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Abstract: Greece is one of Europe’s most seismically active areas. Seismic activity in Greece has
been characterized by a series of strong earthquakes with magnitudes up to Mw = 7.0 over the
last five years. In this article we focus on these strong events, namely the Mw6.0 Arkalochori
(27 September 2021), the Mw6.3 Elassona (3 March 2021), the Mw7.0 Samos (30 October 2020), the
Mw5.1 Parnitha (19 July 2019), the Mw6.6 Zakynthos (25 October 2018), the Mw6.5 Kos (20 July
2017) and the Mw6.1 Mytilene (12 June 2017) earthquakes. Based on the probability distributions of
interevent times between the successive aftershock events, we investigate the temporal evolution
of their aftershock sequences. We use a statistical mechanics model developed in the framework of
Non-Extensive Statistical Physics (NESP) to approach the observed distributions. NESP provides
a strictly necessary generalization of Boltzmann–Gibbs statistical mechanics for complex systems
with memory effects, (multi)fractal geometries, and long-range interactions. We show how the NESP
applicable to the temporal evolution of recent aftershock sequences in Greece, as well as the existence
of a crossover behavior from power-law (q 6= 1) to exponential (q = 1) scaling for longer interevent
times. The observed behavior is further discussed in terms of superstatistics. In this way a stochastic
mechanism with memory effects that can produce the observed scaling behavior is demonstrated. To
conclude, seismic activity in Greece presents a series of significant earthquakes over the last five years.
We focus on strong earthquakes, and we study the temporal evolution of aftershock sequences of
them using a statistical mechanics model. The non-extensive parameter q related with the interevent
times distribution varies between 1.62 and 1.71, which suggests a system with about one degree
of freedom.

Keywords: aftershocks sequences; Tsallis entropy; interevent times; power-law scaling; complexity;
Greek seismicity

1. Introduction

Due to the fact that a strong mainshock immediately after its occurrence can induce
a high number of aftershocks in the broader epicentral area, aftershock sequences are
typically regarded as an important component of the earthquake occurrence. Following
the mainshock, many aftershocks typically occur in and around the fault rupture regions.
In the larger framework of seismic activity analysis research, understanding the tempo-
ral characteristics of these earthquake sequences is a crucial first step. Time-correlated
structures that determine the time series of observed earthquakes can provide usable data
about the dynamic features of earthquake activities and the associated geodynamic mecha-
nisms [1]. In this paper, we investigate the temporal properties of seven recent aftershock
sequences that occurred in Greece between 2017 and 2021. Greece is located at the limits
of contact and convergence of the Eurasian and African plates, which gives rise to intense
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geodynamic processes and seismicity, with several large magnitude events reported in both
historic and modern times [2]. In terms of seismic energy release, Greece is ranked first
in the Mediterranean and Europe, and sixth in the world [3]. This high seismic activity is
commonly linked to the following geotectonic features: (a) the continental convergence,
which consists of the oceanic component of the North African plate subduction beneath the
European plate. Due to the accretion of African plate sediments beneath the underlying
Aegean plate, this movement was coupled with severe crustal shortening and an uplift
rate of a few millimeters per year throughout the Hellenic Arc, (b) the rollback of the
subducting African slab causes high-rate extension in the back-arc area and last (c) the most
prominent tectonic feature of the North Aegean Sea, the North Aegean Trough (NAT) and
the Cephalonia Transform Zone (CTFZ) [4].

Based on the recent earthquake activity over the last four years, this area of Greece
is characterized by strong earthquakes. More specifically, we focus on the recent strong
earthquakes such as that of Mw6.0 Arkalochori (27 September 2021), the Mw6.3 Elassona
(3 March 2021), the Mw7.0 Samos (30 October 2020), the Mw5.1 Parnitha (19 July 2019),
the Mw6.6 Zakynthos (25 October 2018), the Mw6.5 Kos (20 July 2017) and the Mw6.1
Mytilene (12 June 2017) earthquakes. These events generated intense and prolonged
aftershock sequences.

Herein, we study the temporal properties of these aftershock sequences that occurred
in the area of Greece, with particular emphasis on the probability distribution of the
interevent times T between successive aftershocks, in view of the ideas of non-extensive
statistical physics [5,6]. The Non-Extended Statistical Physics (NESP) is a generalization of
Boltzmann–Gibbs (BG) statistical physics and is used to estimate the probability distribution
of T and to determine its non-additive entropic parameter q [7], which is estimated to vary
in the range 1.62–1.71. In all analyzed aftershock sequences, we recognize a crossover
behavior from power-law (q 6= 1) to exponential (q = 1) scaling for larger interevent times.

2. Principles of Non-Extensive Statistical Physics

In this work, we use a generalized formulation of Boltzmann–Gibbs (BG) statistical
physics, termed non-extensive statistical physics (NESP) [8–12], to investigate the distribu-
tion of the interevent times between the successive aftershocks. The fundamental benefit
of NESP, is that it takes into account correlations on all length scales between system
elements, resulting in asymptotic power-law behavior. NESP has been used in a wide
variety of fields such as non-linear dynamical systems, including aftershock sequences [13],
seismicity [5–7,14–16], natural hazards [17], and complexity in volcanic areas [12], among
others [8]. Such characteristics can be described in fracture-related phenomena. Non-
extensive statistical physics is concerned with precisely such phenomena.

Initially, NESP begins by defining entropy by Tsallis [18]. This entropic functional
is appropriate for characterizing complex systems with finite degrees of freedom, self-
organized critically, and non-Markovian characteristics with long-range memory, properties
as that commonly occur in geosciences [5,19–21]. The present application of Tsallis entropy
introduces the variable of T (i.e., the interevent times) between two successive aftershocks,
where p(T) dT indicates the number of the parameter between T and T+dT. An earthquake
complex system, in a non-equilibrium state, can be described by an entropic functional Sq
introduced by Tsallis [18]

Sq = kB
1−∑i pq(Ti)

q− 1
(1)

where kB is Boltzmann’s constant, p(T) is the probability distribution of interevent times
T and the index q expresses the degree of non-additivity of the system. The index q may
violate the additivity principle of classical BG entropy [8,18]. In [18] it was demonstrated
that in the limit of q→1, the non-extensive entropy Sq recovers the Boltzmann–Gibbs
(BG) one.
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In earth sciences, the cumulative distribution function is traditionally used in the
framework of NESP [20,21]. This expression is derived by maximizing Sq while imposing
appropriate constraints and employing the Lagrange multipliers method, yielding to [8]:

p(T) =

[
1− (1− q)

(
T
Tq

)] 1
1−q

Zq
=

1
Zq

expq

(
− T

Tq

)
(2)

whith Zq the so-called q-partition function

Zq =
∫ ∞

0
expq

(
−T/Tq

)
dT, (3)

and Tq denotes the generalized scaled interevent time. With respect to Equation (2) q-
exponential function appears, defined as [8]

expq(X) = [1 + (1− q)X]
1

1−q , (4)

for 1 + (1− q)X ≥ 0, while in other cases expq(X) = 0.
Equation (2) is further used to estimate the cumulative distribution function (CDF) of

the interevent times:

P(> T) =
N(> T)

N0
, (5)

with N(>T), is the number of the interevent times with value greater than T and N0 their
total number [22,23]. By using Equation (2), P(>T) equals to Equation (6) which has the
form of a q-exponential function, hereafter calles Q-exponential one:

P(> T) = expQ(−T/T∗), (6)

with:
T∗ = TqQ (7)

q = 2−
(

1
Q

)
(8)

The Q-logarithmic function is the inverse function of the Q-exponential and it is
defined as:

lnQP(> T) =
P(> T)1−Q − 1

1−Q
, (9)

Equation (9) demonstrates that the Q-logarithm [8,24] of CDF of interevent times, is
linearly scaled with T with an expression:

lnQP(> T) = − T
T∗

, (10)

with slope 1/T∗ [14].
According to the different values that the parameter q can take, three particular cases

arise. More specifically, in the limit q→1, the q-exponential leads to the ordinary exponential
function. For q > 1, the q-exponential function exhibits an asymptotic power-law behavior
with slope−1/(q−1), whereas for 0 < q < 1, the q-exponential function presents a cut-off [22].

The Tsallis entropy Sq (with q 6= 1) is non-additive, whereas the BG entropy is additive,
which means that in the merged system’s (A + B), BG entropy is equal to the sum of the
constituent BG entropies of the systems A and B respectively [19,24–27]. In NESP approach,
in the case where A and B are probabilistically independent, we have [19]:

Sq(A + B) = Sq(A) + Sq(B) +
(q− 1)

kB
Sq(A)Sq(B), (11)
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When q = 1, the Tsallis entropy Sq coincides with the BG one. Despite having
several characteristics in common, such as non-negativity, expansibility, and concavity,
Sq and SBG differ significantly from one another. Particularly, there are three types of addi-
tivity: q < 1 represents super-additivity, q > 1 represents sub-additivity and the right-hand
side of Equation (11) vanishes at q = 1, leading to additivity features [7,8].

3. Data Analysis and Results

In this paragraph, we present the findings based on the previously described method-
ology. The study is focused on the scaling properties of the aftershock sequences’ temporal
evolution, for the seven strong shallow earthquakes that took place over the previous five
years in Greece (Table 1). The epicenters and focal mechanisms of these strong events are
illustrated in Figure 1, with event numbers corresponding to the ones dictated in Table 1.

Table 1. Results of all analyzed aftershock sequences, where Mc is the completeness magnitude of
the catalogue used, q is the Tsallis entropic parameter of the interevent time distribution, Tq denotes
the generalized scaled interevent time, and Tc is the cross-over point at which the transition from
Tsallis to BG statistical mechanics occurs.

Event No. Date Time
(G.M.T.)

Lat.
(◦N)

Long.
(◦E)

Depth
(km) Mw Mc Database No. of

Aftershocks
Duration
(Days) q Tq (s) Tc (s)

1. Arkalochori 27/09/21 06:17:21 35.15 25.27 10 6.0 2.5 H.U.S.N. 700 95 1.62 774 7.8 × 103

2. Elassona 03/03/21 10:16:08 39.73 22.22 10 6.3 2.5 A.U.TH. 676 33 1.62 231 4.6 × 103

3. Samos 30/10/20 11:51:25 37.91 26.84 10 7.0 2.5 E.M.S.C. 1158 64 1.63 220 9.8 × 103

4. Parnitha 19/07/19 11:13:15 38.13 23.53 14.97 5.1 1.0 S.L.-N.K.U.A. 436 400 1.71 942 175 × 103

5. Zakynthos 25/10/18 22:54:50 37.35 20.49 13 6.6 2.1 H.U.S.N 1668 366 1.68 1629 5.6 × 103

6. Kos 20/07/17 22:31:10 36.97 27.41 7.1 6.5 1.6 K.O.E.R.I. 6492 530 1.63 201 15 × 103

7. Mytilene 12/06/17 12:28:37 38.85 26.31 9 6.3 2.0 E.M.S.C. 1610 365 1.68 418 11 × 103
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Figure 1. Geographical distribution of the seven studied mainshocks. The index numbers depicted
in this figure correspond to the event indices given in Table 1. The colors and sizes of the focal
mechanisms (beachballs) are related to the depth and the magnitude of each event. The faults are
visualized according to the GEM database [28].
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For the purpose of the definition of the aftershock zone, an elliptical region was initially
picked for every main shock based on the distribution of its aftershocks and consequently
the catalogue for each aftershock sequence was obtained. In order to test the stability of our
results, we examined creating catalogues of earthquakes with 20% greater major axes of
the ellipse. Considering the spatial distribution of aftershocks, small changes do not affect
the parameter estimations that we will consider below, since the majority of the aftershock
events included in the elliptic area first selected. Subsequently, the catalogue was updated
to include all earthquake event occurrences inside this zone and for a period of two to
four months after the main shock (see Table 1). Following the creation of the catalogues,
we estimated the magnitude of completeness (Mc) for each aftershock sequence using the
frequency–magnitude distribution [29,30]. It is worth noting that aftershock sequences can
be depicted in terms of the modified parameters of the Gutenberg–Richter law [31,32].

The locations of the seven shallow mainshocks are illustrated in Figure 1. The earth-
quake numbers are presented chronologically from most recent to oldest in the event
indexes. Along with the entropic parameters q and Tc, which represent the transition point
from the non-additive to additive range in every aftershock series, the parameters of each
mainshock and its aftershock sequence are summarized in Table 1.

Next, the interevent time distribution is calculated for each aftershock sequence, and
a Q-exponential function fitting up to a value Tc, yielding to the Q and q parameters,
respectivelly. In all cases that we study, we observe a deviation from the Q-exponential
function for high values of time T, with T > Tc. Additionally, using the estimated Q
value from the prior analysis, the Q-logarithmic function of P(>T) as a function of T is
constructed. The range of interevent times, provided by Equation (12), where lnQP(>T) vs.
T is a straight line, is then specified along with its correlation coefficient. The transition
from NESP to BG statistical physics is indicated by the deviation from linearity at Tc. This
demonstrates that in the immediate aftermath of the mainshock, the system is controlled
by NESP, whereas as the aftershock sequence develops at T > Tc, the system is controlled
by BG statistical mechanics.

Figure 2 presents a flowchart of the process behind the non-extensive statistical physics
flowchart implemented in the present work.
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Figure 2. This flowchart summarizes the process behind the non-extensive statistical physics model
implemented in the present work.

3.1. The Arkalochori Aftershock Sequence

In this section, we investigate the space–time distribution of the main event’s after-
shock sequence, which struck the Greek island of Crete at a depth of about 10 km on
27 September 2021 [33,34] The earthquake’s epicenter was located southeast of Herak-
lion. The mainshock had a magnitude Mw6.0. Based on a detailed examination of the
aftershock sequence, as located by the Hellenic Unified Seismological Network (HUSN)
station network (http://www.gein.noa.gr/en/networks/husn, accessed on 27 September
2022), the aftershock area encompasses the region between longitudes 25.17◦ E–25.40◦ E
and latitudes 35.03◦ N–35.24◦ N. The aftershocks’ catalogue includes events characterized
by magnitudes 2.5 ≤ Mw ≤ 5.8, with a completeness magnitude of Mc = 2.5. Accord-
ing to different networks and catalogues, Mc-value varies systematically in space and
time. However, we should be cautious because commonly this value may lead to inac-
curate estimations in statistical analyses due to it being higher in the early part of an
earthquake sequence.

We study the probability distribution of interevent times in the aftershock series of the
Arkalochori, 2021 event using the NESP framework, as described previously. This approach

http://www.gein.noa.gr/en/networks/husn
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results from the generalized expression of entropy (Equation (1)), which is characteristic
for complex systems with finite degrees of freedom and long-range memory [5,8,22].

Figure 3a shows a typical Q-exponential pattern in the log–log plot of the cumulative
distribution function (CDF), P(>T) = N(>T)/N0 of aftershocks’ interevent times. Figure 3a
shows that for values of T greater than a critical interevent time Tc (i.e., when T > Tc), there
is a divergence from the Q-exponential function. Furthermore, fitting the Q-exponential to
the instances up to a value near to Tc yields q = 1.62, as shown by Equations (7) and (8).
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Figure 3. (a) The interevent times CDF of the 2021 Mw6.0 Arkalochori earthquake, for the aftershocks
with M > Mc. The scarlet solid line is the Q-exponential operation with q = 1.62. The change of colors
indicates the crossover between the NESP (blue circles) and BG statistics (green triangles). (b) The
lnQP(>T) as a function of interevent times T, where the scarlet line presents the fitting with q = 1.62
and correlation coefficient 0.9953 up to Tc. Tc value close to 7750 s is suggested by the deviation from
linearity. (c) Interevent time T evolution with time t since the main shock. The red line illustrates the
Tc value.

Next, we show lnQP(>T) (see Equation (10)) as a function of interevent times T for
q = 1.62 in Figure 3b. We estimate Tc to be ≈7750 s based on the divergence from predicted
linearity during the transition from one system to another.

Figure 3c illustrates that the T evolves as a function of time t since the main shock.
The Tc value indicates that the majority of interevent times have a value of T below Tc
(Figure 3c) in the early aftershock time, supporting the idea that the NESP mechanism
is predominant in the beginning of the aftershock evolution, indicating finite degrees of
freedom and long-range memory effects. As time passes, these traits of the aftershock
sequence are not prevalent anymore and BG statistics are restored (i.e., q = 1) [14].

3.2. The Elassona Aftershock Sequence

Here we focus on the aftershock sequence of the main earthquake that took place near
the capital city of Larissa in Thessaly on 3 March 2021. The mainshock had a magnitude
of Mw6.0 (from the Geophysical Laboratory of the Aristotle University of Thessaloniki
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(GL-AUTH), http://geophysics.geo.auth.gr/, accessed on 27 September 2022) (Table 1),
and generated a prolonged aftershock sequence in a general SE–NW direction [34]. The
aftershock area, for a 1-month time interval from 3 March 2021 to 4 April 2021, covers the
region between longitudes 21.47◦ E–23.13◦ E and latitudes 39.01◦ N–40.56◦ N. The after-
shocks’ catalogue includes 676 aftershocks characterized by magnitudes 2.5 ≤Mw ≤ 5.8,
with a completeness magnitude of Mc = 2.5 [33,35].

The CDF of the interevent times for the Elassona 2021 aftershock sequence, based on
the fitting of the Q-exponential function (Equations (7) and (8)) to the values of T, up to
a value approaching Tc, reaches to q = 1.62 (see Figure 4). Next, in Figure 4b we present
the lnQP(>T) as an operation of interevent times T for q = 1.62. From its deviation from
the expected linearity, the approximated value of Tc ≈ 4587 s is extracted. A graph of the
evolution of interevent time T over time t since the main shock is shown in Figure 4c.
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Interevent time T evolution with time t since the main shock. The red line illustrates the Tc value. 

3.3. The Samos Aftershock Sequence 

A strong and shallow earthquake of Mw = 7.0 struck Samos Island on the Aegean Sea 

(Figure 1), on 30 October 2020. Its aftershocks area covers the region between longitudes 

26.10° E–26.99° E and latitudes 37.64° N–37.98° N. The catalogue, for a completeness 

magnitude of Mc = 2.5, includes 1158 aftershocks (Table 1). 

Figure 4. (a) The interevent times CDF of the 2021 Mw6.3 Elassona Earthquake, for the aftershocks
with M > Mc. The scarlet stroke is the Q-exponential fitting with q = 1.62. The change of colors
indicates the crossover between the NESP (blue circles) and BG statistics (green triangles). (b) The
lnQP(>T) as a function of T, where the scarlet line presents the fitting with q = 1.62 and correlation
coefficient 0.9936 up to Tc. Tc value close to 4587 s is suggested by the deviation from linearity.
(c) Interevent time T evolution with time t since the main shock. The red line illustrates the Tc value.

3.3. The Samos Aftershock Sequence

A strong and shallow earthquake of Mw = 7.0 struck Samos Island on the Aegean Sea
(Figure 1), on 30 October 2020. Its aftershocks area covers the region between longitudes
26.10◦ E–26.99◦ E and latitudes 37.64◦ N–37.98◦ N. The catalogue, for a completeness
magnitude of Mc = 2.5, includes 1158 aftershocks (Table 1).

Using the same methodology as previously, fitting the Q-exponential function to the
noticed data up to a value near to Tc yields q = 1.63 (Figure 5a). We estimate Tc to be 9761 s,
based on the deviation from predicted linearity (Figure 5b). In the early time aftershock
part, most of the interevent times, with T values less than Tc exist, which forces us to
conclude that the Tsallis entropy mechanism is dominant in this early part of the aftershock

http://geophysics.geo.auth.gr/
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evolution. With the progress of time, the pattern of the aftershock sequence, such as finite
degrees of freedom and long-range memory, are notpredominant anymore and the BG
statistical physics controls the aftershocks evolution (i.e., q = 1) (Figure 5c) [14].
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from the catalogue of Kapetanidis et al. (2020) [36], summarized in Table 1. The event 

took place NW of the Thriassio basin. The aftershock distribution of the 436 events covers 

the region between longitudes 23.47° E–23.67° E and latitudes 38.05° N–38.18° N and 

characterizes aftershocks with magnitudes 1.0 ≤ Mw ≤ 4.2. The catalogue of this earth-

quake with completeness magnitude Mc = 1.0, covers the period from the day of the main 

event up to 21 August 2020. 

In Figure 6a, q = 1.71 is obtained by fitting the Q-exponential function to the ob-

served data up to a value close to Tc. In the present aftershock sequence, there is a slight 

increase in the parameter q compared to the previous ones (see also Table 1). The devia-

tion of the Q-logarithmic operation from the expected linearity is observed at a Tc value of 
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Figure 5. (a) The interevent times CDF of the 2020 Mw7.0 Samos Earthquake, for the aftershocks
with M > Mc. The scarlet solid stroke is the Q-exponential fitting with q = 1.63. The change of colors
indicates the crossover between the NESP (blue circles) and BG statistics (green triangles). (b) The
lnQP(>T) as a function of T, where the red line presents the fitting with q = 1.63 and correlation
coefficient 0.9942 up to Tc. A Tc value close to 9761 s is suggested by the deviation from linearity.
(c) Interevent time T evolution with time t since the main shock. The scarlet line illustrates the
Tc value.

3.4. The Parnitha Aftershock Sequence

On 19 July 2019, at 11:13:15 GMT (Greenwich Mean Time), an earthquake of
Mw = 5.1 struck Athens, the Capital of Greece. The mainshock’s location parameters
were obtained from the catalogue of Kapetanidis et al. (2020) [36], summarized in Ta-
ble 1. The event took place NW of the Thriassio basin. The aftershock distribution of
the 436 events covers the region between longitudes 23.47◦ E–23.67◦ E and latitudes
38.05◦ N–38.18◦ N and characterizes aftershocks with magnitudes 1.0 ≤ Mw ≤ 4.2. The
catalogue of this earthquake with completeness magnitude Mc = 1.0, covers the period
from the day of the main event up to 21 August 2020.

In Figure 6a, q = 1.71 is obtained by fitting the Q-exponential function to the observed
data up to a value close to Tc. In the present aftershock sequence, there is a slight increase
in the parameter q compared to the previous ones (see also Table 1). The deviation of the
Q-logarithmic operation from the expected linearity is observed at a Tc value of ≈175,460 s
(Figure 6b). In the early aftershock period, there are more interevent times with values
lower than Tc indicating that the Tsallis entropy description dominates the aftershock
evolution in the immediate to the main shock time. As time passes, some of the traits of
the early aftershock sequence related to NESP are insignificant and BG statistical physics
are recovered.
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Figure 6. (a) The interevent times CDF of the 2019 Mw5.1 Parnitha Earthquake, for the aftershocks
with M > Mc. The scarlet stroke is the Q-exponential fitting with q = 1.71. The change of colors
indicates the crossover between the NESP (blue circles) and BG statistics (green triangles). (b) The
lnQP(>T) as a function of T, where the red line is the fitting with q = 1.71 and correlation coefficient
0.9912 up to Tc. Tc value close to 175,460 s is suggested by the deviation from linearity. (c) Interevent
time T evolution with time t since the main shock. The scarlet line illustrates the Tc value.

3.5. The Zakynthos Aftershock Sequence

Herein, we study the seismic sequence that began on 25 October 2018 with a shallow
Mw = 6.6 earthquake off the coast Zakynthos (Ionian Sea, Greece) (Figure 1). Based on
detailed examination of the 1668 aftershock sequence, which were located by the station
network of the Hellenic Unified Seismological Network (HUSN), we conclude that the
duration corresponds to the 1-year time period i.e., from 25 October 2018 up to 19 October
2019. According to the catalogue used, aftershocks occurred with a magnitude greater than
Mw2.1.

Plotting the CDF, P(>T) = N(>T)/N0 of aftershocks interevent times on a double-log
scale, a typical Q-exponential pattern presents for T < Tc, with q = 1.68 (Figure 7a). The
transition from NESP to BF statistics is estimated to be at about Tc ≈ 5607 s (Figure 7b). The
Tc value (red dashed line in Figure 7c) suggests that the Tsallis entropy controls the early
stages of the aftershocks’ evolution. Certain traits of the early aftershock sequence related
to the NESP become less significant as time passes by, and the statistical physics of BG
is recovered.



Appl. Sci. 2023, 13, 1995 10 of 18
Appl. Sci. 2023, 12, x FOR PEER REVIEW 10 of 18 
 

 
 

(a) (b) 

 
(c) 

Figure 7. (a) The interevent times CDF of the 2018 Mw6.6 Zakynthos Earthquake, for the events with 

M > Mc. The scarlet stroke is the Q-exponential fitting with q = 1.68. The change of colors indicates 

the crossover between the NESP (blue circles) and BG statistics (green triangles). (b) The lnQP(>T) 

as a function of T, where the red line is the fitting with q = 1.68 and correlation coefficient 0.9966 up 

to Tc. Tc value close to 5607 s is suggested by the deviation from linearity. (c) Interevent time T 

evolution with time t since the main shock. The scarlet line illustrates the Tc value. 

3.6. The Kos Aftershock Sequence 

An earthquake with magnitude Mw = 6.5 at a depth of 7.1 km, which had a normal 

faulting mechanism striking about east–west (Figure 1), happened on 20 July 2017 in 

Gökova Bay, in the Aegean Sea, at 22:31:10 GMT between Bodrum town, Turkey, and 

Kos Island, Greece. As stated in the data, the mainshock epicenter was given as 27.41° E 

and 36.97° N located 12 km ENE to Kos in Greece and 8 km SE to Bodrum in Muğla in 

Turkey. The earthquake generated a tsunami that affected the coast of the Bodrum pen-

insula and the northeast coast of Kos. A tide gauge in Bodrum, close to the earthquake’s 

epicenter, recorded the tsunami [37]. 

The data were obtained from the Boun Koeri Regional Earthquake-Tsunami Moni-

toring Center, Kandilli Observatory and Earthquake Research Institute (RETMC) (the 

Turkish Disaster and Emergency Management Presidency, AFAD; Boğaziçi University 

(KOERI), http://www.koeri.boun.edu.tr/, accessed on 27 September 2022). This study’s 

goal is to give a thorough region-time analysis with a variety of aftershock attributes such 

as the parameter q by Tsallis for 6492 aftershocks identified in six months after the 

mainshock. 

In terms of Tsallis Entropy the value of q is equal to q = 1.63 (Figure 8a). Following, 

the transition estimated to be at Tc ≈ 15,005 s (Figure 8b). The parameter Tc (red dashed 

line in Figure 7c) shows that the NESP describes the early part of the aftershocks while as 

time goes on, BG statistics are revealed. 

Figure 7. (a) The interevent times CDF of the 2018 Mw6.6 Zakynthos Earthquake, for the events with
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Tc value close to 5607 s is suggested by the deviation from linearity. (c) Interevent time T evolution
with time t since the main shock. The scarlet line illustrates the Tc value.

3.6. The Kos Aftershock Sequence

An earthquake with magnitude Mw = 6.5 at a depth of 7.1 km, which had a normal
faulting mechanism striking about east–west (Figure 1), happened on 20 July 2017 in
Gökova Bay, in the Aegean Sea, at 22:31:10 GMT between Bodrum town, Turkey, and Kos
Island, Greece. As stated in the data, the mainshock epicenter was given as 27.41◦ E and
36.97◦ N located 12 km ENE to Kos in Greece and 8 km SE to Bodrum in Muğla in Turkey.
The earthquake generated a tsunami that affected the coast of the Bodrum peninsula and
the northeast coast of Kos. A tide gauge in Bodrum, close to the earthquake’s epicenter,
recorded the tsunami [37].

The data were obtained from the Boun Koeri Regional Earthquake-Tsunami Monitor-
ing Center, Kandilli Observatory and Earthquake Research Institute (RETMC) (the Turkish
Disaster and Emergency Management Presidency, AFAD; Boğaziçi University (KOERI),
http://www.koeri.boun.edu.tr/, accessed on 27 September 2022). This study’s goal is to
give a thorough region-time analysis with a variety of aftershock attributes such as the
parameter q by Tsallis for 6492 aftershocks identified in six months after the mainshock.

In terms of Tsallis Entropy the value of q is equal to q = 1.63 (Figure 8a). Following, the
transition estimated to be at Tc ≈ 15,005 s (Figure 8b). The parameter Tc (red dashed line in
Figure 7c) shows that the NESP describes the early part of the aftershocks while as time
goes on, BG statistics are revealed.

http://www.koeri.boun.edu.tr/
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M > Mc. The scarlet line is the Q-exponential fitting with q = 1.63. The change of colors indicates the
crossover between the NESP (blue circles) and BG statistics (green triangles). (b) The lnQP(>T) as a
function of T, where the red line is the fitting with q = 1.63 and correlation coefficient 0.9935 up to Tc.
Tc value close to 15,005 s is suggested by the deviation from linearity. (c) Interevent time T evolution
with time t since the main shock. The scarlet line illustrates the Tc value.

3.7. The Mytilene Aftershock Sequence

The 2017 Mytilene earthquake of Mw6.3, took place at the coordinates (26.31, 38.85)
(see more for location parameters in the Table 1) on 12 June at 12:28:37 GMT.

This destructive offshore event occurred northeast of Chios and almost 15 km south
of the southeast coast of Lesbos. In Vrissa village, a collapsed building killed one person
and injured 15 others due to a collapsed building and falling debris. Damage was reported
in at least 12 villages across the southeast region of Lesvos, and there was additional
impact along the Turkish coast [38]. Regarding the environmental impact of the earthquake,
slope displacement and ground cracks occurred in many places in the disaster area. Also,
tsunamis were reported in Plomari Port [38].

A total of 1610 aftershocks were detected over the period between 12 June 2017 and
11 June 2018 (European Mediterranean Seismological Centre, EMSC). The aftershock area
covers the region between the coordinates by longitudes 25.22◦ E–27.30◦ E and latitudes
38.23◦ N–39.22◦ N.

In line with the analysis of the previous aftershock sequences, for the earthquake
of Mytilene, we study the distribution of the interevent times. The value of q is equal to
q = 1.68 (Figure 9a). The transition estimated to be at Tc ≈ 10,761 s (Figure 9b). Since
the most interevent times have T values T < Tc, the parameter Tc (red dashed line in
Figure 9c) confirms that the Tsallis entropy description dominates the early stages of the
aftershocks’ evolution.
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Figure 9. (a) The interevent times CDF of the 2017 Mw6.3 Mytilene Earthquake, for the aftershocks
with M > Mc. The scarlet line is the Q-exponential fitting with q = 1.68. The change of colors indicates
the crossover between the NESP (blue circles) and physical BG statistics (green triangles). (b) The
lnQP(>T) as a function of T, where the red line is the fitting with q = 1.68 and correlation coefficient
0.9927 up to Tc. Tc value close to 10,761 s is suggested by the deviation from linearity. (c) Interevent
time T evolution with time t since the main shock. The scarlet line illustrates the Tc value.

In addition, and for all the aftershock sequences that were studied, we introduce a
normalized parameter, x = T/Tc, where x < 1 indicates the range where the Tsallis entropy
describes the evolution of aftershocks sequence interevent times, while x > 1 is related
to the Boltzmann–Gibbs (BG) process. This is because P(>T) = expQ(−T/T*) for T < Tc.
A deviation from the Q-exponential is present for all of the examined aftershock sequences
when x >> 1 (i.e., T >> Tc). An inspection of Figure 10, where all aftershock sequences
are plotted together, suggests that for 0.01 < x < 1, power-law scaling emerges for all
the aftershock sequences, with a slope in the range 0.40–0.60, conforming to the q values
calculated from the analysis (Table 1). The latter is expected since the asymptotic expression

of Equation (6) is P(> T) ∼ (T/T∗)−
1

(Q−1) is a typical expression of a power law.
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Figure 10. The interevent times distribution P(>x) for all the studied aftershock sequences as a
function of x = T/Tc. Deviations from the Q-exponential operation are pronounced at T/Tc >> 1, for
all sequences.
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It is important to mention, that in all estimations the accuracy of the estimated values
is in the order of ±0.01.

4. Discussion

All shallow earthquakes are followed by an aftershock sequence. The statistical prop-
erties of aftershock sequences are associated with scaling relations such as that extracted in
view of non-extensive statistical physics (NESP). In this study, we used a detailed temporal
assessment of the aftershock sequences over the last five years of significant earthquakes
in Greece with magnitudes that reach up to Mw = 7.0. We studied the strong events, such
as the Mw6.0 Arkalochori (27 September 2021), the Mw6.3 Elassona (3 March 2021), the
Mw7.0 Samos (30 October 2020), the Mw5.1 Parnitha (19 July 2019), the Mw6.6 Zakynthos
(25 October 2018), the Mw6.5 Kos (20 July 2017) and the Mw6.1 Mytilene (12 June 2017)
earthquakes. Based on non-expansive statistical physics, we analyzed the distribution of
interevent times for each aftershock sequence for each main shock.

In all cases, the cumulative distribution function P(>T) is defined by a Q-exponential in
the early stage of the aftershock sequence where interevent times less than Tc are observed,
where Tc is the crossover point between the non-additive and additive behavior. By fitting
a Q-exponential function to the data up to a value close to Tc, the parameter q is estimated
for each aftershock sequence. In all the cases analyzed, the applicability of non-extensive
statistical physics to the interevent times CDF is demonstrated, as well as, the existence of
transition behavior from the power-law to exponential scaling for larger interevent times.
Since the q entropic parameter is greater than one (q > 1) a sub-additive process is implied,
supporting the conclusion that long-range memory exists in the early state of temporal
evolution of aftershocks where mainly T < Tc. Additionally, for aftershock sequences
analyzed, the estimated Tsallis entropic q-values that describe the observed CDF are within
the range of 1.62–1.71.

In addition, the superposition of two aftershock mechanisms can be used to explain
the observed scaling behavior and the deviation from the Q-exponential function for
greater interevent times. For T > Tc, a second mechanism—characterized by an exponential
function—becomes apparent. The first mechanism, as presented by NESP, is dominant
for T < Tc. We, thus, introduce the generalization described in [20,39,40], to account for a
transition from NESP (q 6= 1) to BG (q = 1) statistical mechanics, where:

dp(T)
dT

= −β1 p−
(

βq − β1
)

pq, (12)

whose solution is

p(T) = C
[

1−
βq

β1
+

βq

β1
e(q−1)β1T

]1/1−q
, (13)

In Equation (13) the probability function p(T) decreases monotonically with increasing
T for positive βq and β1, where C is a normalization factor. As a result, when (q−1)β1 << 1, a
q-exponential, p(T) ≈ Cexpq

(
−T/Tq

)
, where Tq = 1/βq, is an approximation of Equation

(13), while for (q − 1)β1 >> 1, the asymptotic behavior of the probability distribution

function p(T) ∝
(

β1
βq

)1/(q−1)
e−β1T , is an exponential one, where Tc = 1/(q − 1)β1 defines

the crossover point from the non-additive to additive behavior [24,41]. The Tc value
suggests that the Tsallis entropy is prevalent in the early stages of aftershock evolution,
while the traits of aftershock sequences which are associated with a NESP description,
become less apparent as time passes and BG statistics are recovered [6,9,17,22,42,43].

The super-statistical theory, which is complementary to NESP, is based on a super-
position of ordinary local equilibrium statistical mechanics, with a Gamma distributed
intensive parameter that varies over a fairly wide time scale. This approach can be used to
explain the q-exponential behavior of the interevent times in aftershock sequences [14].

The super-statistical approach states that the interevent times of an aftershock sequence
may be described by a local Poisson process p(T|β) = βe−βT , with β an intensive fluctuating
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parameter. On a long-time scale, β is distributed with a possibility density f (β) [25,44–47].
Then the probability distribution p(T) is given as:

p(T) =
∫ ∞

0
f (β)βe−βTdβ, (14)

In the scenario where a Gamma distribution provides the probability density of
β [43–46]:

f (β) =
1

Γ(n/2)

(
n

2β0

)n/2
β

n
2−1exp

(
− nβ

2β0

)
, (15)

Integration of Equation (14) is analytically calculated [48], obtained
p(T) ≈ C(1 + B(q− 1)T)1/(1−q), which is exactly the result in term of NESP, where
q = 1 + ([2⁄(n + 2)]) and B = 2β0/(2− q) [14]. Since in all the analyzed cases q is in
the range 1.61–1.71, we conclude that the corresponding number of degrees of freedom is
close to one (n = 1).

The latter implies that the evolution of an aftershock sequence could be influenced by a
stochastic mechanism with memory effects. In accordance with [49,50], the stochastic differential
equation for the evolution with time t, of interevent times T of an aftershock sequence:

dT = −γ(T −< T >)dt + ϕ
√

TWt, (16)

This stochastic equation is made up of two parts that control how the seismicity
evolves. The primary goal of the first deterministic term is to restore the seismic rate
R to its usual value of R = 1/<T> based on a constant γ which expresses the rate of
relaxation to the mean waiting time <T>. Memory effects in seismicity’s development are
depicted in the second stochastic part. The stochastic term Wt describes a Wiener process
following a Gaussian distribution with zero mean and unitary variance that could follow
the macroscopic effects in the evolution of interevent times in the aftershock sequence. Wt’
random sign causes an increase (Wt > 0) or decrease (Wt < 0) of T. The construction of this
term operates in a way that large values of T cause large amplitude of the stochastic term,
which leads to an increase or decrease in T depending on the sign of Wt. The parameter ϕ
introduces a noise component to the process and can be expressed as ϕ =

√
2γ< T > [50].

Equation (16) is a stochastic differential equation that represents a multiplicative noise
example, known as the Feller process [48–50].

We write the corresponding Fokker–Planck equation for Equation (16), to ascertain the
evolution of the interevent time series T after some time t, given the probability distribution
f (T, t), as [51]:

∂ f (T, t)
∂t

=
∂

∂T
[γ(T −< T >) f (T, t)] +

∂2

∂T2 [T< T >γ f (T, t)], (17)

The latter Fokker–Planck equation’s stationary solution, Equation (17), is the distribu-
tion [48]:

p(T/< T >) = f (T) =
1

< T >
e−

γ
<T> T , (18)

where Equation (18) presents the conditional probability of T given <T>.
It is necessary to account for local variations in the seismic rate R = 1/<T> associated

with non-stationarities in the evolution of the earthquake activity over time scales signif-
icantly larger than 1/γ in order to achieve stationarity in Equation (16). In this case, the
mean interevent time <T> exhibits local variations, and we assume that these fluctuations
adhere to the stationary gamma distribution:

f (< T >) =
( 1

λ )
δ

Γ[δ]
< T >−(1+δ)e−

1
λ<T> , (19)
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where Equation (19) gives the marginal probability of T, [52] as:

p(T) =
∫ ∞

0
p(T/< T >) f (< T >)d< T >, (20)

The latter integration leads to:

p(T) =
λΓ[1 + δ]

Γ[δ]
(1 + λT)−(1+δ), (21)

By continuing to implement the variable changes:

λ =
q− 1

To
and δ =

1
q− 1

− 1 =
2− q
q− 1

(22)

and taking into account the form of q-exponential function in Equation (2), Equation (16)
can be transformed to [50]:

p(T) =
(q− 1)Γ

(
1

q−1

)
ToΓ

[
1

q−1 − 1
] expq

(
− T

To

)
(23)

which is the exact form of the q-exponential function.

5. Concluding Remarks

In summarizing the study’s findings, we concentrated on analyzing the distributions
of interevent times for each sequence in order to statistically examine its patterns in the
most recent aftershock sequences in Greece.

Namely:

• We can state that the aftershock sequences located in Greece follows the statistical
mechanics model derived in the framework of Non-Extensive Statistical Physics
(NESP);

• Moreover, we should note that the NESP approach is useful for other regions, not only
for the Greek territory, such as subduction zones all over the word [53];

• According to the NESP approach used here, it suggests that the system is in an
abnormal equilibrium with a transition for large interevent times from abnormal
(q > 1) to normal (q = 1) statistical mechanics;

• The analysis of the interevent times distribution indicates such a system;
• The range of the non-extensive parameter q and for all sequences studied, results in

a non-extensive entropic parameter q with a range of between 1.62 and 1.71, which
suggests a system with one degree of freedom.

To summarize, the used models fit the noticed distributions reasonably well, and
imply the importance of using NESP in evaluating such phenomena.

The main limitations of the work presented in this paper are related to earthquakes
in different geotectonic environments along with fault types of the main shock. Studying
aftershock sequences as a function of geotectonic environments is a matter of discussion in
future studies, and this could be useful for the prediction of damaged aftershocks [54–57].
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