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Abstract: To ensure the equity of exclusive bus lane (EBL) allocation under multimodal traffic
conditions, a bi-level programming model is first constructed. The upper-level model is the minimum
total system cost considering the Gini coefficient and the lower-level model constructed a stochastic
user equilibrium (SUE) model based on logit loading. Secondly, a heuristic algorithm combining
an improved genetic algorithm (GA) and a method of the successive average method (MSA) is
designed. Finally, the Nguyen and Dupuis networks are used as examples to verify and analyze
the effectiveness, superiority and sensitivity of the model and algorithm. The results show that the
method can effectively obtain the optimal solution of the upper-level model as 15,004 RMB, the Gini
coefficient is 0.31, and the equity is at a relatively reasonable level. Compared with the different
allocation schemes, the proposed scheme has a higher bus sharing rate and lower Gini coefficient. At
the same time, when the actual demand is twice the basic demand, the bus share rate is the largest,
65%, and the Gini coefficient is the smallest at 0.3. The bus share rate decreases with the increase in
the proportion of high time value travelers, which fully verifies the sensitivity of the model to the
type of traveler.

Keywords: traffic engineering; multimodal traffic equity; bi-level programming model; exclusive bus
lane; genetic algorithm; MSA algorithm

1. Introduction

To alleviate road traffic congestion, many cities implement a policy of transit priority
by constructing exclusive bus lanes (EBLs). For example, in China, more than two hundred
cities, including Beijing, Shanghai, Shenzhen and Xi’an, have constructed EBLs [1]. On the
one hand, it can make buses enjoy the right of priority access. The travel time of buses
can be reduced by about 18%, and the waiting time at the station will be reduced by about
12% [2]. On the other hand, by allocating one or more mixed lanes as EBLs, the driving
of other non-bus vehicles will be restricted and driving times will be increased. This can
induce some travelers to choose public transportation, which is conducive to alleviating
urban traffic congestion to some extent.

However, EBLs will increase the delay of other social vehicles while ensuring the
priority of buses [3]. How should we allocate EBLs to balance the right of road between
buses and other social vehicles? In addition, considering the traveler’s trip mode choice
and path choice [4], how do we fairly allocate these limited road resources to heterogeneous
travelers? Therefore, the allocation of EBLs is a complex optimization problem [5].

In recent years, research on the reasonable allocation of EBLs has become more and
more abundant. At present, the research on EBLs can be roughly divided into two categories.
One is based on microsimulation models, using simulation software to simulate different
parameter settings through measured data. For example, Lin et al. [6] obtained the changes
in road indexes before and after allocating EBLs through the mathematical theory model
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and VISSIM simulation. Song et al. [7] evaluated the benefits of EBLs on the MATLAB and
VISSIM simulation platforms. Kampouri et al. [8] used VISSIM microscopic simulation
software and additional modules of VisVAP and EnViVer to represent the operation of
EBLs. Yang et al. [9] used microscopic simulation models to evaluate traffic operations
under different demand levels and bus share ratios. Szarata et al. [10] used PTV Vissim
software with an additional logic script to control the DBL (dynamic bus lane) activation.
Alexey et al. [11] determined the parameters of mathematical models of the delay time
of private and public transport for various parameters of the bus lane, the length of the
bus stop loading area and its distance from the signalized intersection through imitation
microscopic modeling.

The other type is based on macro analysis models, and the impact of EBLs is analyzed
by actual cases. It is attributed to the network design problem (NDP). Generally, the
network design problem (NDP) of urban transportation refers to an optimal investment
decision problem [12]. The research of the NPD can be divided into planning before EBL
allocation and evaluation after EBL allocation. For planning, the bi-level programming
model is mainly used. The upper-level model aims to optimize the system-level objectives
(e.g., maximizing the traffic network consumer surplus [13], minimizing the total travel
time of traffic network users [14], minimizing the equilibrium travel cost [15], etc.). The
lower-level model aims to maintain user equilibrium by considering the user’s response to
the EBL allocation scheme (e.g., stochastic equilibrium assignment under multimodal traffic
modes [16], passenger flow assignment model based on minimum generalized travel cost,
multimodal traffic network equilibrium model, capacity-constrained traffic assignment
model [17], etc.).

The bi-level programming model belongs to the NP-hard problem, and its solution
process is very complicated. So, it is difficult to find an accurate and effective global optimal
algorithm. The current solution methods are mainly divided into two categories: linear bi-
level programming algorithms (e.g., pole search algorithm, branch and bound method and
penalty function method, etc.) and nonlinear bi-level programming algorithms (e.g., genetic
algorithm, simulated annealing algorithm, particle swarm optimization algorithm, etc.).
The key to solving the bi-level programming model is to determine the response function
of the lower-level decision variable to the upper-level decision variable. Based on this, the
algorithm originally applied to the nonlinear programming problem is introduced into the
research of bi-level programming. Sui et al. [18] proposed a particle swarm optimization
algorithm (PSO) and an A* algorithm to solve the model. Guo et al. [19] introduced an SBO
algorithm based on efficient machine learning (ML) surrogate model to find the optimal
allocation scheme. Tsitsokas et al. [20] used a meta-heuristic algorithm based on large
neighborhood search (LNS).

For evaluation, Wang et al. [21] applied the dogit-PSL (path-size logit) MMNE (multi-
modal network equilibrium) model for evaluating the EBL expansion plans, in which
a consistent synthetic proportional index is proposed. Ma et al. [22] proposed a novel
analytical model of a macroscopic fundamental diagram (MFD) and passenger macroscopic
fundamental diagram (p-MFD) and the corresponding indicators based on MFD and p-
MFD to evaluate the operation of the network. Adnan et al. [23] reached to a conclusion on
how much time was saved by the passengers in the buses using bus-lane, the amount of
fuel saved by buses and how much CO2 emission was reduced by comparing the speed,
volume and service duration data from before and after the application.

The study of traffic optimization has gradually changed from the pursuit of efficiency
to the coexistence of efficiency and equity. At present, the accepted concept of traffic equity
is that traffic equity refers to the allocation of costs and benefits generated by a policy, which
usually takes into account different groups of people [24]. The connotation of transportation
equity is also continuously enriched with different research. Park SJ et al. [25] thought
transit equity is the standard deviation of transit accessibility, which is the difference
in travel time between private vehicles and the transit system. Spatial equity included
the time accessibility and the spatial distribution of the configuration equilibrium [26].
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Najaf P et al. [27] believed that equity in transportation is defined as how appropriately and
equally the impacts of transportation are distributed among different types of users. Shi [28]
pointed out that the equity of the public transport system refers to the fair relationship
and distribution mechanism between the various traffic participants in the possession and
distribution of public transport resources.

Equity can generally be divided into horizontal and vertical. Horizontal equity re-
quires each similar individual or group to have the same cost or income distribution [29].
Transportation equity belongs to the vertical equity that considers income, social class and
traffic demand differences. Equity is measured mainly by accessibility, Gini coefficient,
Theil’s entropy and so on, but the heterogeneity of travelers is not fully considered. In prac-
tice, travelers with different time values have different sensitivities to the choice of traffic
modes. There is a lack of research on whether the implementation of transportation policies
brings about the inequity of heterogeneous travelers. Previous equity research focused on
road pricing equity and environmental equity, such as the social equity of tradable credit
and road pricing [30], congestion pricing equity [31], air pollution equity [32] and carbon
emission equity [33].

In summary, the current research has the following gaps:
(1) Microscopic research uses the evaluating indicators to determine whether to allocate

EBLs on the links, ignoring the interaction between links, which may cause unreasonable
problems in the region. Macroscopic research is based on system efficiency as the opti-
mization goal, minimizing the total time or total cost of the system and so on. It is not
considered a question of whether there is equity for multimodal travelers because of the
EBL allocations. The equity of transportation is concentrated in congestion pricing, carbon
emissions and so on.

(2) Generally, the bi-level programming model is used to study the allocation of EBLs.
The bi-level programming model is an NP-hard problem, and its solution algorithm is
also in the process of continuous exploration. How do we improve the effectiveness and
accuracy of the algorithm?

Based on the existing research, this paper fully considers the types of travelers with
different time values and the generalized travel cost. The Gini coefficient is defined as the
ratio of the cumulative percentage of the generalized travel cost of travelers with different
time values to the cumulative percentage of the population. By constructing a bi-level
programming model, the Gini coefficient is introduced into the upper-level model. The
objective function of minimizing the Gini coefficient and the total system cost is established.
The lower-level model constructs a stochastic user equilibrium (SUE) model based on logit
loading. The improved genetic algorithm (GA) and method of the successive average
method (MSA) are organically combined into the heuristic algorithm. Finally, the proposed
bi-level model is validated with Nguyen and Dupuis networks.

The rest of the paper is organized as follows. Section 2 specifically describes the
problem of EBL allocation. Section 3 proposes the bi-level programming model. Section 4
presents solution algorithms that are used to solve the bi-level programming. In Section 5,
the proposed model is tested with Nguyen and Dupuis networks. Section 6 contains some
conclusions we draw and some suggestions for future work.

2. Problem Description

As shown in Figure 1a, it is assumed that there are two bus lines l1 and l2, and the
links are a1 and a2, respectively. Among them, the passenger flow of l2 is greater than l1.
When EBLs are allocated on link a2, the generalized travel cost of cars increases due to the
reduction in the number of lanes [17]. As shown in Figure 1b, some car users will transfer
to link a1 with better traffic conditions and some car users will choose bus line l2.
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Figure 1. Impact of EBLs on the urban traffic network. (a) Traffic flow before setting EBLs. (b) Traffic
flow after setting EBLs.

This research is based on the following assumptions:
(1) There are only two types of traffic modes (bus and car) in the traffic network.
(2) The links in the traffic network are divided into EBLs and non-EBLs.
(3) The negative impact of EBL setting on cars is measured by the increased generalized

travel cost of cars on the road.
The following notations are introduced to establish the optimization models as shown

in Table 1.

Table 1. Notations and descriptions used in the model.

Sets Definitions

V Node set
A Link set
M Traffic mode set, m = c is car related parameters, m = b is bus related parameters
L Bus line set
K Travel path set
W Traffic network OD set
I Travelers set
Y Decision variable set
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Table 1. Cont.

Parameters Descriptions

f i,m
w,k Flow of travelers with time value i choosing traffic mode m on path k between OD pair w

Xm
a Flow of travelers choosing traffic mode m on link a

C Total generalized travel cost
Ci Generalized travel cost of traveler with time value i

Ci,m
a Generalized travel cost of traveler with time value i choosing traffic mode m on link a

Ci,m
w,k

Generalized travel cost of travelers with time value i choosing traffic mode m on the path k between
OD pair w

Vi Time value of travelers
t0
a,m Traffic mode m free flow time on link a

Fa,c Fixed cost of car on link a
Ta,c Travel time of car on link a
Na Number of lanes
Ca Capacity per lane
Yb

a Bus traffic on link a
fl Departure frequency of bus line l
tw
o Time to walk from origin to the bus station

Tl
a,b Bus travel time on link a considering congestion utility

Pb Bus fare
tw
d Time to walk from the bus station to destination

Ta,b Bus travel time on link a
Bl Maximum passenger capacity of vehicles on bus line l
Q Total traffic demand between OD
Qi Total traveler traffic demand with time value i
qw Traffic demand between OD pair w
qi

w Traffic demand of travelers with time value i between OD pair w
qi,m

w Traffic demand for travelers with time value i choosing traffic mode m between OD pair w
Xi,m

a Traffic volume of travelers with time value i choosing traffic mode m on link a
Pi,m

w Probability of travelers with time Value i choosing traffic mode m between OD pair w
Pi,m

w,k Probability of travelers with time value i choosing path k between OD pair w

Ki,m
w Attraction of traffic mode m to travelers with time value i
B Maximum budget of EBL construction
La Length of EBL
Ba Unit construction cost of EBL
G Gini coefficient
θ Discrete parameters for measuring traveler perception error

αc,βc,αb,βb,α,β Parameters to be determined
δw

a,k 0–1 variables, δw
a,k = 1 if path k between OD pair w passes through link a; otherwise, δa

w,k = 0

δw,l
a,k

0–1 variables, δw,l
a,k = 1 if path k between OD pair w needs to take the bus line through link a;

otherwise, δw,l
a,k = 0

δa
l 0–1 variables, δa

l = 1 if the bus line through link a; otherwise, δa
l = 0

δk
l 0–1 variables, δk

l = 1 if the path between OD pair w chooses bus line l; otherwise, δk
l = 0

Decision variables Description

ya 0–1 variables, ya = 1 if a bus lane is set up on link a; otherwise, ya = 0

3. Methodology

A traffic network can be described as a directed graph G = (V, A), consisting of a set
of nodes (junctions) V and directed links (roads) A [8]. m = c is car-related parameters,
and m = b is bus-related parameters; L is the set of bus lines. K represents the set of travel
paths, W is the OD set of traffic networks, G. Assuming that travelers are divided into I
classes according to the characteristics of their travel time value Vi.
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3.1. Optimization Framework

We establish a bi-level programming model and whether to set EBLs as a decision
variable, as shown in Figure 2. The upper-level model is from the perspective of traffic
managers intending to optimize the overall efficiency of the traffic network considering the
Gini coefficient. The lower-level model is an SUE model based on logit loading from the
perspective of travelers.
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The upper managers formulate the EBL allocation schemes, and the lower travelers
choose a traffic mode and path according to the corresponding changes. The overall goal
of the model is to obtain an EBL allocation scheme to ensure the equity of multimodal
travelers and alleviate traffic congestion.

3.2. Generalized Travel Cost of Considering EBLs
3.2.1. Generalized Travel Cost of Car

The generalized travel cost of a car mainly considers the actual travel time cost and
the fixed travel cost. The generalized travel cost of a traveler with time value i choosing the
car on link a as shown in Equation (1):

Ci,c
a = Ta,c ×Vi + Fa,c (1)

Assuming that there are Na lanes for link a and the capacity of each lane is Ca. The
possible capacity of the link a is NaCa. If ya lanes are set as EBLs, for the car, the number
of lanes that can be driven is Na − ya, and the corresponding link capacity is (Na − ya)Ca.
Thus, the driving time of the car on link a can be shown in Equation (2):

Ta,c = t0
a,c

{
1 + αc

[(
λcXc

a + λbYb
a

)
/(Na − ya)Ca

]βc}
(2)

where Xc
a is the flow of travelers choosing to use a car on link a, as shown in Equation (3):

Xc
a = ∑

i
Xi,c

a = ∑
i

∑
k

f i,c
w,kδw

a,k (3)
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Yb
a is the flow of buses on link a as shown in Equation (4):

Yb
a = ∑

l
flδ

a
l (4)

In summary, the generalized travel cost of a traveler with time value i choosing a car
on path k between OD pairs w is formulated as Equation (5):

Ci,c
w,k = ∑

a
(Ta,c ×Vi + Fa,c)× δw

a,k (5)

3.2.2. Generalized Travel Cost of the Bus

According to the time period of bus travel, the bus generalized travel cost is divided
into the following three stages: abording, in-bound and alighting. This is shown in Figure 3.
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Considering walking time, waiting time and driving time, the generalized travel cost
of the bus can be shown in Equation (6):

Ci,b
w,k =

(
tw
o +

1
2 fl

δk
l

)
×Vi + ∑

a
∑

l
Tl

a,b ×Vi × δa,l
w,k + Pb + tw

d ×Vi (6)

For the bus, its possible capacity on link a containing EBLs is still NaCa. The travel
time function reflecting the bus line l passing through link a can be shown in Equation (7):

Ta,b = t0
a,b

{
1 + αb

[(
λcXc

a + λbYb
a

)
/NaCa

]βb}
(7)

When the number of passengers increases to a certain extent, the congestion in the bus
is uncomfortable or even difficult to ride. It may lead to a decrease in the utility value of
the bus, and then a transfer to other travel modes. Therefore, considering the in-vehicle
crowding effect, the generalized travel time cost of the bus line l through link a is shown in
Equation (8):

Tl
a,b = Ta,b

[
1 + α

(
Xb

a/Bl fl

)β
]

(8)

where Xb
a is the flow of travelers who take the bus line l through link a as shown in

Equation (9):
Xb

a = ∑
i

Xi,b
a = ∑

i
∑
k

f i,b
w,kδw,l

a,k (9)

3.3. Bi-Level Programming Model
3.3.1. The Upper-Level Model

With the minimum total system cost considering the Gini coefficient as the objective
function and the construction investment of EBLs as the main constraint condition, the
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optimal EBL setting scheme is determined. The mathematical model is as shown in
Equations (10)–(12)

minZ1(Y) = min

{
G×∑

a
∑

i
Vi

[
Ta,c(ya)Xi,c

a +
(

tw
o + Tl

a,b(ya) + tw
d

)
Xi,b

a

]
+ ∑

a

(
Fc

a Xc
a + PbXb

a

)}
(10)

∑
a

yaLaBa ≤ B, ∀a ∈ A (11)

0 ≤ G ≤ 1 (12)

where Y = (y1, · · · , ya, · · · yN) is a set of decision variables for whether links need to set up
EBLs and is defined as ya = 1 if a bus lane is set up on link a; otherwise, ya = 0.

The objective function (10) is to minimize the system cost considering the Gini coef-
ficient. The first term is the Gini coefficient, and the second term is the total system cost.
Constraint (11) is the budget constraint of bus lane construction, and constraint (12) is the
value constraint of Gini coefficient.

The Gini coefficient is calculated by the lower-level model as follows:

• The lower-level model obtains the traffic volume Xi,m
a of travelers with different time

values in each link when the traffic network is balanced;
• Calculating the total generalized travel cost value as shown in Equation (13):

C = ∑
a

∑
i

Vi

[
Ta,cXi,c

a +
(

tw
o + Tl

a,b + tw
d

)
Xi,b

a

]
+ ∑

a

(
Fc

a Xc
a + PbXb

a

)
(13)

• Calculating the generalized travel costs of travelers with different time values as
shown in Equation (14):

Ci = ∑
a

Vi

[
Ta,cXi,c

a +
(

tw
o + Tl

a,b + tw
d

)
Xi,b

a

]
+ ∑

a

(
Fc

a Xc
a + PbXb

a

)
(14)

• Calculating the cumulative percentage of the generalized travel cost of travelers with
different time values to the total generalized travel cost ∑

i

Ci
C ; calculating the population

percentage of travelers with different time values Qi
Q , and calculating the cumulative

percentage of population ∑
i

Qi
Q ;

• According to the cumulative percentage of generalized travel costs and the cumulative
percentage of the population, the Lorentz curve is drawn, as shown in Figure 4.

• Assuming the area between the actual Lorenz curve and the absolutely equitable line
is SA and the area between the actual Lorenz curve and the absolutely inequitable line
is SB [34]. The Gini coefficient is shown in Equation (15). The range of values is shown
in Table 2.

G =
SA

SA + SB
(15)

Table 2. Gini coefficient range and equity.

Gini Coefficient Range Level of Equity

G < 0.2 Absolute average
0.2 ≤ G < 0.3 Comparative average
0.3 ≤ G < 0.4 Relatively reasonable
0.4 ≤ G < 0.6 Gap

G ≥ 0.6 Large gap
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3.3.2. The Lower-Level Model

Assuming that the traveler ‘s perception errors of the travel utility of different traffic
modes for different time values are independent of each other and obey the Gumbel
distribution. The traffic mode choices and path choices are performed according to the
logit model. The mathematical model is given by the following set of Equations (16)–(21):

minZ2

(
Xi,m

a , f i,m
w,k

)
= min


∑
a

∑
i

Vi
∫ Xc

a
0 Ta,c(w)dw + ∑

a
∑
i

Xi,c
a × Fc

a + ∑
a

∑
i

Xi,b
a ×

[
Vi

(
tw
o + 1

2 fl
+ tw

d

)
+ Pb

]
+∑

a
∑
i

Vi
∫ Xb

a
0 Tl

a,b(w)dw + 1
θ ∑

w
∑
i

∑
m

f i,m
w,k ln f i,m

w,k

 (16)

Na ≥ 2, ∀a ∈ A (17)

∑
k

f i,m
w,k = qi,m

w , ∀i ∈ I, w ∈W, k ∈ K, m ∈ M (18)

Xm
a = ∑

i
Xi,m

a , ∀a ∈ A, i ∈ I, m ∈ M (19)

Xi,m
a = ∑

w
∑
k

f i,m
w,kδw,l

a,k , ∀a ∈ A, i ∈ I, l ∈ L, w ∈W, k ∈ K, m ∈ M (20)

Xi,m
a ≥ 0, f i,m

w,k ≥ 0, ∀a ∈ A, i ∈ I, w ∈W, k ∈ K, m ∈ M (21)

The objective function (16) is a stochastic user equilibrium model based on logit
loading. Constraint (17) indicates that the link to which the dedicated lane is to be laid
generally has at least two lanes in one direction. Constraint (18) indicates the conservation
constraint of the travel volume and the link flow of the traveler with time value i choosing
the traffic mode m between OD pairs w. Constraint (19) indicates the conservation constraint
of the traffic volume and the traveler with time value i choosing the traffic mode m on link a.
Constraint (20) indicates the conservation constraint of the travel volume and the link flow
of the traveler with time value i on link a. Constraint (21) is a non-negative constraint.
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The logit model is used to describe the traveler’s traffic mode choice behavior to reflect
the impact of EBL allocation on traffic mode transfer. The probability that travelers with
time value i choose the traffic mode m between OD pair w is as shown in Equation (22):

Pi,m
w =

exp
(
−θCi,m

w − Ki,m
w

)
∑
m

exp
(
−θCi,m

w − Ki,m
w

) (22)

The probability that traveler with time value i chooses path k between OD pairs w is
as shown in Equation (23):

Pi,m
w,k =

exp
(
−θCi,m

w,k

)
∑
k

exp
(
−θCi,m

w,k

) (23)

4. Solution Algorithm

The basic GA has slow convergence speed, poor local search ability and is easy to
fall into local optimum [21]. In order to ensure the genetic algorithm can converge to the
global optimal solution, this paper improves the genetic algorithm by retaining the optimal
individual strategy and designs an improved GA-MSA heuristic algorithm, as shown in
Figure 5.

Step 0: Initialize the population

• Parameter setting

Set the relevant parameters of the genetic algorithm, including population size G,
crossover probability Pc, mutation probability Pm, chromosome length and maximum
number of iterations Gmax.

• Generating chromosomes

The links are coded and arranged in order. The coding of each link is the decision
variable. If the link is set to EBL, it is coded as 1, otherwise it is 0. The coding scheme is the
chromosome in the genetic algorithm, and the length N is the total number of links in the
network. The jth chromosome is Yj, j = 1, 2, · · · , G.

• Generation of the initial population

The population is a collection of chromosomes, and G chromosomes are generated
according to the corresponding coding scheme. The initial populations

(
Y(g)

)
are given

randomly, and the evolution iteration number is g = 0.
Step 1: Stochastic equilibrium assignment
The initial solution under the initial population is

(
Xi,m(n)

a , qi(n)
w

)
, and the number

of iterations is n = 0. The generalized travel cost of travelers with different time values
choosing different traffic modes is calculated. According to the logit model, the probability
of traffic modes and path choices are calculated. The traffic flow of cars and buses is loaded
into the traffic network, and all the path flow between ODs is obtained. A stochastic assign-

ment is performed to obtain the additional traffic volume of link
(

Xi,c(n)
a , Xi,b(n)

a

)
, and the

current traffic flow of each link is calculated by MSA as shown in Equations (24) and (25):

Xi,m(n+1)
a = Xi,m(n)

a +
(

Xi,m(n)
a − Xi,m(n)

a

)
/n (24)

qi(n+1)
w = qi(n)

w +
(

qi(n)
w − qi(n)

w

)
/n (25)

Loop iteration termination criterion, when the traffic flow distribution results reach
equilibrium, Xi,m(n+1)

a − Xi,m(n)
a ≤ δ and qi(n+1)

w − qi(n)
w ≤ δ, δ is the predetermined error,

turn to step 2, otherwise, n = n + 1, turn to step 1.
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Step 2: Construction of fitness function
The fitness of each chromosome coding in the population is F, the greater the fitness,

the greater the survival probability of the chromosome. The reciprocal of the upper-level
objective function value Z1 is used as the fitness of the chromosome, and the fitness value
F = 1/Z1 is calculated according to step 1.

Step 3: Generate a new population
The roulette wheel method is used to select chromosomes. The chromosomes selected,

crossed and mutated are combined with the original population into a population, and
the fitness value of each chromosome is calculated. According to the fitness value from
large to small, G chromosomes are selected as a new population. The purpose of merging
the original population and the new population is to ensure that the excellent individuals
can be inherited by the next generation. The new population not only preserves excellent
individuals of the original population, but also increases the diversity of the population.

Step 4: Genetic algorithm termination criteria
Check whether the maximum number of evolutionary iterations Gmax is reached. If

g ≥ Gmax this stops the iteration. The chromosome corresponding to the maximum fitness
in the population is the output, and the binary code corresponding to the chromosome is
the optimal EBL allocation scheme. Otherwise, g = g + 1, go to step 0.
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5. Computational Experiments
5.1. Network Introduction

Based on the network proposed by Nguyen and Dupuis in 1984, this paper constructs
an urban traffic network for testing [35]. As shown in Figure 6, there are 13 nodes, 19 links
and 9 OD pairs in the network. Among them, the red node is the origin node O and the
blue node is the destination node D.
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In the connection between every two nodes, the solid line represents the traffic link of
the car, and the dotted line represents the traffic link of the bus. The links between each OD
pair are two-way, and the total number bus lines is 5.

5.2. Parameter Settings

Assuming that the average passenger capacity of each car is 2 people, so, λc is 0.5.
The parameters in the generalized travel cost αb and βb are 0.05 and 4, respectively. The
maximum passenger capacity of the bus Bl is 80 people and the departure frequency of the
bus fl is 8 vehicles/h. The bus fare Pb is 2 RMB, and the conversion coefficient of the bus to
the car λb is 3. The generalized travel cost parameters of the bus, αc and βc, are 0.02 and 3,
respectively. The traveler’s walking time from the origin to the bus station tw

o and from
the bus station to the destination tw

o are both 5 min. The congestion parameters in the bus,
α and β, are 1.1 and 1.5, respectively. The unit construction cost of the bus lane Ca is
30,000 RMB/km, and the budget constraint of the bus lane construction B is 500,000 RMB.
The OD pairs and corresponding basic traffic demands in the network are shown in Table 3.
The total traffic demand is 8000 people, and the actual demand is λ times the basic demand.

The traveler’s time value is divided into three types: low, medium and high. The
corresponding time value is shown in Table 4. It is assumed that the travel demand ratio
of different time values between an OD pair w is q1

w : q2
w : q3

w = 1 : 3 : 1. The attraction of
different ODs is the same, and the perception error θ is 0.05.
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Table 3. Basic traffic demand between OD.

O
D

2 3 11

1 1000 800 600
4 900 700 1100
5 1200 900 800

Table 4. Traveler information.

Time Value Type i Time Value
Vi (RMB/h)

Car Attraction
Ki,m

w (RMB)
Bus Attraction

Ki,m
w (RMB)

Basic Traffic Demand
Qi (People)

Low (i = 1) 15 2 6 1600
Medium (i = 2) 30 4 4 4800

High (i = 3) 45 6 3 1600

Links 8 and 18 have no bus line, so their driving time is infinite. All feasible paths in
the network are effective paths. The number of lanes on all links Na is 3, and the capacity
of a single lane Ca is 400 pcu/h. The network information is shown in Table 5.

Table 5. Traffic network information.

Link Name Link Length
La (km)

Link Fixed Cost
Fa,c (RMB)

Bus Line
l

Car Free Flow Travel Time
t0

a,c (min)
Bus Free Flow Travel Time

t0
a,b (min)

a1 2.1 5 l2 4.2 8.4
a2 1.8 5 l1 3.6 7.2
a3 1.5 4 l5 3.0 6.0
a4 2.6 6 l3 5.1 10.2
a5 1.5 4 l2 3.0 6.0
a6 2.3 6 l4, l5 4.5 9.0
a7 2.0 5 l1, l2 4.1 8.2
a8 2.3 6 — 4.5 ∞
a9 1.5 4 l4 3.0 6.0
a10 2.3 6 l2 4.5 9.0
a11 2.3 6 l1 4.5 9.0
a12 1.5 4 l3, l5 3.0 6.0
a13 2.6 6 l4 5.1 10.2
a14 2.0 5 l3, l5 4.1 8.2
a15 1.8 5 l3 3.6 7.2
a16 2.1 5 l5 4.2 8.4
a17 2.1 5 l1 4.2 8.4
a18 3.0 7 — 6.0 ∞
a19 1.8 5 l1 3.6 7.2

The improved GA-MSA heuristic algorithm is programmed by Python 3. The genetic
parameters are set as follows: population size G = 20, crossover probability Pc = 0.8,
mutation probability Pm = 0.1, chromosome length N = 17 and the maximum number of
iterations Gmax = 1000.

5.3. Results and Discussion
5.3.1. Effectiveness Verification: Algorithm Convergence and Optimal Allocation Scheme

Figure 7 shows the convergence process of the objective function. The genetic algo-
rithm converges faster in the 600 times iterations, then remains unchanged and finally
converges at 15,004 RMB. The whole convergence process takes about 10 min.
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The position of the EBL allocation schemes in the traffic network is shown in Figure 8.
The red links marked are the links where the EBLs are set. It can be seen that the optimal
number of EBLs allocated is six, which are links a4, a6, a7, a10, a12 and a14. The total length
is 12.7 km, and the total construction cost is 381,000 RMB. At the same time, the optimal
solution of the upper-level model is 15,004 RMB, the total system cost is 49,917 RMB and
the Gini coefficient is 0.31.
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5.3.2. Superiority Verification: Comparative Analysis of Different Allocation Schemes

There are four types of allocation schemes: Scheme 1: no EBLs; Scheme 2: all EBLs;
Scheme 3: allocation scheme without considering equity (only the total system cost is
considered in the upper-level model); and Scheme 4: allocation scheme considering equity
(the Gini coefficient and total system cost are considered in the upper-level model). The
results are shown in Table 6. By comparing and analyzing the influence of different EBL
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allocation schemes on bus sharing rate, total system cost and Gini coefficient, the superiority
of this model is further verified.

Table 6. Comparative analysis of different allocation schemes.

Scheme 1 Scheme 2 Scheme 3 Scheme 4

Bus Sharing Rate 0.45 0.52 0.48 0.50
Total System Cost/RMB 48,950 50,450 48,560 48,400

Ci
Qi

i = 1 5.82 5.45 5.70 5.62
i = 2 6.20 6.37 6.24 6.30
i = 3 6.54 7.20 6.75 6.86

Gini Coefficient 0.40 0.38 0.35 0.31
Optimal Solution/RMB 19,580 19,171 16,996 15,004

The total system cost of Scheme 1 is lower. Without EBLs, the generalized travel
cost of the bus is increased, the sharing rate is the lowest and the Gini coefficient is the
highest. This scheme is inequity to travelers with low time value because buses are more
attractive to them. The bus sharing rate of Scheme 2 is the highest, but at the same time,
the construction cost of the EBLs and the generalized travel cost of the car increase, making
the total system cost the largest of all schemes. The Gini coefficient is also larger, indicating
that the reduction in bus generalized travel cost is at the expense of the increase in car
generalized travel cost, which is unfair to travelers with high time value.

Compared with Scheme 1 and Scheme 2, the average cost of different time value
travelers in Scheme 3 is reduced. The Gini coefficient is reduced, as is the degree of inequity.
However, the bus sharing rate and the cost of low value travelers is higher than Scheme 4.
In Scheme 4, the bus sharing rate is higher. Although the total system cost is not the lowest,
the Gini coefficient is the smallest and the optimal solution of the upper-level model is also
the smallest. Therefore, from the perspective of social equity, the optimized EBL allocation
Scheme 4 is more in line with the actual situation.

5.3.3. Demand Level Sensitivity Verification: Impact of Demand Level on the
Optimal Solution

In order to further study the influence of demand level on the allocation of EBLs, it
is assumed that the actual demand is the basic demand λ times. From Figure 9, it can
be seen that with the λ continuous increase, the bus sharing rate shows a trend of first
increasing and then decreasing. The Gini coefficient shows a trend of first decreasing and
then increasing.
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When λ = 2, the bus sharing rate is the largest, 65%, whereas the Gini coefficient is
the smallest, 0.3, and the allocation of EBLs is the most ideal.

At the same time, the number of EBL settings gradually increased, followed by the
addition of a4,a10,a5 and a19. When λ = 2, the number of EBLs obtain a maximum of 8.
The total length is 16 km, and the construction cost is 480,000 RMB, which is close to the
maximum investment constraints of 500,000 RMB. So, with the increase in travel demand,
EBLs no longer change the optimal allocation scheme, as shown in Figure 10.
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5.3.4. Traveler Type Sensitivity Verification: Impact of Traveler Type on the
Optimal Solution

The original assumed travel demand ratio for different time values between an OD
pair w is q1

w : q2
w : q3

w = 1 : 3 : 1. The impact of the increase in the proportion of high time
and low time value on the optimal solution is considered, and the results are shown in
Figure 11.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 19 of 22 
 

 

 
Figure 11. EBL lllocation scheme under different types of travelers. 

(1) Assume that the proportion of low time value travelers remains unchanged, some 
middle time value travelers transfer to high time value travelers, that is 1 2 3: : 1: 2 : 2=w w wq q q
. The total system cost increases, the Gini coefficient also increases and the EBLs allocation 
scheme adds new links 5a  and 15a . By increasing the proportion of EBLs, the transfer of 
cars to buses is further promoted to ensure the equity of travelers with different time 
values. 

(2) Assuming that the proportion of high time value travelers remains unchanged, 
some medium time value travelers transfer to low time value travelers, that is 
1 2 3: : 2 : 2 :1=w w wq q q . The bus sharing rate increases significantly, the total system cost 

decreases and the Gini coefficient decreases. It can be seen that the equity of travelers 
increases and the EBL allocation scheme reduces link 10a  that only one bus line 2l  
passes through, achieving a balance between car and bus traffic modes. 

Because using the car and bus have different attractions to travelers with different 
time values, cars are more attractive to travelers with high time value and buses are less 
attractive. Therefore, when the proportion of travelers with high time value increases, the 
bus sharing rate shows a downward trend. By increasing the number of EBLs, the 
generalized cost of bus travel is reduced and car travelers are prompted to transfer to 
buses. When the proportion of low time value travelers increases, the bus sharing rate is 
on the rise. By reducing unnecessary EBLs, the rational allocation of road resources is 
realized to ensure the right of road for car travelers. 

6. Conclusions 
In this paper, the EBL network design problem considering equity is proposed and a 

bi-level programming model is constructed. The upper-level model is the EBL 
programming model, and the lower-level model is the SUE model based on logit loading. 
An improved GA-MSA heuristic algorithm is proposed to solve the model. Finally, taking 
Nguyen and Dupuis networks as examples, the following conclusions are drawn: 

(1) Effectiveness: The heuristic algorithm converges to the 600 iterations. The optimal 
solution of the upper-level model is 15,004 RMB, and the total system cost is 49,917 RMB. 
The Gini coefficient is 0.31, and the equity is at a reasonable level. The number of EBLs 
allocated is six, which are links 4a , 6a , 7a , 10a , 12a  and 14a . 

(2) Superiority: By comparing and analyzing the four different EBL allocation 
schemes, the allocation scheme considering equity we proposed has a higher bus sharing 
rate. Although the total system cost is not the lowest, the Gini coefficient is the smallest 
and the optimal solution of the upper-level model is the smallest. Therefore, from the 

Figure 11. EBL lllocation scheme under different types of travelers.

(1) Assume that the proportion of low time value travelers remains unchanged, some
middle time value travelers transfer to high time value travelers, that is q1

w : q2
w : q3

w = 1 : 2 : 2.
The total system cost increases, the Gini coefficient also increases and the EBLs allocation
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scheme adds new links a5 and a15. By increasing the proportion of EBLs, the transfer of cars
to buses is further promoted to ensure the equity of travelers with different time values.

(2) Assuming that the proportion of high time value travelers remains unchanged,
some medium time value travelers transfer to low time value travelers, that is
q1

w : q2
w : q3

w = 2 : 2 : 1. The bus sharing rate increases significantly, the total system cost
decreases and the Gini coefficient decreases. It can be seen that the equity of travelers
increases and the EBL allocation scheme reduces link a10 that only one bus line l2 passes
through, achieving a balance between car and bus traffic modes.

Because using the car and bus have different attractions to travelers with different
time values, cars are more attractive to travelers with high time value and buses are less
attractive. Therefore, when the proportion of travelers with high time value increases,
the bus sharing rate shows a downward trend. By increasing the number of EBLs, the
generalized cost of bus travel is reduced and car travelers are prompted to transfer to buses.
When the proportion of low time value travelers increases, the bus sharing rate is on the
rise. By reducing unnecessary EBLs, the rational allocation of road resources is realized to
ensure the right of road for car travelers.

6. Conclusions

In this paper, the EBL network design problem considering equity is proposed and a bi-
level programming model is constructed. The upper-level model is the EBL programming
model, and the lower-level model is the SUE model based on logit loading. An improved
GA-MSA heuristic algorithm is proposed to solve the model. Finally, taking Nguyen and
Dupuis networks as examples, the following conclusions are drawn:

(1) Effectiveness: The heuristic algorithm converges to the 600 iterations. The optimal
solution of the upper-level model is 15,004 RMB, and the total system cost is 49,917 RMB.
The Gini coefficient is 0.31, and the equity is at a reasonable level. The number of EBLs
allocated is six, which are links a4, a6, a7, a10, a12 and a14.

(2) Superiority: By comparing and analyzing the four different EBL allocation schemes,
the allocation scheme considering equity we proposed has a higher bus sharing rate.
Although the total system cost is not the lowest, the Gini coefficient is the smallest and the
optimal solution of the upper-level model is the smallest. Therefore, from the perspective of
social equity, the optimized EBL allocation scheme is more in line with the actual situation.

(3) Demand level sensitivity: With the increasing demand for travel, the bus sharing
rate shows a trend for increasing first and then decreasing, and the Gini coefficient shows
a trend for decreasing first and then increasing. At that time, the bus sharing rate is the
largest (65%), whereas the Gini coefficient is the smallest (0.3); at this time, the allocation of
the EBLs is the most ideal.

(4) Traveler type sensitivity: Due to the different attractions of cars and buses to
different time value travelers, cars are more attractive for high time value travelers, whereas
buses are opposite to this. When the proportion of high time value travelers increases, the
optimal allocation scheme adds links a5 and a15. When the proportion of low time value
travelers increases, link a10 is reduced so that only one bus line l2 passes.

Although this paper considers two travel modes of cars and buses and the Gini
coefficient is added to the upper-level objective function, there are still the following
deficiencies, which can be further studied in the future:

(1) In this paper, the impact of multi-mode traffic, such as autonomous driving and
electric buses, is not fully considered. Although the right to use EBLs in this article is
limited to buses, carpooling travelers, taxis, etc., can also use EBLs in some cities. How
these kinds of vehicles will affect the distribution of EBLs is also worthy of study.

(2) This paper designs a GA-MSA heuristic algorithm and verifies its effectiveness
and feasibility in small-scale road networks. However, in practice, it is more about large-
scale road networks. It is crucial to introduce modern technologies, such as multi-criteria
decision analysis (MCDA) [36], agent-based modelling [37], large neighborhood search
(LNS) and so on, to find approximate optimal solutions for large-scale networks.
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36. Barchański, A.; Żochowska, R.; Kłos, M.J. A method for the identification of critical interstop sections in terms of introducing

electric buses in public transport. Energies 2022, 15, 7543. [CrossRef]
37. Kostrzewski, M.; Abdelatty, Y.; Eliwa, A.; Nader, M. Analysis of modern vs. conventional development technologies in

transportation—The case study of a last-mile delivery process. Sensors 2022, 22, 9858. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3141/1859-11
http://doi.org/10.1155/2022/5887985
http://doi.org/10.3390/su141710486
http://doi.org/10.1080/19439962.2016.1230163
http://doi.org/10.1155/2021/1103331
http://doi.org/10.1016/j.trip.2020.100091
http://doi.org/10.1016/j.tre.2016.07.014
http://doi.org/10.4079/pp.v27i0.10
http://doi.org/10.1016/j.trd.2019.05.012
http://doi.org/10.3390/su142113789
http://doi.org/10.3390/app11178109
http://doi.org/10.1287/trsc.18.2.185
http://doi.org/10.3390/en15207543
http://doi.org/10.3390/s22249858

	Introduction 
	Problem Description 
	Methodology 
	Optimization Framework 
	Generalized Travel Cost of Considering EBLs 
	Generalized Travel Cost of Car 
	Generalized Travel Cost of the Bus 

	Bi-Level Programming Model 
	The Upper-Level Model 
	The Lower-Level Model 


	Solution Algorithm 
	Computational Experiments 
	Network Introduction 
	Parameter Settings 
	Results and Discussion 
	Effectiveness Verification: Algorithm Convergence and Optimal Allocation Scheme 
	Superiority Verification: Comparative Analysis of Different Allocation Schemes 
	Demand Level Sensitivity Verification: Impact of Demand Level on the Optimal Solution 
	Traveler Type Sensitivity Verification: Impact of Traveler Type on the Optimal Solution 


	Conclusions 
	References

