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Abstract: Machine vision based on deep learning is gaining more and more applications in structural
health monitoring (SHM) due to the rich information that can be achieved in the images. Bolts are
widely used in the connection of steel structures, and their loosening can compromise the safety
of steel structures and lead to serious accidents. Therefore, this paper proposes a method for the
automatic detection of the bolt loosening angle based on the latest key point detection technology
using machine vision and deep learning. First, we built a virtual laboratory in Unreal Engine5 that
could automatically label and generate synthetic datasets, and the datasets with bolts were collected.
Second, the datasets were trained using the YOLOv7-pose framework, and the resulting model was
able to accurately detect key points of bolts in images obtained under different angles and lighting
conditions. Third, a bolt loosening angle calculation method was proposed according to the detected
key points and the position relationship between neighboring bolts. Our results demonstrate that
the proposed method is effective at detecting the bolt loosening angle and that the use of synthetic
datasets significantly improves the efficiency of datasets establishment while also improving the
performance of model training.

Keywords: bolt loosening; key point detection; synthetic datasets; Unreal Engine

1. Introduction

Threaded fasteners are a standard and essential part of the industry, providing con-
nection, fastening, and sealing functions. Because of their low cost, interchangeability,
and ease of installation and removal, they are used in a wide range of applications in
mechanical, aerospace, civil, and marine engineering. Although threaded fasteners are
often small and even inconspicuous, they play an important role in ensuring structural
integrity and reliability [1]. Typical forms of threaded connections include bolts, nuts, and
clamping components. In a bolted connection, the bolt usually has a preload, which is
provided by the stress between the clamping member and the nut [2]. When the bolt or nut
is tightened, the bolt elongates, and a preload is generated. An adequate preload is essential
to ensure joint and fastening performance and to improve the reliability of the product [3].
Loosening is a critical problem faced by threaded fasteners. In engineering applications,
threaded fasteners are exposed to a variety of operating environments and to various types
of external loads, which results in a risk of loosening that is often unavoidable. Loose bolts
can directly lead to a reduction in preload and cause mechanical failures, e.g., water, oil,
and gas leaks in various engineering applications are mostly due to loose bolts.

In a strict sense, loosening can be defined as a process in which the inner and outer
threads rotate in the opposite direction to the tightening direction, resulting in a reduction
in the preload. This is also referred to as “self-loosening”. The magnitude of the reversed
rotation angle can be used as an indicator of the severity of loosening [4]. Engineering
experience and scientific studies have shown that retaining the preload during service is
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critical to maintaining the function of threaded fasteners and ensuring structural integrity
and reliability. Therefore, the need to periodically check the tightness of the bolts is critical
to avoid structural damage and accidents.

The manual inspection method is the most traditional and the most common method
applied in engineering. One of the simplest methods is the “straight line marking method”,
in which a marker is used to draw a marking line on the tightened bolt and nut. The
inspector determines the tightness of the bolt by seeing if the marker line remains contin-
uous. The other main method is to use a torque wrench. Using a wrench with a torque
meter, the inspector checks the torque of the bolt at determined intervals and ensures that
it has not dropped [5]. The manual method is cheaper and simpler compared to other
inspection methods. However, the tension-to-torque ratio of bolt tightening is affected by
many factors, leading to a high error rate in the torque wrench method, which limits the
application of this method when the accuracy of the measurement is required. In addition,
its performance depends on the level of the inspector and the regular inspection interval.
Moreover, in some special cases, the inspector may not have access to the site for inspection.

In bolted connections, the bolt usually has a preload, which is provided by the stress
between the clamping member and the nut, and there is a corresponding relationship
between the bolt loosening and the force. Therefore, methods based on stress measurements
have been proposed earlier, and these methods use different techniques to measure the
strain or stress on the bolt, the nut, and the clamping components to determine whether the
bolt is loose or not. Ultrasonic measurements based on the acoustoelastic principle, contact
dynamic method through active sensing, impedance method, vibration-based methods,
and other methods were applied [6]. Strain gauges, ultrasonic sensors [7], fiber optic Bragg
gratings (FBG) [8], and piezoelectric ceramic transducers (PZT) [9] that can be used to
measure stress or strain are frequently used. Methods to locate the loose parts of bolted
connections based on changes in the overall vibration data of the structure have also been
proposed by many authors [10,11]. The accuracy and reliability of these methods, which
are achieved by the direct measurement of strain and stress, are quite high. However,
the equipment used in these methods is often very expensive and is mainly used for
experimental and special requirements, which makes it difficult to promote their use in
practical engineering applications.

With the rapid development of machine vision technology, more and more research
is being conducted to apply machine vision to bolt loosening detection. Considering the
special vision, according to the object of detection, these methods can be divided into two
categories: relative rotation recognition and relative length recognition. Relative rotation
recognition is generally the rotation angle recognition of the bolt or the nut, while relative
length recognition is usually the length of the bolt above the fastener, as shown in Figure 1.
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Figure 1. Two categories of bolt loosening detection. (a) Relative rotation recognition; (b) Relative
length recognition.

Before the breakthrough of deep learning in the field of target detection, many re-
searchers started to use traditional machine vision methods for bolt loosening detection.
The detection methods mainly focus on bolt identification using a cascade bolt detector
(CBD) [12], bolt or nut edge detection using Hough transform [13,14], bolt loosening state
classification using feature extraction and matching [15,16], and bolt loosening state clas-
sification using support vector machines (SVM) [12,15]. These methods are limited by
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technology and usually cannot balance the accuracy and robustness of recognition. More-
over, these traditional machine vision methods, such as Hough line detection, usually
require long running times that preclude their application in real-time monitoring. What is
more, it is difficult to identify bolts from images with complex backgrounds using these
methods.

Recently, with the rapid development of object detection convolutional neural net-
works (CNNs), such as Region-based CNN (RCNN) [17], Faster-RCNN [18], Mask RCNN [19],
You Only Look Once (YOLO) [20], and Single Shot MultiBox Detector (SSD) [21], a much
better bolt detection performance was achieved. Studies using CNN target detection algo-
rithms to identify and extract individual bolt images followed by edge recognition using
techniques such as the Hough transform to obtain bolt loosening angles are beginning
to emerge [22–24]. Among them, Pham et al. [23] used Solidworks to model bolts for
expanding the dataset. Some research determines bolt loosening by making manual marks
on the bolt and nut and identifying the relationship between the bolt and the marks by
a target detection algorithm [25–29]. Some research qualitatively judges whether a bolt
is loose by the length of the bolt extension [30,31]. Pan et al. [32] integrated YOLOv3-tini
with an optical flow-based KLT tracking algorithm to achieve the real-time detection of bolt
loosening.

With the rapid development of face recognition and human pose recognition, key-point
detection technology is also applied to bolt loosening recognition. The existing research
is divided into two main directions: the identification of corner points of hexagonal bolts
or nuts and the identification of overall key points of threaded fasteners. Li et al. [33]
and Wu et al. [34] used top-down and bottom-up approaches, respectively, to identify six
corner points of a bolt and to detect bolt loosening by comparing the key point feature
information of the same bolt at different times through two measurements. Deng et al. [35]
and Gong et al. [36] used a deep learning algorithm based on the convolutional neural
networks of key-point regions to detect multiple key-points and locate the region of interest
(RoI), and then derive the calculated bolt loosening angle or the length of the exposed bolt
based on a geometric imaging theory.

Although there has been much research on vision-based bolt loosening detection, all
of these methods face one or more of the following problems.

1. Many of these methods often have more critical requirements on the camera angle of
view or the background where the bolt is located.

2. In order to locate the initial condition of the bolts, many methods require manual
marks on the bolts or connection plates. This is a significant amount of work consid-
ering the large number of bolts applied to engineering projects. Additionally, these
marks will gradually fade or even eventually miss out with time, causing them to be
unrecognizable.

3. For methods using deep learning algorithms for bolt detection, it is well known
that establishing sufficiently large datasets is a time and labor-consuming process,
especially for key-point detection.

4. The accuracy and robustness of many methods are evaluated when detecting one
single bolt, while, actually, when used in buildings or mechanical structures, the bolts
are often in the form of a matrix of connection plates.

To solve the above problems, this paper proposes a method for the automatic detection
of the bolt loosening angle based on the latest key-point detection technology. Here, the
main contributions of this paper are as follows.

1. A virtual experiment platform is built based on Unreal Engine to solve the problem of
laborious manual annotation in dataset establishment. The experimental platform can
achieve automatic changes to the camera view, automatic saving of bolt images, and
automatic labeling of key points. The platform can quickly build a large-scale synthetic
dataset and significantly improve the efficiency of image dataset establishment;
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2. Based on the latest key-point detection technology YOLOv7-pose [37], using different
capacities of datasets, we can verify the effectiveness of the algorithm in the bolt
key-point detection and verify the effectiveness of the synthetic dataset to improve
the accuracy of the model;

3. Based on the information of key points obtained from the detection, a bolt loosening
angle calculation method is proposed according to the position relationship between
neighboring bolts. This method avoids the necessity of extra manual marks and can
correct the perspective errors caused by camera view angle changes. Additionally, the
accuracy and stability of the method are verified.

2. Materials and Methods
2.1. Overview

Figure 2 shows the proposed framework that consists of two main steps:

1. The detection of the corner key points through YOLOv7-pose. The average coordinates
of 6 corner key points are regarded as the center of each bolt;

2. According to the position relationship between neighboring the bolts, calculate the
rotation angles for the loose bolts.
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2.2. Datasets Establishment

The datasets used in this paper, collected by us, are divided into two main categories:
real datasets and synthetic datasets.

2.2.1. Real Datasets

Figure 3 shows the test structure used, in which multiple bolts can be fitted at the same
time. The test structure consists of three iron plates, two of which are used as supports,
and a large horizontal plate for the installation of nine M28 bolts. The plate dimensions
were 400 mm, 240 mm wide, and 10 mm thick. The spacing between the bolts was 70 mm.
Smartphones were used to acquire images of the bolts, which were taken at different angles
and distances. The specifications of the onboard camera of the smartphone are shown in
Table 1. the photographs obtained (4032 × 3024 pixels) were cropped into several images
containing only one bolt. A total of 300 bolt images were eventually obtained. In order to
improve the training speed of the deep learning algorithm, the width of all the cropped
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obtained images was uniformly converted to 640 pixels. We used Labelme annotation
software to annotate the bolt images with bolts and key points, as shown in Figure 4.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 5 of 22 
 

are shown in Table 1. the photographs obtained (4032 × 3024 pixels) were cropped into 

several images containing only one bolt. A total of 300 bolt images were eventually ob-

tained. In order to improve the training speed of the deep learning algorithm, the width 

of all the cropped obtained images was uniformly converted to 640 pixels. We used 

Labelme annotation software to annotate the bolt images with bolts and key points, as 

shown in Figure 4. 

Because the bolt is a hexahedron, if the corner points are not sequentially numbered, 

there will be no difference for every 60 degrees of bolt rotation, and this would make it 

impossible to detect bolt loosening angles above 60 degrees. Therefore, we started with 

the first corner point on the right side of the “JSL” mark as a reference and labeled 6 corner 

points in a clockwise direction, as shown in Figure 5. In this way, the corner points labeled 

sequentially can one-by-one correspond to the results of key-point detection. The detec-

tion range of the bolt loosening angle can be extended from 0° to 360°. 

The real dataset was divided into the training set (200 images), validation set (50 im-

ages), and test set (50 images) according to the ratio of 4:1:1. 

 

Figure 3. The test structure. 

 

(a) (b) (c) 

Figure 4. Image processing and labeling. (a) Original images; (b) Cropped images; (c) Labeled 

image. 

 

Figure 5. The labeling order of key-points. 

Table 1. Smart phone camera specifications. 

Parameters Value 

Size 4032 × 3024 pixels 

Vertical resolution 72 dpi 

Horizontal resolution 72 dpi 

Bit depth 24 

Figure 3. The test structure.

Table 1. Smart phone camera specifications.

Parameters Value

Size 4032 × 3024 pixels
Vertical resolution 72 dpi

Horizontal resolution 72 dpi
Bit depth 24
Aperture f/1.8
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Figure 4. Image processing and labeling. (a) Original images; (b) Cropped images; (c) Labeled image.

Because the bolt is a hexahedron, if the corner points are not sequentially numbered,
there will be no difference for every 60 degrees of bolt rotation, and this would make it
impossible to detect bolt loosening angles above 60 degrees. Therefore, we started with the
first corner point on the right side of the “JSL” mark as a reference and labeled 6 corner
points in a clockwise direction, as shown in Figure 5. In this way, the corner points labeled
sequentially can one-by-one correspond to the results of key-point detection. The detection
range of the bolt loosening angle can be extended from 0◦ to 360◦.
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Figure 5. The labeling order of key-points.

The real dataset was divided into the training set (200 images), validation set (50 im-
ages), and test set (50 images) according to the ratio of 4:1:1.

2.2.2. Synthetic Datasets

Synthetic datasets, obtained with the help of data-enhancing techniques and game
engines, have been used in important roles for pathological image recognition [38], 3D point
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cloud semantic recognition [39], and other fields because of their capability to effectively
solve the problem of the shortage of real image data and the high time cost of manual
labeling. In the field of key-point detection, it is time and labor costly for a research team to
build a large-scale dataset independently for a specific target. In this paper, we established a
method that could automatically generate synthetic datasets through the following 3 steps.

(1) Bolt high-fidelity modeling

We used 3D scanning technology to convert a bolt into a digital model. The model
was imported into Blender 3.4, the surface was smoothed, and the materials and mapping
were adjusted. The bolt model was made to show the same color and glossiness as the real
world under various lighting conditions. The bolt digital model is shown in Figure 6.
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(2) Virtual experiment platform

Unreal Engine 5.1.0 (UE5)’s excellent light and shadow representation capabilities
allow computer simulations to obtain the same level of realism as real photos, even without
long rendering sessions. This allows UE5 to easily output near-realistic virtual images,
which is well-suited for synthetic dataset building.

The UI of the virtual experiment platform, built using UE5, is shown in Figure 7.
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In this platform we can achieve the following functions:
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1. Set the height and view angle of the camera, adjust the rotation angle of the bolt,
and keep the camera aligned with the bolt to obtain images of the bolt from different
angles, as shown in Figure 8.

2. Change the different simulated weather and time in the site to obtain images of the
bolts under different lighting conditions, as shown in Figure 8.

3. Six invisible marker objects are fixed on the six corner points of the bolt to label the
key points, and the order of the markers is the same as the order of the key points, as
shown in Figure 5. Additionally, through the coordinate conversion, the coordinates
of the markers in the 3D scene are converted to the coordinates in the camera screen
(this function is mainly realized by the function “Convert World Location to Screen
Location”, which comes with ue5), as shown in Figure 9.

4. Let the camera rotate around the bolt at different angles and automatically take screen-
shots of the real-time rendered screen by a set time. While capturing the screenshot,
the coordinates of the marked objects in the current screen are automatically saved.

(3) Data processing
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According to the coordinate data automatically saved by the virtual experiment
platform, the position of the bolt recognition box is calculated. The result of key-point
marking and recognition box generation is shown in Figure 10.
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The data format was converted according to the training requirements. In this paper, a
total of 1600 bolt images were generated and divided into the training set (1200 images), val-
idation set (200 images), and test set (200 images) according to the ratio of 6:1:1. Meanwhile,
to improve the training speed of the deep learning algorithm, the width of the images was
uniformly converted to 640 pixels.

2.3. Training

We obtained trained datasets in different volumes based on YOLOv7-pose: the latest
key-point detection technology.

2.3.1. YOLOv7-Pose

At present, the overall human pose estimation is divided into Top-down and Bottom-
up. In order to solve the problem of traditional key-point detection algorithms, whether
based on heat-map or detector-based processing, which are more dependent on computing
resources and take a little longer time, the YOLO-based key-point detection algorithms
that have emerged in recent years have been proven to have obvious speed and accuracy
improvements in human posture recognition [40].

The latest YOLO-pose human pose estimation algorithm based on feature points [41]
follows the bottom-up method [42–44]; that is, the exact location of the key points of the
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human body in the image is found through image post-processing, and then the key-points
without the identity of each figure are classified in a single shot. Through YOLOv5’s object
detection framework, key points were combined with character anchor points, and the
character was divided into a single instance. This method can estimate human posture
without relying on the heat map.

Based on the latest YOLO-pose human key-point detection algorithm, the YOLOv7-
pose method adopted in this paper has two advantages:

1. The optimization of the loss function for evaluating the prediction. The target key-
point similarity (OKS) is a common index to evaluate key points. L1 losses have
traditionally been used to detect key points. However, L1 losses are not necessarily
suitable for optimal OKS. Similarly, L1 losses do not take into account the scale of
the target or the type of key points. Since heat map is a probabilistic map, it is not
possible to use OKS as a loss in a pure heat map-based approach. OKS can be used
as a loss function only when regressing to the key-point location. Therefore, the
YOLOv7-pose uses scale-normalized L1 losses to perform key-point regression and
obtain excellent accuracy.

2. The optimization of the input layer structure. The YOLOv7, relative to YOLOv5,
innovatively uses a multi-input stacked convolution structure to optimize the feature
extraction in both the backbone and the enhanced feature extraction part (head).
Additionally, the number of feature layers is increased from 3 to 4 on YOLOv7-pose,
which improves the feature extraction ability of the algorithm at different scales.
Finally, the extracted 4 feature maps are classified and regressed using the IKeypoint
detection head to obtain the locations of key points. The framework of the YOLOv7-
pose is shown in Figure 11.
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In consideration of the above advantages, we chose YOLOv7-pose as the bolt key-point
detection algorithm. Since the default human body detection framework of YOLOv7-pose
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uses 17 key points, in order to adapt it for the detection of bolts, we modified the algorithm
with 6 key points.

2.3.2. Training Process

The workstation configurations used to train the model in this paper are shown in
Table 2.

Table 2. The workstation configurations.

Category Version

Software

System Windows 11
Virtual Environment conda 4.13.0

Programming Python 3.9.12
Deep Learning Framework Pytorch 1.12.0

CUDA Cuda11.6/cuDNN8.0

Hardware
GPU NVIDIA GeForce

RTX3080 Ti 12G
Memory 32G

To improve the model training accuracy and to verify the effectiveness of synthetic
datasets for improving the model training effect, we designed a total of five datasets
containing different numbers of real and synthetic images. The official provided “YOLOv7-
w6-pose.pt” model was applied as pre-training weights. Additionally, each dataset was
trained with 400 Epochs. The composition of the five datasets is shown in Table 3. The
hyp-parameters for training are shown in Table 4.

Table 3. The composition of the five datasets.

No. Training Set Validation Set

1 200 real 50 real
2 200 real + 1200 synthetic 50 real + 100 synthetic
3 100 real 50 real
4 100 real + 1200 synthetic 50 real + 100 synthetic
5 1200 synthetic 100 synthetic

Table 4. Smart phone camera specifications.

Hyp-Parameters Value Hyp-Parameters Value

lr0 0.005 anchor_t 4.0
lrf 0.1 fl_gamma 0

momentum 0.937 hsv_h 0.015
weight_decay 0.0005 hsv_s 0.7

warmup_epochs 0.3 hsv_v 0.4
warmup_momentum 0.8 degrees 0.0

warmup_bias_lr 0.1 translate 0.1
box gain 0.05 scale 0.2
kpt gain 0.30 shear 0.0
cls gain 0.05 perspective 0.0
cls_pw 1.0 flipud 0.0
obj gain 0.5 fliplr 0.0
obj_pw 1.0 mosaic 0.8

iou_t 0.20 mixup 0.0

To evaluate the performance of the YOLOv7-pose, the “200 real + 1200 synthetic”
datasets were also trained with 400 epochs using Keypoint-RCNN in this paper. Keypoint-
RCNN (keypointrcnn_resnet50_fpn()) is a network model for key-point detection provided
in Pytorch’s torch-vision library.
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The training results are presented in Section 3.1.

2.4. Calculation of Bolt Loosening Angle

In the situation where the bolt is not taken by a fixed camera and without manual
marking, even if the corner point information of the bolt is obtained, it is difficult to directly
judge whether the bolt is loose or not, especially to calculate the angle of looseness. To
solve the above problem, this paper proposes a method to calculate the bolt loosening angle
based on the position information of the neighboring bolts, based on the fact that bolts are
often used in multiple together to form a bolt matrix.

2.4.1. Bolt Corner Points Detection and Bolt Center Calculation

We used the model trained in Section 2.3 to detect key points on the newly captured
bolt images. None of these bolt images were involved in the training, and we kept bolts
appearing in pairs of two in the image. As shown in Figure 12, the corner points of the
bolts can be accurately detected in the order in which they were labeled.
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To each bolt, the average coordinates of the key points of the six corner points obtained
from the detection are used as the center coordinates of the bolt. The formula for calculating
the center point is shown in Equation (1):{

cx = ∑ xi
6

cy = ∑ yi
6

(1)

where (cx, cy) is the coordinate of the center point of the bolt and (xi, yi) is the coordinate
of each corner point.

2.4.2. Bolt Loosening Angle Calculation

By matching the center coordinates of the two bolts in the image, a reference line was
obtained. This reference line represents the position relationship between neighboring
bolts, which is fixed and does not change with the camera shooting angle. For each bolt
corner point, the angle between the vector with the center pointing to the corner point and
the reference line was calculated. The angle calculation formula is shown in Equation (2),
which gives the angular state of the bolt to the reference line in the current state, as shown
in Figure 13. 

ang0 = tan−1
(

cy2 − cy1
cx2 − cx1

)
angi = tan−1

(
yi − cy1
xi − cx1

)
αi = angi − ang0

(2)

where αi is the angle between the vector with the center pointing to the corner point and
the reference line, (cx1, cy1) is the coordinate of the center point of the aim bolt, (cx2, cy2) is
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the coordinate of the center point of the neighbor bolt, and (xi, yi) is the coordinate of each
corner point.
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In this way, it is only necessary to obtain an image of a tightened bolt by undertaking
the same process. Then, simply by comparing the current state of the bolt with the tightened
state of the bolt at each corner point, you can accurately judge whether the bolt has loosened
and calculate the angle of the bolt loosening, as shown in Figure 14. The bolt loosening
angle calculation formula is shown in Equation (3).{

θi = α1i − α0i

θ = ∑ θi
6

(3)

where θi is the rotation angle of each corner point and θ is the average of the rotation angle
of all corner points and is used as the bolt loosening angle value.
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2.4.3. Analysis of Perspective Errors

In this subsection, the theoretical perspective error analysis of the bolt loosening angle
calculation method proposed in this paper is presented.

The bolt images obtained at different camera angles have different extents of perspec-
tive distortion. This kind of perspective distortion may lead to large errors in the calculation
of the bolt loosening angle. The schematic diagram of the image perspective distortion
caused by the camera angle is shown in Figure 15.
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As shown in Figure 15a, when the camera shoots an object from a certain angle, the
distance between two points on the actual object is changed in the camera frame according
to the principle of perspective. Reflected in the image, the change in the distance leads to
a change in the coordinates of the points. Coordinate changes to the corner points after
perspective distortion is shown in Figure 15b. Since the width of the bolt is small in relation
to the distance of the camera from the bolt, the coordinate change in the horizontal direction
(x-axis) caused by the perspective distortion can be approximately ignored. Therefore,
in the error analysis, this paper mainly considers the coordinate changes in the vertical
direction (y-axis).

Take the horizontal axis passing through the center of the bolt as the x-axis and the
vertical axis as the y-axis. In the images obtained with the camera shooting bolts directly
above, the coordinates of the three corner points in the upper half of the x-axis are in
order,

(
xi−1, yi−1

)
, (xi, yi),

(
xi+1, yi+1

)
. The relationship between these coordinates, as in

Equation (4), can be found.
xi = r× cosαi, yi = r× sinαi

xi−1 = r× cosαi−1, yi−1 = r× sinαi−1, αi−1 = αi + 60◦

xi+1 = r× cosαi+1, yi+1 = r× sinαi+1, αi+1 = αi − 60◦
(4)

where r is the radius of the outer circle of the bolt hexagon.
In the image taken by the camera at angle β above, after perspective distortion,

the coordinates of the three corner points in the upper half of the x-axis are, in order,(
x#

i−1, y#
i−1
)
,
(

x#
i , y#

i
)
,
(
x#

i+1, y#
i+1
)
. The following equation can be achieved according to

the geometric relationship in perspective distortion.
x#

i = xi
y#

i
∼= yi × cosγ

γ ∼= β
(5)

where γ is the angle of the camera imaging sensor plane across the plane of the bolt and
∼= is the approximately equal sign. Combining Equations (4) and (5), the result of the
following equation can be calculated.

x#
i = r× cosαi, y#

i = r× sinαi × cosβ
x#

i−1 = r× cos(αi + 60◦), y#
i−1 = r× sin(αi + 60◦)× cosβ

x#
i+1 = r× cos(αi − 60◦), y#

i+1 = r× sin(αi − 60◦)× cosβ
(6)
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Accordingly, the angle α#
i between each corner point and the x-axis after perspective

deformation can be calculated. 
α#

i = arctan y#
i

x#
i

α#
i−1 = arctan

y#
i−1

x#
i−1

α#
i+1 = arctan

y#
i+1

x#
i+1

(7)

The calculation of the three corner points in the bottom half of the x-axis is the same as
the process described above.

The same method as the bolt loosening angle calculation formula can be used to
calculate the error angle caused by perspective.{

εi = α#
i − αi

ε = ∑ εi
6

(8)

where εi is the error angle of each corner point and ε is the average of the error angle
for all the corner points and is used as the perspective error angle value. Combining
Equations (6)–(8) demonstrates that the error is only related to αi and β. According to
Figure 15b, the variation range of αi is [60◦, 120◦). Based on engineering experience, the
camera’s shooting angle β falls between [0, 60). In the above range, we calculated the error
angle caused by the perspective, as shown in Figure 16.
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The following conclusions can be obtained from the figure:

1. The perspective error increases as β increases and is almost zero at β ∈ [0, 20];
2. With constant β, the error shows a sinusoidal variation as αi varies. When αi is equal

to 75◦ or 105◦, the error is taken to the maximum value;
3. As β moves closer to 90◦, the error becomes larger more rapidly;
4. When β is less than 60◦, the error angle is less than 0.58◦; when β is less than 45◦, the

error angle is less than 0.09◦.

In summary, using the bolt loosening angle calculation method proposed in this paper,
in general, engineering scenarios, the perspective error caused by the camera angle is small
enough to avoid additional processing.

3. Results
3.1. Training Results

In Section 2.3, we trained 400 epochs on five datasets containing different volumes of
real and synthetic images, as shown in Table 3.
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3.1.1. Training Performance

Figures 17 and 18 show the evolution of the training loss and the mean precision
(MP) of the YOLOv7-pose model with increasing epochs for different datasets, respectively.
From the figures, we can draw the following conclusions:

1. In the case of a small volume of images in the dataset, when the training is close to
convergence, there is a situation where the loss does not fall steadily but suddenly
rises, while the mean precision also suddenly falls accordingly, but as the epoch
continues to increase, the loss is still able to converge;

2. As the dataset increases, the unstable loss decline only occurs in the early stages of
training. Additionally, the larger the dataset is, the faster the training converges;

3. The “100 real + 1200 synthetic” dataset performs better than the “200 real” dataset in
terms of stability and accuracy during training.
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These indicate that the synthetic dataset can effectively improve the performance of
the model training.
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3.1.2. Training Effects

Using the same test set (50 images), the five models obtained from the training are
evaluated. The bolt and bolt corner point detection was run on the test set with a confidence
level requirement of 0.5. The average detection time per image was 0.020 s. The correct
detection of bolts and the relatively accurate detection of key points were counted separately,
and the detection results are shown in Table 5. The results in the table are the true number
and the number of correct detections for each dataset. From the table, we can come to the
following conclusions:

1. The YOLOv7-pose model has a very excellent detection performance; even if only
100 images are used for training, it can still obtain a high detection correct rate;

2. Without adding real images to the dataset, the model trained from a pure synthetic
dataset can identify bolts and key points in real images with relative accuracy when
the images are well-lit and clear;

3. Compared with Keypoint-RCNN, the YOLOv7-pose shows better performance in the
key-point detection correct rate.

4. In the detection results of Keypoint-RCNN, there are individual cases where the same
corner point is not detected as different and some corner points are not detected
correctly, as shown in Figure 19. Such errors would have a significant impact on
further angle calculations.

Table 5. Evaluation results of bolt and bolt corner point detection for the test set.

Training Set Bolts Detect Kpts Detect

200 real

50

50

50

50
200 real + 1200 synthetic 50 50

100 real 49 49
100 real + 1200 synthetic 50 50

1200 synthetic 24 21

200 real + 1200 synthetic
(Keypoint-RCNN) 50 50 50 45
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3.1.3. Error Analysis

We collected the results of the five models that detected the correct objects and com-
puted the error of key-point detection. We visualized the manually labeled correct detection
boxes and key points, along with the predicted boxes and predicted points detected by the
models, on one image at the same time. The results in Figure 20 can be obtained in the case
of larger and smaller detection errors, respectively. The hollow dots represent the manually
labeled key points, and the solid dots represent the model-detected key points; the purple
ones are the manually labeled detection boxes, and the blue ones are the model-detected
boxes with the model-detected confidence levels on them.
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In order to be able to evaluate quantitatively, we used the normalized mean error
(NME) to evaluate the performance of different models. The error was calculated as
Equation (9). To represent the error more intuitively, we also used Equation (10) to convert
the NME into an angular form.

NME =
∑
√(

x∗i − x′i
)2

+
(
y∗i − y′i

)2

∑ ri
(9)

where
(

x∗i , y∗i
)

and
(

x′i , y′i
)

are the manually labeled and model-detected coordinates of the
corner points; ri is the distance from the center of the bolt to each corner point.

δ =
NME
π
× 180◦ (10)

After calculating the recognition errors for individual images, we calculated the
average error of the model for the overall test set, as shown in Table 6. From this, the
following conclusions can be drawn:

1. The model trained on the “200 real + 1200 synthetic” dataset showed the best perfor-
mance with not only the smallest error but also the smallest error variance, which is a
significant performance improvement compared to the “200 real” model with only
real images;

2. The performance of the “100 real + 1200 synthetic” model was close to that of the “200
real” model, while the “100 real” model showed poor recognition accuracy;

3. Even though the “1200 synthetic” model performed poorly in terms of overall preci-
sion, the key-point detection in the images where the bolts were successfully detected
did not show large errors, and the accuracy was still relatively good.

4. Compared with Keypoint-RCNN, YOLOv7-pose showed better performance with a
smaller error and much smaller error variance.

Table 6. Evaluation results of bolt and bolt corner point detection for the test set.

Training Set NME δ(◦) Var

200 real 0.043785 2.510472 1.951742
200 real + 1200 synthetic 0.033903 1.943473 1.304070

100 real 0.061144 3.514130 9.047428
100 real + 1200 synthetic 0.047353 2.717504 3.644367

1200 synthetic 0.070147 4.038014 15.20069

200 real + 1200 synthetic
(Keypoint-RCNN) 0.055395 3.247408 24.88260
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3.2. Result of Bolt Loosening Angle Detection

We detected the bolt loosening angle for 10 newly acquired images using the method
proposed in Section 2.4. The average time for angle detection was 0.008 s per image. The
visualized images of the detection results are shown in Figure 21, and the data results are
recorded in Table 7.
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Table 7. Bolt loosening angle detection results.

No. True Angle Detected Angle Error

1 0 0.475 −0.475
2 15 13.554 1.446
3 15 16.204 −1.204
4 30 30.598 −0.598
5 30 31.818 −1.818
6 90 88.641 1.359
7 90 91.208 −1.208
8 180 182.875 −2.875
9 300 299.298 0.702
10 330 328.697 1.303

Average * 1.298
* The calculation uses an averaging of absolute values.

As can be noticed from the table, the bolt loosening angle detection method used in
this paper can achieve a 360◦ loosening angle detection and shows high accuracy in the test
set, which can meet the requirements of bolt damage detection.

4. Discussion

The bolt loosening angle detection algorithm proposed in this paper successfully
achieves the correct loosening angle with high precision and stability demonstrated. How-
ever, in the process of conducting the research and analyzing the results, we discovered
several issues that could be solved with attention in subsequent studies.

1. Although the addition of synthetic datasets improves the performance of the model
in all aspects of both training and detection, the actual improvement was not as
significant as expected. There is still a lot of work ahead before the use of synthetic
datasets can fully replace real datasets. This requires greater proficiency in modeling
and game engines, as well as the development of deep learning algorithms with better
generalization capabilities.

2. In order to avoid the use of manual markers, the method in this paper must be used
with the neighboring bolt as a reference. However, in some engineering scenarios,
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there will be situations where only one bolt can be seen. At this time, the proposed
method is no longer applicable.

3. In actual engineering conditions, when used in buildings or mechanical structures,
the bolts are often in the form of a matrix of connection plates. Therefore, the obtained
images often have more than two bolts in them. Although the present method is still
applicable, the issue of how to efficiently identify and separate neighboring bolts still
needs to be addressed in future studies.

5. Conclusions

In this paper, we built a virtual experiment platform based on Unreal Engine, which
could achieve automatic changes in the camera view, automatic saving of bolt images,
and the automatic labeling of key points. The platform enables the rapid establishment
of large-scale synthetic datasets and significantly improves the efficiency of image dataset
establishment. The method is not only applicable to the key-point datasets building of bolts
but also has a broad application prospect for key-point annotation in various other fields.

In addition, this paper also initially verified the effectiveness of synthetic datasets
for improving the model training performance as well as model detection accuracy and
generalization ability by constructing datasets of different volumes. Additionally, the
possibility of pure synthetic datasets on the detection of real images was explored, and the
results showed that for the problem of extreme lack of datasets, synthetic datasets could
help to a certain extent.

Overall, the effectiveness of the bolt loosening angle detection method based on
key-point detection in this paper is verified by the above sections. The trained model
accurately detected the bolt corner points, and the proposed method precisely detected
the bolt rotation angle. The testing results show that this method has high detection
accuracy and robustness. Due to the high functional integration and the mature software
development capabilities of smartphones, there have been more and more practical projects
using smartphones directly as inspection devices. Therefore, we believe that the proposed
method can meet the actual situation of current industrial scenarios and can be well applied
to engineering practice.
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