and their re-
search [13] was also focused on addressing the problem of accurately reconstructing the
locations of interactions in the SuperCDMS detectors using machine learning methods.

In [13], the prototype SuperCDMS germanium detector was tested with a radioactive
source positioned on a movable stage that can perform scanning from the center of the
detector up to the near edge. The SuperCDMS germanium detector is a disk-shaped object
that is 10 cm in diameter and 3 cm in height, with phonon sensors placed on the top and
bottom surfaces to detect particles from a radioactive source. The sensors were used to
measure phonons, i.e., quantized vibrations of the crystal lattice, which are produced from
interacting particles and travel from the interaction location to the sensors. The number of
phonons and relative arrival time to the particular sensors depends on the interaction and
the sensor positions. The output of each sensor channel is a waveform for every interaction.
In this experiment, the sensors were grouped into six regions labeled A, B, C, D, E, and F
on both sides of the detector, as shown in Figure 1.

Figure 1. The detector regions of the SuperCDMS detector.

To produce interactions at 13 different locations on the detector along a radial path
from the center up to the detector’s outer edge, a movable radioactive source was used.
The 13 different locations are shown in Figure 2, while the numeric values of the locations
are listed in Table 1.
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Figure 2. Top view showing detector regions (A, B, C, D, E, and F) and interaction locations indicated
with the “x” symbol in orange color.

Table 1. The measured coordinates of the interaction locations shown in Figure 2.

Location 1 2 3 4 5 6 7 8 9 10 11 12 13

Coordinate x 0 0 0 0 0 0 0 0 0 0 0 0 0

Coordinate y 0 −3.96 −9.98 −12.502 −17.992 −19.7 −21.034 −24.077 −29.5 −36.116 −39.4 −41.01 −41.9

The entire dataset consisted of 21 parameters and 7151 samples. However, the first
parameter row number (“Row”) was omitted from this research. The dataset was obtained
by extracting a set of parameters for each interaction from the signals of five sensors.
The extracted parameters are sensitive to interaction location, relative timing between
pulses in different channels, and features of the pulse shape. The relative amplitudes are
also relevant, but were not included in the dataset due to amplification instabilities in the
experiment. For each interaction, the following parameters were recorded:

• B, C, D, and F start—the time at which the signal pulse rises to 20% of the signal peak
to Channel A. The variables in the original dataset are labeled as PBstart, PCstart,
PDstart, and PDstart, respectively.

• A, B, C, D, and F rise—the time required for the signal to rise from 20 % to 80% of
its peak. These variables in the original dataset are labeled as PArise, PBrise, PCrise,
PDrise, and PFrise,

• A, B, C, D, and F width—the width of the pulse at 80% of the pulse height. The height
was measured in seconds. These variables in the original dataset are labeled as
PAwidth, PBwidth, PCwidth, PDwidth, and PFwidth.

• A, B, C, D, and F fall—the time required for a pulse to fall from 40% to 20 % of its peak.
These variables in the original dataset are labeled as PAfall, PBfall, PCfall, PDfall,
and PFfall.

As seen from the minimum and maximum values shown in Table 2, all the input
variables labeled X0 to X18 are all very small values in the 10−6 to 10−4 range. The target
(output) variable, which is y, is in the −41.9 to 0 range.
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Table 2. The results of the statistical investigation of dataset variables including the GSPR vari-
able representation.

Dataset Variable Data Points Mean Value σ Minimum Value Maximum Value GPSR Variable Symbol

PBstart

7151

−2.484× 10−6 5.346× 10−6 −1.800× 10−5 1.613× 10−5 X0

PCstart 2.491× 10−5 2.596× 10−5 −2.160× 10−5 6.359× 10−5 X1

PDstart −1.316× 10−5 1.014× 10−5 −2.990× 10−5 5.149× 10−5 X2

PFstart −5.240× 10−6 2.580× 10−5 −3.520× 10−5 4.211× 10−5 X3

PArise 1.710× 10−5 4.501× 10−6 8.464× 10−6 2.682× 10−5 X4

PBrise 1.973× 10−5 3.843× 10−6 9.338× 10−6 3.221× 10−5 X5

PCrise 3.012× 10−5 7.718× 10−6 1.157× 10−5 5.354× 10−5 X6

PDrise 1.298× 10−5 2.078× 10−6 8.705× 10−6 3.444× 10−5 X7

PFrise 1.675× 10−5 7.026× 10−6 8.060× 10−6 3.158× 10−5 X8

PAfall 2.148× 10−5 1.826× 10−5 1.521× 10−5 6.814× 10−5 X9

PBfall 2.516× 10−5 3.781× 10−5 1.596× 10−5 9.416× 10−5 X10

PCfall 2.712× 10−5 4.878× 10−5 1.388× 10−5 9.884× 10−5 X11

PDfall 2.588× 10−5 4.621× 10−5 1.415× 10−5 9.806× 10−5 X12

PFfall 2.472× 10−5 5.361× 10−5 1.163× 10−5 9.355× 10−5 X13

PAwidth 1.696× 10−5 3.659× 10−5 7.105× 10−5 2.271× 10−5 X14

PBwidth 2.071× 10−5 3.343× 10−5 7.133× 10−5 2.983× 10−5 X15

PCwidth 2.467× 10−5 2.453× 10−5 1.648× 10−5 3.443× 10−5 X16

PDwidth 1.494× 10−5 5.623× 10−5 3.603× 10−5 3.033× 10−5 X17

PFwidth 1.765× 10−5 7.636× 10−5 3.321× 10−5 2.665× 10−5 X18

y −21.758 14.091 −41.9 0 y

The extremely low values of the input variables in the GPSR can lead to poor perfor-
mance, i.e., the low estimation accuracy of the obtained SEs. To improve the performance
of GPSR, the StandardScaler technique [14,15] was applied to the input dataset variables.
The standard scaling technique is a technique that standardizes dataset variables and
scales them to the unit variance. The standard manner of scaling the variable values is
calculated per:

z =
x− σ

s
, (1)

with m and s being the mean and σ of the dataset variable. The idea is to apply the
StandardScaler method to all input variables before using the dataset in the GPSR algorithm.

Besides the statistical analysis in the dataset analysis, it is important to perform the
correlation analysis. In this paper, Pearson’s correlation analysis [16] was performed
to determine the correlations between the output and individual inputs. The obtained
correlation value between two dataset variables is calculated in the range of <−1.0, 1.0>.
The absolute value of the correlation result is proportional to the rate at which two vari-
ables change together—with a positive value indicating a mutual increase and a negative
value indicating that one variable decreases while the other increases. A heat map of the
calculated coefficients is given in Figure 3.
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Figure 3. Pearson’s correlation heat map.

As seen from Figure 3, the highest negative correlation (−0.98–−0.83) was achieved
between PCStart, PFStart, PFrise, PFwidth, and the output variable y. The highest positive
correlation (0.86–0.95) was achieved between PAwidth, PArise, and output variable y,
respectively. The poorest correlation coefficient was achieved in the cases of PBstart-y
(−0.01), PBfall-y (−0.32), PCfall-y (−0.36), PCwidth-y (−0.39), and PCwidth-y (−0.32).
From the correlation heat map, it can be noticed that PBFall, PCfall, PDfall, and PFfall
are mutually highly correlated variables, while showing a poor correlation in regard to
the output. However, since GPSR is not a computationally intensive algorithm, it is good
practice to include all input variables in the investigation. The reason why all input variables
were included was to compare the variables used in the final models with their correlations.

2.2. Research Methodology

Figure 4 demonstrates the flow of the performed research methodology.
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Original Dataset

Dataset
preparation

GPSR algorithm

Results
comparison

Customizing
solution

Final Evaluation

Results

Figure 4. The flow chart of the research methodology.

Based on the previous flowchart, the research methodology can be summarized in the
following steps:

• Dataset preparation—Checking the dataset for null values and deleting the first
column (“Row”), which is not relevant for the analysis. Separating the dataset into
input and output variables and applying of StandardScaler method on the input
dataset variables. Dividing the dataset into training and testing datasets in a 70:30
ratio.

• GPSR algorithm—The GPSR algorithm is combined with a RHS to find the hyper-
parameters that yield the best-performing models. Perform training of GPSR on the
training dataset using cross-validation, for the evaluation of the testing dataset.

• Result comparison—Perform a comparison of the best sets of SEs in terms of the
estimation accuracy.

• Customizing solution—Combining the five best SEs to obtain a robust estimator for
the reconstruction of the interaction locations.

• Final evaluation—Perform the final evaluation of the customized solution on the
entire dataset.

2.3. Genetic Programming-Symbolic Regression

Genetic programming-symbolic regression (GPSR) begins its execution by creating the
unit population. The population members’ quality initially is very low. Then, through a
consecutive number of generations, they are fit for a specific task with the application of
genetic operations.

To build the initial population in GPSR, the dataset is required to have labeled input
variables, the target output variable, the range of constant values, and mathematical
functions. It should be noted that, in this paper, the following mathematical functions
were used: addition, subtraction, multiplication, division, square root, cube root, absolute
value, sine, cosine, tangent, minimum value, maximum value, natural logarithm, logarithm
with base 2 and 10, respectively. It should be noted that mathematical functions such as
division, natural logarithm, logarithm with base 2 and 10, and square root are specifically
defined to avoid zero division errors and infinite or complex values during GPSR execution.
The definition of these functions is given in Appendix A.The constant range hyperparameter
is defined in Table 3. From these three sets, the GPSR randomly selects components to
create population members, i.e., initial population. The hyperparameters required for
the development of the initial population are population size, the maximum number of
generations, and the constant range.

According to [17], there are three commonly used methods for creating population
members, and these are full, grow, and ramped-half-and-half. The ramped-half-and-half
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method is a combination of the full and grow methods, i.e., both methods are used to create
half of the dataset. To ensure a higher population diversity in the ramped-half-and-half
method, the population members’ depth is set in the range of hyperparameter init_depth.
For example, if the init_depth value is set to (6,20), this means that the population members
will be created with the full and grow method, where the population member’s depth will
be in the range from 6 to a maximum of 20.

The population members (SEs) and obtained SEs from each GPSR execution can be
measured in terms of length. The length is counted as the sum of all mathematical functions,
variables, and constants contained in a single SE. In the Results Section, besides the depth
of the SEs, the length of the SEs will be also given.

In this paper, the fitness function used in all investigations is the mean absolute error
(MAE), which can be written in the following form:

MAE =
∑n

i=1(yi − xi)

n
, (2)

where yi, xi, and n are predicted values by the population member, the true (output) dataset
value, and the number of dataset samples [18]. To calculate the MAE, first, the population
member must be evaluated, i.e., the values of the input variables must be provided to
calculate the output. This output is the predicted yi variable in Equation (2).

The tournament selection method was used to select the parents to which the genetic
operations will be applied. When this selection is used, the population members are
selected randomly for comparison. The member with the best fitness value is chosen as the
winner of the process. The tournament_size hyperparameter defines the number of units
used in this process.

Sometimes, during the execution of GPSR and due to the low correlation between
dataset variables, the size of candidate solutions can rapidly grow through the generations.
The size of the population members can grow so large that this can result in the bloat
phenomenon. Various methods can be used to prevent this phenomenon, such as size
fair crossover [19], size fair mutation [20], the Tarpeian method [21], and the parsimony
pressure method [22]. The latter method is the most-commonly used and will be used in this
paper. This method penalizes large programs during tournament selections by increasing
the fitness value score, so they are not selected as the winners of tournament selection. This
hyperparameter used for preventing the bloat phenomenon is parsimony_coefficient, and
it is one of the most-sensitive coefficients to adjust, so when defining its range, extensive
initial testing is required.

The execution of GPSR like in the majority of evolutionary algorithms can go indefi-
nitely if the termination criteria are not defined. In GPSR, this is achieved with the stop-
ping_criteria hyperparameter and the generations hyperparameter. The stopping_criteria
is the fitness function value, which will stop the execution if achieved. If this fitness is
not achieved, the hyperparameter generations will stop the execution when the number
of iterations is equal to it. In all the performed investigations, the execution was stopped
due to the generations parameter, due to the small value of the stopping_criteria. After
each tournament selection, the best population member is obtained, and in that population
member, one of the genetic operations is performed. Four genetic operators were selected
in GPSR. The first of them is a crossover, the second a subtree mutation, the third a hoist
mutation, and the fourth a point mutation. Each hyperparameter represents the probability
and the possible sum of all genetic operations that must be equal to 1 to prevent tournament
selection winners from being cloned and entering in the next generation. In this paper,
the sum of all genetic operation probabilities was lower than one, so some winners enter
the next generation unchanged.

In the case of a crossover operation, two winners are required, which determine the
parent and donor. On the parent and the donor, random subtrees are selected, and the
subtree from the donor replaces the subtree of the parent to form the member of the next
generation. However, in the case of subtree mutation, the selection is a little different.
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To select a subtree mutation, only one tournament winner is needed, which is later replaced
with a randomly generated subtree created using mathematical functions, the constants
from a constant range, and the input variables from the dataset. A similar situation occurs
with the hoist mutation, which also requires only one tournament winner on which the
random tree is defined. Then, a random node is selected on that subtree, which replaces the
entire subtree. The point mutation demands only one tournament winner, then afterward,
random nodes are selected. The constants are then replaced by randomly selected constants
from the constant range, and also, the variables are replaced by the randomly selected
input variables and the other functions by other randomly selected functions. However,
in the case of the functions, the arity of randomly selected functions must be the same as
the function in the tournament winner.

2.4. Random Hyperparameter Search

To find the optimal combination of hyperparameters,the RHS method was used.
To develop this method for GPSR, the initial testing of each hyperparameter was required.

The GPSR hyperparameter ranges defined after initial testing are listed in Table 3.

Table 3. The range of GPSR hyperparameters.

Hyperparameter Name Range

population_size 1000–2000

number of generations 100–200

tournament_selection 10–500

init_depth 3–15

crossover 0.001–1.0

subtree_mutation 0.001–1.0

hoist_mutation 0.001–1.0

point_mutation 0.001–1.0

stopping_criteria 0–1× 10−8

maximum_samples 0.99–1

constant_range −10,000–10,000

parsimony_coefficient 0–1× 10−4

In the case of GPSR, there were four parameters that were most-influential: the size of
the population (population_size), the number of possible generations (number_of_generations),
the tree depth (init_depth), and finally, the parsimony coefficient [23]. The population
size and the number of possible generations are highly correlated hyperparameters. If the
size of the population and number of generations is too large, it can lead to a very long
execution time. The ranges shown in Table 3 proved to be optimal. Initially, init_depth was
increased, but the GPSR execution showed that higher values of the init_depth hyperpa-
rameter can lead to longer execution times without any benefit to the estimation accuracy of
the obtained SE. As the stated parsimony_coefficient is the most-crucial and most-sensitive
hyperparameter to define, the range is defined by trial and error, so the range shown in
Table 3 will prevent the occurrence of bloat phenomena, but will allow the stable growth of
the population members.

The initial assumption was that crossover or subtree mutation will be the most-
influential genetic operation in the evolution process. However, an initial investigation
showed that very high values of these two genetic operations can lead to local minimums,
i.e., the fitness function value is constant, while the size of the population members grows
rapidly. Therefore, the value of all four genetic operations was set to the 0.001–1 range.
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In this way, the sum of all possible genetic operations was nowhere near one, so some
tournament selection winners entered the next generation unchanged.

It should be noted that each GPSR execution is terminated after reaching the defined
number of maximum generations. As described, the GPSR algorithm has two termination
criteria, i.e., the maximum number of generations and the stopping criteria. However,
the stopping criterion, i.e., the value of the fitness function, was set to an extremely small
value to ensure that the execution of the GPSR algorithm is terminated after reaching the
maximum number of generations.

The maximum samples were set in the 0.99 to 1 range, so each time the fitness function
was computed, almost the entire training dataset was used. If the value of the maximum
samples was set to 1, then during the GPSR execution, the out-of-bag raw (OOB) fitness
would not be shown. OOB fitness refers to the fitness of each population member in
held-out samples. To see OOB fitness during execution, the maximum samples must be
less than 1. To ensure that the population’s growth is stable, a relatively large range of
constants was provided to ensure that the small range of constants can lead to the large
growth of members.

2.5. Training and Evaluation Process with the GPSR Algorithm

The entire flowchart of the training process with GPSR is shown in Figure 5.

Original Dataset

Training dataset
(70%)

Testing datast
(30%)

Random selection
of hyperparameters

GPSR with 5-fold CV 
(Calculation of Mean

and SD 𝑹𝟐 , MAE, RMSE)

Evaluation of symbolic expressions
on testing dataset (Calculation of
Mean and SD 𝑹𝟐 , MAE, RMSE)

Is ഥ𝑹𝟐 > 𝟎. 𝟗𝟖𝟓 ?

NO

Process
successfully
completed

YES

Figure 5. The flowchart of obtaining symbolic expressions using the GPSR algorithm.

Due to a large number of samples (7157), the original dataset after preprocessing with
StandardScaler (only input variables) was divided into a 70:30 ratio: 70% of the dataset was
used in the 5-CV and the remaining 30% for the final evaluation.

The investigated process begins with randomly selecting GPSR hyperparameters
(range values defined in Table 3), then the execution of GPSR algorithm with the 5-CV on
the training dataset. In the 5-CV [24], there are 5 splits, i.e., the GPSR execution is trained 5
times, and for each time, a new SE is obtained. After each split, the performance metrics are
calculated on the training and validation folds. After the process of training is performed,
the mean and σ values are calculated and stored. When this step is performed, the obtained
SEs are evaluated on the testing dataset, and the performance metrics (mean and σ) values
are obtained. For the termination criteria of the entire process, the mean value of R2 must
be greater than 0.985. If the value is above 0.985, the process is terminated; otherwise, the
process begins from the beginning with a random selection of the GPSR hyperparameters.
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2.6. Performance Metrics and Methodology

In this paper, to evaluate the SEs, three performance metrics were used, i.e., the
coefficient of determination (R2) [25], the mean absolute error MAE [18] (Equation (2)),
and the root-mean-squared error (RMSE) [26]. The R2 is in the 0 to 1 range, where 0
represents the worst-possible value, while the value of 1 represents the best-possible value
and is aimed for. Regarding the MAE and RMSE values, the goal is to obtain as low a
value as possible.

As stated in the description of the GPSR algorithm, the MAE metric was used to
evaluate the population members (fitness function). After each SE is obtained, it is evaluated
to determine the R2, MAE, and RMSE values. To calculate the mean and σ values of the
performance metrics in GPSR with RHS and the 5-CV, the following steps are performed:

• During the 5-CV, calculate the performance metric values on the training and valida-
tion sets.

• After the 5-CV process is complete, calculate the performance metrics (mean values
obtained on the training dataset).

• Perform the last evaluation of the trained model (five SEs) on the testing dataset,
and calculate the performance (evaluation) metric values (values achieved on the
testing dataset),

• Calculate the mean and σ values of the performance metrics from the obtained values
on the training and testing datasets.

2.7. Computational Resources

The entire research was performed on a desktop computer consisting of an Intel I7-
4770 processor supported by 16 GB of DDR3 RAM. All scripts were written and made in
the Python Programming language (Version 3.9.12). The statistical analysis was conducted
using pandas [27] and the matplotlib [28] library. The datasets were scaled using the
StandardScaler method from the scikit-learn library (Version 1.2.0) [14]. GPSR was used
from the gplearn library (Version 0.4.1.) [29].

3. Results

The Results Section is divided into two subsections entitled “Results obtained us-
ing GPSR algorithm with RHS and 5-CV” and “Custom solution and final evaluation”.
In Section 3.1, the estimation accuracy of the three best cases of the SEs is presented, ob-
tained during the 5-CV (training dataset) and final evaluation (test dataset). In Section 3.2,
the custom set of the five SEs was created by picking the SEs with the highest estimation
accuracy from the previously presented subsection. Finally, the performance evaluation of
the modified (customized) set of SEs on the entire dataset is presented.

3.1. Results Acquired Using GPSR with RHS and 5-CV

The GPSR algorithm with the 5-CV was executed multiple times. Before each execution,
the hyperparameters were randomly selected from the predefined ranges shown in Table 3.
From the obtained results, the three best cases were selected that achieved the highest
estimation accuracy. The combination of the hyperparameters that were used to obtain the
highest estimation accuracies is listed in Table 4.

From Table 4, it can be seen that, for Cases 1 and 3, the population size was very large.
In Case 1, the point mutation (0.43) was the dominating genetic operation, while in Cases 2
and 3, the crossover (0.41) and subtree mutation (0.469) dominated the genetic operations.
However, in Case 3, both crossover and subtree mutation had higher probabilities than the
other two types of mutations. The stopping criteria, as planned, were never reached by
any population member in all three cases, and each execution stopped after the maximum
possible number of generations was attained. The parsimony coefficient (Pcoef) value was
much higher in Cases 2 and 3 than in Case 1. The results of these three cases are shown in
Figure 6 and Table 5.
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Table 4. The combination of the GPSR hyperparameter values for which the highest estimation
accuracy was achieved.

Case No.

GPSR Hyperparameters (Population Size, Number of Generations, Tournament Selection,
Init_Depth, Crossover, Subtree_Mutation, Hoist_Mutation, Point_Mutation,

Stopping_Criteria, Max_Samples,
Constant_Range, Parsimony_Coefficient)

1

1978, 233, 254, (6, 15),
0.043, 0.22, 0.22, 0.43,

5.49× 10−7, 0.99,
(−9793.08, 1402.72), 9.15× 10−6

2

1075, 196, 461, (3, 15),
0.41, 0.4, 0.05, 0.097,

9.95× 10−7, 0.99,
(−8821.29, 3713.89), 9.2× 10−4

3

1500, 171, 108,(7, 11),
0.45, 0.469, 0.043, 0.0071,

8.17× 10−7, 0.99,
(−4076.61, 4272.87), 7.16× 10−4

The Splits 1–5 shown in Figure 6 and Table 5 indicate the GPSR algorithm execution
on the different training sets (4 folds) and the evaluation on the validation set (1 fold) in
the 5-CV. After each split, the performance metric values were calculated on the training
and validation set and the mean and σ values were calculated. When all five splits were
performed, the total mean and σ of all assessment (evaluation) metrics were calculated.
These “Total” values represent the final values of the 5-CV process. It should be noted that,
after each split, the SE was obtained, so each case consisted of five SEs.

Figure 6. Cont.



Appl. Sci. 2023, 13, 2059 13 of 23

Figure 6. The mean values of the obtained performance metric during GPSR 5-CV. The σ values are
presented as error bars.

As seen from Figure 6 and Table 5, in all three cases, the mean performance metric
values obtained with the 5-CV on the training data were very high with low σ values.
Table 6 shows the depth and length of each SE with the average depth and length of the
SEs in each case.

To clarify the terms length and depth in Table 6, the length is a representation of
several elements (constants, functions, and possible variables) in the SEs, while the depth
is measured when the SE is shown in tree form. The depth is measured from the required
root node to the deepest leaf of the SE. Since the tree form of the SE is not important for
this investigation, the length of the SE will be investigated. The highest SE lengths and
average length were achieved in Case 1 followed by Case 3 and Case 2. From the length
and the estimation accuracy in Table 5, the best case is Case 2, since the estimation accuracy
is slightly lower than Case 1, while the average length of the SEs is the lowest.
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Table 5. The mean and σ values of R2, MAE, and RMSE were achieved in a 5-fold cross-validation
process.

Case 1

Performance metric Split 1 Split 2 Split 3 Split 4 Split 5 Total

R2 0.9864 0.9903 0.9821 0.9935 0.9909 0.9886

σ(R2) 0.0009 0.0003 0.0013 0.0002 0.0001 0.0006

MAE 1.0599 0.9837 1.1479 0.8113 0.9342 0.9874

σ(MAE) 0.0057 0.0291 0.0354 0.0035 0.0003 0.0148

RMSE 1.6494 1.3905 1.8818 1.1445 1.3456 1.4824

σ(RMSE) 0.0501 0.0222 0.0542 0.0230 0.0057 0.0311

Case 2

Performance metric Split 1 Split 2 Split 3 Split 4 Split 5 Total

R2 0.9889 0.9905 0.9896 0.9835 0.9860 0.9877

σ(R2) 0.0001 0.0006 0.0001 0.0001 0.0009 0.0004

MAE 1.0304 0.8973 0.9593 1.1713 1.0530 1.0223

σ(MAE) 0.0233 0.0115 0.0108 0.0006 0.0238 0.0140

RMSE 1.5057 1.3883 1.4369 1.7984 1.6564 1.5571

σ(RMSE) 0.0331 0.0562 0.0062 0.0218 0.0772 0.0389

Case 3

Performance metric Split 1 Split 2 Split 3 Split 4 Split 5 Total

R2 0.9899 0.9856 0.9896 0.9846 0.9868 0.9873

σ(R2) 0.0004 0.0019 0.0001 0.0001 0.0013 0.0008

MAE 0.8020 1.0330 1.0266 1.2512 1.0365 1.0299

σ(MAE) 0.0041 0.0302 0.0170 0.0128 0.0328 0.0194

RMSE 1.4336 1.7058 1.4429 1.7375 1.6111 1.5862

σ(RMSE) 0.0489 0.1311 0.0051 0.0170 0.1016 0.0608

The performance metric mean and σ values obtained for each case on the testing
dataset are shown in Figure 7 and Table 7.

Table 6. The symbolic expressions length and depth of each case with average length and depth.

Case No. Symbolic Expression No. Length Depth Average Length Average Depth

1

1 220 33

206.6 28.4

2 257 41

3 106 13

4 351 36

5 99 19



Appl. Sci. 2023, 13, 2059 15 of 23

Table 6. Cont.

Case No. Symbolic Expression No. Length Depth Average Length Average Depth

2

1 75 17

81.4 16.2

2 87 16

3 109 18

4 58 15

5 78 15

3

1 145 31

161.6 24.8

2 156 19

3 127 27

4 230 17

5 150 30

Table 7. The performance metric values obtained on the test dataset.

Case Number Evaluation Metric
Symbolic Expressions

Mean σ
1 2 3 4 5

1

R2 0.9827 0.9892 0.9811 0.9934 0.9905 0.9876 0.0048

MAE 1.1180 0.9919 1.1645 0.8225 0.9619 1.0096 0.1215

RMSE 1.8649 1.4646 1.9488 1.1537 1.3810 1.5506 0.3050

2

R2 0.9878 0.9896 0.9887 0.9836 0.9837 0.9867 0.0025

MAE 1.0615 0.9393 0.9894 1.1815 1.1450 1.0634 0.0911

RMSE 1.5664 1.4490 1.5057 1.8173 1.8116 1.6300 0.1551

3

R2 0.9909 0.9865 0.9889 0.9828 0.9873 0.9873 0.0027

MAE 0.8032 1.0518 1.0513 1.3162 1.0666 1.0578 0.1623

RMSE 1.3529 1.6464 1.4958 1.8588 1.5978 1.5903 0.1677

As seen from Figure 7 and Table 7, the mean values of the performance metric are
almost the same as those obtained on the training dataset. The σ values are slightly higher
when compared to those obtained on the training dataset. Although Case 2 showed better
performance on the training dataset, the results of the testing dataset showed that Case 3
slightly outperformed Case 2.

It can be noticed that the highest scores in Table 7 are marked with red color. The marked
scores represent the chosen SE of three cases that will be used for a customized solution.
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Figure 7. The mean values of the performance metric obtained on the testing dataset. The σ values
are presented as error bars.
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3.2. Combination of the Best SE

Based on the results obtained on the test dataset, the five SEs with the best estimation
accuracy were selected. In Table 7, the results of the best SEs that were selected are marked
with red color. The main criterion for choosing the SEs was that the R2 score was higher
than 0.989. The chosen SEs can be written in the following form:
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| sin(
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+ X1(
3
√

X0 − 2345.71− X2) +
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cos(X2) + X4) + X0,

y5 = −max(7.64(X1 + X3), 0.43 log(min(
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X2|min(221.844X2 cot(cos(X2)),−9574.83 (7)

min(8546.04(X1 + X3), X8(X0 + X1 + min((2X0 + X1)X8, 1529.14(1529.14(X1 + X17)

− (2X0 + X1)X8)))))|
)/(
|X1 +

3
√
| cos(X2)||

)
, 0.43 log( 9
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√
X0, 3

√
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+ |min(7.33(X1 + X3), X8(X0 + X1 + | cos(X2)|))| − 21.09.

However, it should be noted that, to use Equations (3)–(7) the values of input variables
must be scaled using the StandardScaler method. In Equations (3)–(7), the mathematical
functions such as the square root, natural logarithm, logarithm with base 2 and 10, and di-
vision function are specifically defined to avoid complex, infinite values or zero division
errors. The definition of these functions is given in Appendix A.

The analysis of Equations (3)–(7) showed that, using all five SEs together to compute
the output all 19 variables is required. However, if Equations (3)–(7) are used individually,
not all input variables are required. To compute the output in Equation (3), 13 out of 19
input variables are required. The variables that are required to compute the output are
X0,...,X9, X15, X17, and X18. It is evident from Table 2 that these variables are PBstart,
PCstart, PDstart, PFstart, PArise, PBrise, PCrise, PDrise, PFrise, PAfall, PBwidth, PCwidth,
and PFwidth, respectively. The total number of variables required to compute the output
using Equation (4) is 10 out of 19, and these variables are X1,...,X6, X8, X14, X15, and X18.
From Table 2, these input variables are PCstart, PDstart, PFstart, PArise, PBrise, PCrise,
PFrise, PAwidth, PBwidth, and PFwidth, respectively. In Equation (5), to compute the
output, the 12 out of 19 input variables required are X0,..., X8, X14, X16, and X18. These
variables are PBstart, PCstart, PDstart, PFstart, PArise, PBrise, PCrise, PDrise, PFrise,
PAwidth, PCwdith, and PFwidth, respectively. All input variables are required to compute
the output using Equation (6). The lowest number of input variables (7) is required
to compute the output when Equation (7) is used. Equation (7) consist of X0,...,X4, X8,
and X17, and from Table 2, these variables are PBstart, PCstart, PDstart, PFstart, PArise,
PFrise, and PDwidth.

The set of previously shown SEs was evaluated on the entire dataset, and the results
are presented in Figure 8 and Table 8.

Figure 8. The graphical representation of the performance metric values obtained with the best
combination of SEs on the entire dataset. σ is shown in the case of the total mean values in the form
of an error bar.
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Table 8. The performance metric values achieved with the best combination of SEs on the en-
tire dataset.

Evaluation Metric y1 y2 y3 y4 y5 Mean σ

R2 0.99022 0.990905 0.989798 0.993511 0.991003 0.991087 0.001291

MAE 0.795499 0.889602 0.954781 0.815055 0.936876 0.878362 0.063662

RMSE 1.393535 1.343819 1.423247 1.135059 1.336586 1.326449 0.100901

The results shown in Table 8 showed that, using a customized combination of the SEs,
even higher estimation accuracy was achieved. The mean values were better than those
shown in Table 7, and the σs were smaller.

The reconstruction of the interaction locations was performed in [13], where the
authors used the DNN. For the evaluation of the results, the authors used the RMSE, and
the lowest achieved value was 1.53. If these results are compared to the results shown in
Table 8, it can be seen that the proposed method outperformed the results in [13].

4. Discussion

The initial statistical analysis of the dataset variables showed that all the input variables
had a really small value range when compared to the output (target) variable. With this in
mind, scaling actions were taken, i.e., all input variables were scaled using the Standard-
Scaler method. Based on Pearson’s correlation analysis, it was possible to see that the (6
out of 18) input variables had a very good correlation with the output variable y. Only one
(PBStart) dataset variable did not correlate with the output variable.

Although the initial investigation of the GPSR algorithm to define each GPSR hyper-
parameter range for the development of the RHS method was a painstaking and time-
consuming process, eventually, it resulted in the faster search of multiple hyperparameter
combinations, for which the highest estimation accuracies were achieved. The larger pop-
ulation size and smaller tournament selection size proved to be a good combination in
obtaining the SEs with high evaluation accuracy; however, these two were not only respon-
sible. An initial investigation showed that, initially, a small range of any genetic operation
would lead to a local minimum value of the fitness value, which would eventually result
in SEs with lower estimation accuracy. To improve the range of all genetic operations, it
was set to the 0.001–1 range. This wide range produced some interesting hyperparameter
combinations (Table 4). In Case 1, the dominant genetic operation was point mutation (0.43).
Cases 2 and 3 had high values of crossover and subtree mutation, i.e., they were the main
genetic operations in these two cases. As already stated, the idea was to enable the GPSR
algorithm to reach the lowest value of the fitness function possible, so the stopping criteria
were preset to an extremely low value, and the GPSR execution ended after a maximum
number of generations was reached.

When Case 1’s hyperparameters and the SEs’ lengths were compared to those of Cases
2 and 3, it can be noticed that the initial tree depth size and Pcoef had a huge influence
on the length and depth of the SEs. Almost all the SEs obtained in Case 1 were large in
length and depth. The lowest SE size was obtained on “Split 3” with a length of 106 and a
depth of 13. However, these SEs had the lowest estimation performance on the test dataset
(R2 = 0.9811, MAE = 1.1654, and RMSE = 1.9488) when compared to the other four SEs
of the same case. Generally, the Pcoef in Case 1 was set to 9.15× 10−6, which generated SEs
of average length 206.6, as seen from Table 6. The Pcoef in Cases 2 and 3 was much larger
(9.2× 10−4, 7.16× 10−4), which generated average lengths of 81.4 and 161.6, respectively.
From these results, the high influence of the Pcoef on the size of the obtained SEs can be
noticed.

From the results obtained on the training and testing datasets (Figures 6 and 7 and
Tables 5 and 7), it can be seen that the mean values of the performance metrics were similar
(values of R2 high and near 1, while MAE and RMSE values of 1 and 1.5, respectively).
However, in Case 2, the performance metric values were slightly higher on the training
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compared to the testing dataset. Therefore, Case 3 slightly outperformed Case 2 on the
testing dataset. From the obtained results, the highest evaluation metric values (R2± σ(R2),
MAE ± σ(MAE), RMSE± σ(RMSE)) on the testing dataset were achieved in Case 1
(0.9876± 0.0048, 1.0096± 0.1215, 1.5506± 0.3050.)

The combined set of the five best SEs selected from Cases 1, 2, and 3 achieved the
highest estimation accuracy when evaluated on the entire dataset. The results of the
evaluation metrics (R2 ± σ(R2) and MAE ± σ(MAE), RMSE ± σ(RMSE)) in this case
were equal to 0.991087± 0.001291, 0.878362± 0.063662, and 1.326449± 0.100901. Therefore,
the results showed that the custom combination of the best SEs in terms of the evaluation
metric values outperformed Cases 1–3.

The analysis of the number of variables required to compute the output if a custom
solution (five SEs) is used showed that all input variables were required. Even if only
Equation (5) was used, all input variables were required. However, the high estimation
accuracy can be achieved only using Equation (7), and this equation required only seven
input variables. However, 4 (PCstart, PFstart, PArise, and PFrise) out of those 7 variables
had a high correlation with the output variable, as seen from Figure 3.

5. Conclusions

In the conducted research, the GPSR algorithm with RHS and five-fold CV was used
to obtain a system of robust SEs for the estimation of the interaction locations in Super
Cryogenic Matter Search detectors. The results of the investigation showed that:

• Using the GPSR algorithm, it was possible to obtain SEs (mathematical equations) that
can estimate the interaction locations in Super Cryogenic Matter Search detectors with
high accuracy.

• Using a 5-CV process, the robust system of the five SEs has a more accurate estimation
when compared to the estimation of only one SE. The RHS method proved to be
very useful in finding the combination of the quality hyperparameters where the
highest accuracy was achieved. From all the results, the best three cases of the SEs
were selected and evaluated on the test set. The highest values of R2 ± σ(R2), MAE±
σ(MAE), RMSE± σ(RMSE) were achieved in Case 1 and are equal to 0.9876± 0.0048,
1.0096± 0.1215, 1.5506± 0.3050.

• From the obtained results, three cases were selected based on the final mean R2

score. From these cases, the SEs that achieved the highest estimation performance
were selected as the main elements of the custom set of SEs. The results of the
customized solution obtained on the entire dataset were equal to 0.991087± 0.001291,
0.878362± 0.063662, and 1.326449± 0.100901, respectively. The final evaluation of
these equations on the entire dataset showed that this system had slightly better
performance when compared to Cases 1, 2, and 3.

• Unfortunately, the custom set of SEs required all 19 input variables to compute the
output. However, if only Equation (7) was used, the highest estimation accuracy could
be achieved, and to compute the output, only seven input variables were required.

The proposed approach presented in this paper showed that using a simple GPSR
algorithm with RHS and the 5-CV on low-end computer hardware can produce better
results than the complex CNN architecture presented in [13]. The benefit of using the
proposed approach is that the SEs were easily used, easy to comprehend, and require fewer
computational resources than complex CNN architectures.

The main problem of the proposed approach is the initial definition of the GPSR
hyperparameter ranges in the RHS method. The ranges are not unique and depend
on the investigation, so each time, it has to be tuned from scratch. Depending on the
dataset, the population size, number of generations, and tournament selection have to be
defined. The larger the dataset size, the smaller the population, number of generations,
and tournament selection size values are. Besides those hyperparameters, the Pcoef has
to be defined, and this parameter is the most-sensitive one. A small increase/decrease of
this value can result in a fast increase/decrease in the length of the population members.
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The other important factor that influences the hyperparameter ranges is the computational
resources on which the GPSR algorithm with the RHS method is executed.

Future work will be focused on synthetically enlarging the dataset size to see if
the estimation accuracy could be improved. Besides that, other ML methods will be
investigated, especially ensemble methods, with the idea of improving the performance
metric values as much as possible.
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Appendix A. Additional Description of Mathematical Functions in SEs

In GPSR, some mathematical functions such as the square root, natural logarithm,
logarithm with base 2 and 10, and division are differently defined to avoid generating
imaginary or inf values. To avoid imaginary values, these functions have to be applied
when the SEs defined with Eqs. (3)-(7) are used. The mathematical functions are defined
as follows:

• Square root:

ysqrt(x) =
√
|x|, (A1)

• Natural logarithm:

ylog(x) =

{
log(|x|) if|x| > 0.001
0 if|x| < 0.001

, (A2)

and when natural logarithms with base 2 and 10 are used, the log in Equation (A2) is
replaced with log2 or log10, respectively.

• Division:

ydiv(x1, x2) =

{
x1
x2

if|x2| > 0.001

1 if|x2| < 0.001
. (A3)

The variables x, x1, and x2 in Equations (A1 - A3) are arbitrary values and have no
relation with the input dataset variables.

https://www.kaggle.com/datasets/fairumn/cdms-dataset
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23. And̄elić, N.; Baressi Šegota, S.; Glučina, M.; Lorencin, I. Classification of Wall Following Robot Movements Using Genetic

Programming Symbolic Classifier. Machines 2023, 11, 105.
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