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Abstract: Catastrophic forgetting is a significant challenge in deep reinforcement learning (RL). To
address this problem, researchers introduce the experience replay (ER) concept to complement the
training of a deep RL agent. However, the buffer size, experience selection, and experience retention
strategies adopted for the ER can negatively affect the agent’s performance stability, especially for
complex continuous state action problems. This paper investigates how to address the stability
problem using an enhanced ER method that combines a replay policy network, a dual memory, and
an alternating transition selection control (ATSC) mechanism. Two frameworks were designed: an
experience replay optimisation via alternating transition selection control (ERO-ATSC) without a
transition storage control (TSC) and an ERO-ATSC with a TSC. The first is a hybrid of experience
replay optimisation (ERO) and dual-memory experience replay (DER) and the second, which has
two versions of its kind, integrates a transition storage control (TSC) into the first framework. After
comprehensive experimental evaluations of the frameworks on the pendulum-v0 environment and
across multiple buffer sizes, retention strategies, and sampling ratios, the reward version of ERO-
ATSC with a TSC exhibits superior performance over the first framework and other novel methods,
such as the deep deterministic policy gradient (DDPG) and ERO.

Keywords: reinforcement learning; experience replay; experience retention; experience selection;
dual memory

1. Introduction

In recent years, deep RL has made some strides in game AI [1], energy [2], stock
trading [3], health [4], autonomous driving [5], and many more. The experience replay
(ER) concept is a vital component of the success of these RL applications. According to
Lin et al. [6], ER allows an RL agent to change its current policy by reusing previously
experienced data. It also aids the agent in making better decisions when it encounters
similar states and speeds up its learning. However, not all experiences (transitions) benefit
the agent’s training [7]. There is a need to harness important experiences to stabilise
and improve the agent’s performance, but this becomes a challenge when dealing with a
stochastic world where the agent seldom obtains quality and relevant experiences. As a
result, it is imperative to store and efficiently use essential experiences.

For ER to be successful, there is the need to carefully understand the strategies required
to determine the experiences to store, the ones to select for training the agent, and those
to retain when the replay buffer is full. With a standard experience replay process, the
agent, through an exploration and exploitation mechanism, selects an action in a state,
takes that action, and receives a reward and a new state from its environment. The
transition tuple (state, action, reward, and the new state), also known as experience, is
stored in a fixed-length replay buffer. After storage, a selection strategy randomly samples
a mini-batch of the stored experiences to train the agent. This process repeats until the
attainment of a performance threshold. A retention mechanism is applied to ensure that
relevant experiences are maintained when the replay buffer is full. The selection and
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retention strategies are employed to facilitate the effective use of data and reduce the cost
of interactions with the agent’s environment.

Over the years, researchers have developed novel approaches for experience selection
and retention. Algorithms such as deep Q-network (DQN) [8], prioritised experience re-
play (PER) [9], combined experience replay (CER) [10], deep deterministic policy gradient
(DDPG) [11], episodic memory deep Q-Network (EMDQN) [12], selective experience replay
(SER) [13], prioritised sequence experience replay (PSER) [14], experience replay optimi-
sation (ERO) [15], and attentive experience replay (AER) [16] use a single replay buffer,
while others, such as the double experience replay (DER) [17] algorithm, rely on a double
buffer (also called dual memory). Again, some algorithms uniformly replace or remove
experiences at random, while others use prioritisation strategies to delete experiences from
the buffer. It is worth noting that experience selection is not only influenced by how to
retain experiences when the replay buffer is full, but also by what to store in the buffer.
Thus, it is essential to study the relationship between the storage, selection, and retention
mechanisms applied in ER. The following are the main contributions of this paper:

1. To effectively improve the performance stability of ERO, an alternating transition
selection control (ATSC) and a dual memory are introduced into the standard ERO
to design a first framework. The ATSC uses a selection ratio to sample transitions
from the dual memory into the replay policy network to promote complementary and
stable learning.

2. A transition storage control (TSC), which uses either a reward or a temporal difference
error (TDE) threshold, is further integrated into the first framework to ensure that
more rewarding and diverse transitions are frequently stored in the dual memory.

To better comprehend the operations of the frameworks and to validate their efficacy, they
are primarily evaluated on the Pendulum-v0 of the OpenAI Gym [18] platform. Subsequently,
the frameworks are tested on the MountainCarContinuous-V0, LunarLanderContinuous-v2,
and BipedalWalker-v3 environments. The experiments demonstrate that the reward version
of ERO-ATSC with a TSC exhibits superior performance over the first framework and other
novel algorithms, such as the deep deterministic policy gradient (DDPG) and experience
replay optimisation (ERO).

The rest of the paper is organised as follows: Section 2 presents a brief review of
related works on ER techniques. Section 3 highlights the single and dual replay buffer
frameworks, and Section 4 focuses on the experimental setup. Section 5 discusses the
results and Section 6 presents the conclusion and recommendation.

2. Related Works

With advancements in deep learning and deep reinforcement learning, researchers
seek to retain the knowledge acquired by a deep neural network as it trains to find solutions
to diverse problems. In recent times, the focus has been on continual learning, where a
trained neural network continues to learn. However, continual learning faces the challenge
of catastrophic forgetting [19–22]. A neural network will adjust its weights to a specific
problem, task A, but will forget these weights when the same network begins to train on a
different task. This behaviour can be harmful to generalisation and continual learning. To
ensure that the network is scalable and can train on multiple and complex tasks without
forgetting, researchers suggest developing and adopting different strategies and algorithms.
While some suggest training a neural network with regularisation approaches, such as
learning without forgetting (LWF) [23] and elastic weight consideration (EWC) [21], others
such as Han et al. [24] opt for dynamic network architecture, and some also suggest
complementary learning systems (memory with replay strategies) [8,9,13,15,17,25].

ER is one of the oldest but relevant mechanisms employed to complement neural
network training. Lin [6] introduced the ER concept in his reinforcement learning research
but the DQN algorithm [8] brought it to the limelight. In ER, previous data are stored in
a buffer and repeatedly reused with new data to train the neural network. However, the
successful operation of ER hinges on some selection and retention mechanisms that require
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careful design and implementation. This section briefly reviews experience retention and
selection strategies but throws much on the latter.

2.1. Experience Retention Strategies and Algorithms

The ER mechanism has three major stages: storing experiences in the buffer, retaining
or removing experiences when the replay buffer is full, and selecting experiences to be
replayed. When a deep RL agent observes a state, that state is fed into the deep neural net-
work, and the network predicts the q-values of all possible actions in the state. Afterwards,
an exploration–exploitation technique (for example, epsilon-greedy) selects an action in
the observed state. A new state is observed and a feedback reward is given to determine
the value of the action taken. The agent transits from one state to another until it reaches
a terminal state. The transition tuple (state, action, reward, and new state) can be stored
directly in the buffer or may be stored based on some threshold mechanisms. Since some
actions are more rewarding than others and the agent aims to maximise its accumulated
reward, it is vital to adopt efficient mechanisms to retain relevant experiences and remove
less relevant ones when the buffer is full.

An experience retention strategy may be implemented sequentially, uniformly, or pri-
oritised. The standard ER uses the First-In-First-Out (FIFO) approach, where it sequentially
overwrites old experiences with new ones when the buffer is full. The experiences are
removed without considering their relevance to the agent’s performance [26]. Another
approach is to replace experiences in the first half of the buffer with new ones when the
buffer is full. Moreover, a replay buffer that is big enough to store all experiences can be
used [7]. However, this approach can be detrimental to training stability, as experiences
that may hamper learning progress continue to stay in the buffer. In the reservoir approach,
experiences are uniformly at random, overwritten with new ones. Furthermore, experi-
ences can be overwritten stochastically based on their relevance to learning [26]. Table 1
presents a list of algorithms and their ER strategies.

2.2. Experience Selection Strategies and Algorithms

The effectiveness of experience selection or sampling is rated not only by the sample
outcome, but also by the strategies implemented to produce the needed outcome. Irrespec-
tive of the experience selection strategy adopted, the sampling mechanism may be uniform
or prioritised but not sequential; sequential sampling will generate highly correlated expe-
riences and eventually prevent the agent from learning. However, a uniform or prioritised
sampling will reduce the cost of training, break the correlation between transitions, and
improve sampling efficiency and learning stability.

Many selection strategies have been developed and combined with some RL algo-
rithms to solve simple and complex problems. The DQN algorithm of Mnih et al. [8] com-
bines a deep convolutional neural network with the standard ER and the Q-learning [27]
method to solve the challenging Atari 2600 games; in this approach, the experiences are
selected uniformly at random. Each experience in the replay buffer has an equal proba-
bility or chance of being selected for replay. For a set of experiences, E(e1, e2, . . . , en), the
probability of any experience is given as Pi = 1/n. Contrary to uniform sampling, some
selection strategies draw inspiration from the prioritised sweeping [28] technique and,
therefore, assign higher selection probability to experiences that are deemed important and
can generate good returns. Prioritised strategies assign importance to experiences based on
temporal difference error (TDE) [9], reward [13,15], frequency of selection [17], distribution
of transitions [13], and even the similarities between states [16]. While some selection
strategies are fully prioritised (only the highest priority transitions are selected), others
have a parameter to regulate the level of prioritisation. The parameterised prioritisation
makes it flexible to scale from uniform to fully prioritised sampling.

Schaul et al. [9] present a prioritised experience replay (PER), where experiences with
higher TDE are selected frequently. This situation can result in a loss of diversity but
can be addressed with stochastic prioritisation. However, prioritisation can create a bias,
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which can also be corrected with importance sampling. While Horgan et al. [29] extend
prioritised experience replay to a distributed setting, Zha et al. [15] use a replay policy
(neural network) combined with both uniform and prioritised selection techniques to select
transitions for replay. Luo and Li handle state-action space diversity by over-sampling
under-represented experiences in a non-diverse state-action space. Sun et al. [15,16] also
sample experiences based on the similarities between the states of those experiences and
the state of the agent. They equally focus on experiences that are frequently visited.

Just as multiple neural networks are used in some RL algorithms to enhance training
stability [8,11,15,26,30,31], recent works in ER are exploring the use of a dual-memory
architecture. The dualism may come in the form of long and short memory [32] or main
and cache [33]. It may also be differentiated based on the sources of the replay data
or the ratio of selection from the dual memory. Olin-Ammentorp et al. [32] rely on the
complementary learning system of the human brain (interaction between the cortical
and hippocampal networks) to design a dual memory (short-term and long-term) replay
architecture. However, their design was implemented in a discrete state-action space. Ko
and Chang [33] use the main memory to store diverse experiences and cache memory to
manage the frequently used experiences to train the neural network. On the other hand, a
ratio can be employed to alternate the sampling of relevant experiences from one memory
and recent experiences from another memory [17]. Table 1 shows a tabulated summary of
some RL algorithms and their adopted ER strategies.

Table 1. Some RL algorithms and their ER strategies
√

.

Ref. Algorithm Sampling Strategy Retention Strategy
Uniform Priority Sequential Uniform Priority

[8] Deep Q-Network (DQN)
√ √

[9] Prioritised Experience Replay (PER)
√ √

[11] Deep Deterministic Policy Gradient (DDPG)
√ √

[12] Episodic Memory Deep Q-Network (EMDQN)
√ √

[13] Selective Experience Replay (SER)
√ √ √

[14] Prioritised Sequence Experience Replay (PSER)
√ √

[15] Experience Replay Optimisation (ERO)
√ √ √

[16] Attentive Experience Replay (AER)
√ √ √

[17] Double Experience Replay (DER)
√ √ √

[26] Prioritised Stochastic Memory Management (PSMM)
√ √

[30] Twin Delayed Deep Deterministic Policy Gradient (TD3)
√ √

[31] Proximal Policy Optimisation (PPO)
√ √

[33] Dual Memory Structure (DMS)
√ √ √ √

The uniform sampling or retention strategy is simple to implement but samples or
retains transition irrespective of their relevance to learning. The prioritised sampling or re-
tention strategy increases the frequency of selecting relevant transitions but has exponential
computational complexity as well as probability tuning difficulties. The sequential reten-
tion strategy is popular and simple to implement but sequentially replaces old transitions
irrespective of their relevance to learning.

3. General Framework for ERO-ATSC

This section presents a brief transition from the standard ER technique to the ERO
framework. Again, the section provides a detailed formulation of two comprehensive
frameworks of the ERO algorithm. While the first framework combines ERO with a dual
memory and an ATSC, the second framework puts together ERO, a double memory, an
ATSC and a TSC mechanism. The section further shows an investigation of the effect of
different retention strategies and buffer sizes on the stability and performance of the two
frameworks, considering the varying sampling ratios.
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3.1. ERO and Alternating ERO

The ERO algorithm is extended with a dual-memory selection strategy to demonstrate
the idea of stabilising and improving the agent’s performance through complementary
learning. This section presents the operation mechanism of the ERO framework and the
proposed alternating transition selection framework.

3.1.1. ERO Framework

ERO is a novel framework that uses a neural network to predict replay transitions.
It is used to enhance the experience selection mechanism in the DDPG algorithm [9]. As
illustrated in Figures 1 and 2, a replay policy is combined with the standard ER framework
to form the ERO framework. The transitions generated by the agent’s choices of actions are
stored in the replay buffer and subsequently sampled into the replay policy after a specified
number of transitions are buffered. The replay policy prioritises the transitions through a
Boolean (0, 1) vectorisation process based on the TDEs. Transitions with Boolean number 1
are uniformly sampled to train the agent. When the replay buffer is full, the naive FIFO
retention strategy is used to retain experiences in the standard ER and ERO frameworks.
However, in this study, an enhanced sequential retention strategy is used for the experience
retention mechanism of the ERO framework.
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Figure 2. An illustration of experience replay optimisation (ERO). A specified batch size of transi-
tions is sampled from the replay buffer, using a replay policy (deep neural network), to train the 
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Table 2. Symbols and notations used in this section. 

Notation Explanation 𝜙 Function approximator 𝐵 Replay buffer 𝐵  A transition in the replay buffer B 

Figure 1. An illustration of the standard experience replay (ER) framework. A specified batch size
of transitions is uniformly sampled at random from the replay buffer to train the agent. When the
buffer is full, the First-In-First-Out (FIFO) retention strategy is applied to ensure that older transitions
are replaced with newer ones.

The replay policy of ERO relies on Equations (1)–(4), and the notations used are clearly
explained in Table 2.

λ =
{

φ
(

fBi

∣∣θφ
)∣∣ Bi ∈ B

}
∈ RN (1)

Bs = {Bi|Bi ∈ B Λ Ii = 1} (2)

rr = rc
π − rc

π, (3)

P(I|φ) = ∑
j:Bj∈Bbatch

rr∇θφ[Ii log φ + (1− Ii) log(1− φ)] (4)

where φ denotes the function approximator and Bi is a transition in the replay buffer B. θφ

denotes the parameters of φ, fBi is a feature vector, and N is the number of transitions in a
mini-batch. The priority score function is expressed as φ

(
fBi

∣∣θφ
)
∈ (0, 1), with the priority

score represented by Lambda (λ). Ii ∈ {0, 1} is a Bernoulli distribution of sample Bs. The
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replay reward, cumulative reward of current policy, and cumulative reward of previous
policy are denoted as rr, rc

π , and rc
π′ respectively.
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Figure 2. An illustration of experience replay optimisation (ERO). A specified batch size of transitions
is sampled from the replay buffer, using a replay policy (deep neural network), to train the agent.
When the buffer is full, the First-In-First-Out (FIFO) retention strategy is applied to ensure that older
transitions are replaced with newer ones.

Table 2. Symbols and notations used in this section.

Notation Explanation

φ Function approximator
B Replay buffer
Bi A transition in the replay buffer B
θφ Parameters of the function approximator
fBi Feature vector
λ Priority score
rr Cumulative reward
rc

π Cumulative reward of current policy
rc

π′ Cumulative reward of previous policy
Bs A specified batch size of sampled transitions

3.1.2. Alternating Transition Selection Framework

Since Lin [6] introduced experience replay in his reinforcement learning research, many
strategies have evolved for experience selection and retention. Most of these strategies use
a single buffer. However, in recent times, researchers have been exploring the use of dual
memory for experience replay. Consequently, we design and investigate an alternating
selection strategy that harnesses the strength of ERO and dual memory. Figures 3 and 4
show the design of two experience replay optimisation with alternating transition selection
control (ERO-ATSC) frameworks; Figure 4 has a TSC but Figure 3 does not.

In the first framework, the double experience replay (DER) strategy, proposed by
Han et al. [17], is combined with the ERO’s replay policy. We store transitions from the
environment into only H1. When replay begins in H1, the replayed transitions from H1 are
stored in H2. Subsequently, the ATSC uses a predetermined ratio to sample a mini-batch
of transitions from either H1 or H2. The mini-batch is further vectorised, prioritised by
the replay policy, and uniformly sampled to train the agent. Afterwards, the replay policy
takes feedback from the training environment to assess its performance.
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Figure 3. Framework 1: this framework combines experience replay optimisation (ERO) with a dual
memory and an alternating transition selection control (ERO-ATSC) without a transition storage
control (TSC) mechanism. Transitions from the environment are stored in only H1. When a specified
mini-batch size is reached, the replayed transitions from H1 are stored in H2. The ATSC uses a
defined ratio to sample a mini-batch of transitions from either H1 or H2 into the replay policy
network. These transitions are vectorised and prioritised and uniformly sampled at random to
train the agent. Feedback from the training environment is sent to the replay policy network for
policy evaluation.
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Figure 4. Framework 2: this framework combines experience replay optimisation (ERO) with a dual
memory and an alternating transition selection control (ERO-ATSC) with a transition storage control
(TSC) mechanism. Transitions from the environment are stored in only H1. When a specified mini-
batch size is reached, the replayed transitions from H1 are stored in H2. The ATSC uses a defined
ratio to sample a mini-batch of transitions from either H1 or H2 into the replay policy network.
These transitions are vectorised and prioritised and uniformly sampled at random to train the agent.
Feedback from the training environment is sent to the replay policy network for policy evaluation.

Conversely, in the second framework, as indicated in Figure 4 and elaborated with
Algorithm 1, we alter the DER strategy with the addition of a TSC mechanism. We store only
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transitions that meet the TSC threshold into H2 instead of the replayed data from H1. We
store transitions from the environment into the replay buffers H1 or H2 or both depending
on how well they meet the storage threshold. When a transition meets a specified reward
threshold of the TSC, it is stored in both buffers. However, if the transition does not meet
the required threshold, it is only stored in H1. Again, at a specific sampling ratio, the ATSC
samples a mini-batch of transitions from either H1 or H2. These transitions are vectorised
and prioritised by the replay policy and uniformly sampled for training the agent. After
training, the replay policy receives feedback for policy evaluation.

Algorithm 1: ERO-ATSC with TSC

Given:
An off-policy RL algorithm DDPG

Sampling strategies (S1, S2) from replay where: S1 and S2 samples with ERO
Return strategies (F1, F2) where F1 and F2 are FIFO and Enhanced-FIFO

Reward threshold (Rt), sampling ratio (λ), mini-batch size (Mb)
1: Initialise DDPG and replay buffer H1, H2
2: observe state (S0) and choose action (a0) using DDPG
3: for episode =1, M do
4: observer (st; rt; st+1)
5: store transition (st, at, rt, st+1) in H1 to follow ERO
6: if rt > Rt then
7: store transition (st, at, rt, st+1) in H2 to follow ERO
8: end if
9: for t = 1; T do
10: if size (H2) > Mb then
11: with S1, S2, and sampling ratio λ, sample transition from

H1 and H2
12: else
13: with S1, sample transition from H1
14: end if
15: update weight according to DDPG
16: end for
17: if H1 is full then
18: use F2
19: end if
20: if H2 is full then
21: use F1
22: end if
23: end for

4. Method

In this section, we detail the experimental environment and the configuration settings
used in our experiments.

4.1. Environmental Setup

To evaluate, compare, and confirm the efficiency of our frameworks, we perform our
experiments on the Pendulum-v0, a classical control environment on the OpenAI Gym [18]
platform. OpenAI Gym is a software that offers a standard interface comprising multiple
but different environments to help RL researchers. We opt for Pendulum-v0 because of
its complex continuous task, suitable for the DDPG [9] algorithm. The Pendulum-v0 is a
version of the classical inverted pendulum swing-up problem based on the classic control
theory. It has a pendulum that requires a force at its free end to set it in motion. The agent’s
focus is to repeatedly swing up the pendulum from its initial random position until it
stands upright with its centre of gravity right above the fixed point. It has a continuous
action space of −2.0 and 2.0 for its minimum and maximum force, respectively. It also
has three continuous observation spaces made up of x and y co-ordinates and an angular
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velocity of the pendulum. While the angular velocity is between −8.0 and 8.0, the x and y
co-ordinates have values that range between −1.0 and 1.0.

4.2. Parameter Settings

ERO extends the selection strategy of the vanilla DDPG algorithm with a novel replay
policy using a single replay memory. This study extends the ERO algorithm with an
alternating transition selection control mechanism and a dual memory. Nonetheless,
the configurations and hyperparameters conform to ERO and the OpenAI DDPG stable
baseline [34]. To improve our findings, experiments are conducted. Two threshold values
are adopted and applied to perform ablative and additive experiments: the sampling
ratio for the ATSC of both frameworks and the storage threshold for only the TSC in the
second framework.

After performing preliminary experiments, TSC threshold values between −5 and
−1 are identified and adopted. These values are negative because of the initial downward
random position of the pendulum. The ATSC ratios are set to 90:10, 50:50, and 10:90
percentages stipulated in the DER experiment. The frameworks’ learning stability is
evaluated on multiple buffer sizes of 1 × 106 (1,000,000), 1 × 105 (100,000), 1 × 104 (10,000),
and 1 × 103 (1000). The FIFO and the enhanced FIFO retention strategies are equally
assessed. In all, the experiments are conducted on an Intel(R) Xeon(R) CPU E3-1220 v6
@ 3.00 GHz (4CPUs) with 32 GB RAM and Windows Server 2012R2 operating system. The
hyperparameters used are outlined in Table 3.

Table 3. Some parameters used in the implementation of the two frameworks.

Hyperparameter Value

Batch size 64
Actor learning rate 1 × 10−4

Critic learning rate 1 × 10−3

Gamma 0.99
Eval steps 100

Eval episodes 10
Environment complexity (seed) 1 × 106

5. Results and Discussion

In this section, we commence our discussion with careful observation of the results
from both frameworks. We then compare the performance of the two frameworks with a
critical interest in the retention strategy used, the sampling ratio selected, and the choice of
buffer size. In Table 4, we give clarity to the notations that are used in the presentation of
the results.

Table 4. List of major notations.

Notation Explanation

H1 The first replay buffer
H2 The second replay buffer
F1 First-In-First-Out (FIFO)
F2 Enhanced FIFO

F1F1 Both H1 and H2 use F1
F1F2 H1 uses F1 and H2 uses F2
F2F2 Both H1 and H2 use F2
F2F1 H1 uses F2 and H2 uses F1
R1 Experiences are selected from H1 and H2 with a ratio of 1:1
R2 Experiences are selected from H1 and H2 with a ratio of 9:1
R3 Experiences are selected from H1 and H2 with a ratio of 1:9

The discussion in this section commences with careful observation of the results from
both frameworks, followed by a performance comparison of the two frameworks with a
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critical interest in the retention strategy used, the sampling ratio selected, and the choice
of buffer size. Firstly, we conduct multiple experiments on Framework 1 across the three
sampling ratios, the four dual retention strategies, and the four replay buffer sizes. Since
the aim of the agent is to accumulate rewards, the frameworks are evaluated based on the
mean returns, which is a summation of all rewards during an episode (subsequences of
agent–environment interactions) divided by the number of episodes. The bigger the return,
the better the performance. Equations (5) and (6) show how the mean return is computed:

Gt = Rt+1 + Rt+2 + Rt+3 + . . . + RT (5)

Mean return =
Gt

Number o f episodes
(6)

where Gt is the return, Rt+1 is the reward at time step t, and T is the final time step.
From Figure 5a–d, we observe that, while the sampling ratio of 1:1 records the worst

return, the sampling ratio of 9:1 has the best and most consistent performance across the
buffers and retention strategies. The output in these figures shows that Framework 1 is
not heavily influenced by the retention strategy but by the sampling ratio. Thus, a higher
selection frequency from a buffer with more diverse and recent transitions is essential for
the stable performance of the RL agent. Additionally, the sampling ratio of 1:9 produces
a rise in performance across the four retention strategies as the buffer size increases. The
performance of the 1:1 sampling ratio declines for the F1F2 and the F2F2 strategies as the
buffer size moves from 1 × 105 to 1 × 106.
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The second set of experiments follows the same setting as the previous experiments
but includes a TSC threshold. The implementation begins with a reward threshold and
continues with a TDE threshold. After multiple implementations of Framework 2 with
reward thresholds from −1 to −5, the reward of −1 is selected, since it generates the
median return across the four retention mechanisms. Subsequently, an equal number of
multiple experiments are conducted, and the results are shown in Figure 6a–d. Again, the
sampling ratio of 9:1 displays the best and most consistent performance across the four
buffer sizes. The ratio of 1:1 still demonstrates the minimum performance with an apparent
declining return on the F1F2 retention strategy. This scenario occurs for buffer sizes from
1 × 104 to 1 × 106. Thus, it is instructive to note that an equal rate of experience selection
from both replay buffers, especially in the first framework, is not healthy for the successful
training of the RL agent.
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After identifying the superiority of Framework 2 over Framework 1, an evaluation
of the former is repeated but with a TDE threshold. The implementation occurs with the
exact buffer sizes and retention strategies but with a 9:1 sampling ratio and a threshold of
|TDE| < 1. This approach is more flexible and easily applicable for continual learning; it
does not require the foreknowledge of a reward function to implement the TSC threshold.
Focusing on our objectives and upon establishing that the sampling ratio of 9:1 has the best
performance in both frameworks, the memory and retention strategy results are extracted
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and analysed. Tables 5 and 6 present the compared results of Framework 1 and the two
versions of Framework 2. We ascertain the framework with the most stable results across
buffer sizes by computing the average returns across the four buffer sizes. As shown in
Table 5, the F2F1 retention strategy proves superior and serves as a basis for comparing the
performance of the frameworks across all four buffer sizes.

Table 5. The average performance of the frameworks across the buffer sizes with a sampling ratio of 9:1.

Frameworks F1F1 F1F2 F2F1 F2F2

Framework 1 −188.42 −191.34 −177.50 −206.28
Framework 2 (Reward) −180.103 −179.95 −170.71 −180.31

Framework2 (TDE) −192.87 −192.56 −170.18 −172.47

Table 6. The performance of the 9:1 sampling ratio on the frameworks across multiple buffer sizes
using the F2F1 retention strategy.

Frameworks 1 × 106 1 × 105 1 × 104 1 × 103

Framework 1 −188.28 −156.43 −182.50 −182.76
Framework 2 (Reward) −155.43 −155.46 −-179.53 −192.42

Framework2 (TDE) −157.58 −160.97 −173.80 −188.39

Despite their competitive performance, as indicated in Figure 7 and Table 7, the reward
version of the proposed framework outperforms the others. This is because the TSC ensures
that more relevant transitions are selected for storage and training. It equally ensures a
better distribution of transitions to prevent overfitting and underfitting during the agent’s
training. In effect, it boosts the generalisation of the framework. Additionally, the ATSC
coupled with the dual memory promote complementary and stable learning. While the
dual memory offers a more diverse storage of transitions, the ATS timeously alternate the
selection of these transitions for learning. It is also insightful to note that a wrong choice of
retention strategy or sampling ratio can hamper the performance of the framework.
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It can be observed in Table 6 that both versions of Framework 2 have a higher average
return than Framework 1 and, accordingly, show a more consistent growth as the buffer
size increases from 1 × 103 to 1 × 106. Nonetheless, it can be argued that identifying the
suitable reward threshold for a continuous state-action problem can be very challenging
and time-consuming, especially for problems with complex reward functions. Under such
conditions, a TDE threshold will be a better option.

6. Conclusions

The significant finding of our study is that a dual memory with an alternating transition
selection strategy can improve the stability of the deep deterministic policy gradient (DDPG)
algorithm across multiple buffer sizes. The experience replay optimisation (ERO) and dual-
memory experience replay (DER) methods are combined to formulate the experience replay
optimisation via alternating transition selection control (ERO-ATSC) with transition storage
control (TSC) and the ERO-ATSC without TSC frameworks. The frameworks are further
evaluated on different buffer sizes, sampling ratios, and experience retention strategies.
The findings reveal that a sampling ratio of 9:1 and a retention strategy of F2F1 (first replay
buffer uses enhanced FIFO and the second buffer uses FIFO) produce the steadiest average
performance across the four buffer sizes. Though both versions of ERO-ATSC with TSC
have competitive results and demonstrate the highest performance among the evaluated
algorithms, the reward version proves superior in reward accumulation. In future, we
hope to extend the proposed framework (ERO-ATSC with TSC) to automatically predict
the reward threshold.
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