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Abstract: In this paper, a new control scheme for buck converters was proposed. The buck converter
utilizes the dual control loop to improve transient response and has the constant switching frequency.
The control scheme is mainly as follows: (a) The switch-ON time is regulated by the constant
frequency mechanism. (b) The switch-OFF time is regulated by the output voltage. The spec/features
of the proposed converter are listed as: (1) The buck converter has an output of 1.0–2.5 V for the
input of 3.0–3.6 V. The load current ranges from 100 mA to 500 mA. (2) The actual current sensor is
not required. (3) The simulation results show that the recovery time is less than 1.6 µs during load
changes. (4) The variation in switching frequency is smaller than 1.05% over the output range of
1.0–2.5 V. (5) This circuit can be fabricated in future by UMC 0.18 µm 1P6M CMOS processes. This
paper depicts the control scheme, theoretical analysis, and implementation.

Keywords: switched-capacitor (SC) converters; switched-inductor (SL) converters; current mode
control (CMC); voltage mode control (VMC); adaptive ON time (AOT); constant ON time (COT);
pulse width modulation (PWM); peak current mode (PCM); average current mode (ACM)

1. Introduction

In recent years, portable devices have become more widespread and even diverse,
such as cell phones, laptops, and tablets. All these devices require a power converter, for
example, artificial intelligence (AI), Internet of Things (IoT) devices, etc. [1–3]. In order to
extend the standby time, especially in cell phones, the efficiency of the power converter is
crucial. The dynamic response of power converters is more and more important.

Power converters can be broadly classified as switched-capacitor (SC) converters [4,5]
and switched-inductor (SL) converters [6–8]. The SC converters mainly consist of switches,
control circuits, and capacitors. Different from the SC converter, the SL converter uses the
inductor rather than the capacitor for power conversion. From the application viewpoint,
low power converters usually use SC architectures. On the contrary, SL converters are
available in applications that range from a fraction of a watt to a few hundred watts [5].
The advantage of the SC converter is that the capacitors have a higher power density and
are easier to integrate than the inductors [9]. However, voltage regulation problems can be
present in some voltage conversion ratios [5]. In contrast, the SL converters are popular in
power conversion because of their application range, high reliability, design flexibility, and
low cost.

The common terms used in buck converters include power-conversion topologies,
pulse width modulation, discontinuous-conduction mode, and continuous-conduction
mode. Firstly, we briefly introduce these common terms, and then present the recent
research situation. The basic buck conversion topology is very simple; it only uses the
switches (S1, S2) and an inductor (L) for power conversion (Figure 1). In power conversion,
the key point is the control method, which controls the switches to turn ON or OFF. In
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general, common control methods include: pulse width modulation (PWM) and peak
current mode (PCM).
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Figure 1. Buck topology with a virtual inductor current sensor. 
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Figure 2. Dual loops control topology for buck converters. 
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Figure 3. BUCK topology without inductor current sensor. 

  

Figure 1. Buck topology with a virtual inductor current sensor.

For PWM, the feature is to fix switching frequency, and then change the pulse width
to control the switches (S1, S2 in Figure 1). However, PCM usually has a variable switching
frequency, and the switches ON/OFF will depend on the inductor current. In addition,
whether for PWM or PCM, if the system is in steady state, when the switch (S1) starts to turn
ON (Figure 1), the inductor current is zero. We refer to this as discontinuous-conduction
mode. On the contrary, when the switch (S1) starts to turn ON, and the inductor current
is not zero, we refer to this as continuous-conduction mode. In addition, the feedback
stability is also an important topic that will be discussed in later sections.

As an overview of the SL converters, the control modes can be classified into voltage
mode control (VMC) [10] and current mode control (CMC) [11–14]. In general, since CMC
has more feedback paths than VMC, CMC should perform better than VMC in regard to the
dynamic response and the voltage regulation. This is the reason why most current control
schemes are based on CMC. In the conventional CMC, the control scheme requires a current
sensor to get information about the inductor current. Therefore, how to sense inductor
current is an important issue and is discussed in much of the literature. The related research
has been summarized and analyzed in [15]. Several control modes based on CMC have
been revealed to regulate the output voltage, such as: constant on time (COT), average
current mode (ACM), constant off time (CFT), peak current mode, and adaptive on time
(AOT) [16–19].

The author of [15] uses a virtual inductor current sensor to obtain the inductor current
traces instead of the real current sensor (Figure 1). The proposed scheme in [15] can greatly
reduce hardware effort. However, it still needs the virtual inductor current sensor. The
authors of [20,21] propose a control scheme that does not require the current sensor but
only senses the output voltage. In [20], the switch-ON time is regulated by the voltage
difference between the input and output voltages (Figure 2). In [21], the switch-ON time
(TON) of S1 is adaptive and regulated by the output voltage (Figure 3). Different from [20]
and [21], in this paper, the switch-ON time is regulated by the constant switching frequency
mechanism. In contrast to [22], the constant switching frequency mechanism consists of
only a phase frequency detector, a charge pump, and a low pass filter.
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Figure 3. BUCK topology without inductor current sensor.

In this paper, a new SL buck converter with constant switching frequency will be
proposed. The importance of the topic and the practical application that the new control
scheme can be listed as (a) the practical application of the scheme is suitable for portable
devices; (b) the contribution of this solution is that it effectively reduces hardware effort
and is suitable for mass production; (c) this scheme provides an alternative solution for
buck control in industry applications.

In addition, the merits of the new control scheme are (a) the constant switching
frequency, alleviating the EMI issue in applications; (b) the actual current sensor is not
required, which makes the overall circuit design simple. In this paper, we have made some
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changes in the conventional design where we only detect the voltage difference between the
output and the input to obtain the variation of the inductor current. In other words, these
differences from conventional designs make the overall circuitry simpler. The organization
of this paper is as follows: Section 2 presents the proposed scheme and implementation.
Section 3 introduces the mathematical modeling and components selection. Section 4 shows
the simulation results of SIMPLIS. Finally, the conclusion is given in Section 5.

2. Proposed Control Methodology
2.1. Scheme and Implementation

Figure 4 shows the proposed scheme. In Figure 4, we can find that (a) the actual
current sensor is not needed in this scheme; (b) the constant frequency mechanism controls
the switch-ON time; (c) the switch-OFF time is regulated by the error amplifier (EA). The
error amplifier would make VFB and VREF equal. In this paper, the ON time of the S1 is
labelled as TON, and the OFF time of the S1 is labelled as TOFF.
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Figure 4. Proposed scheme.

Figure 5 shows the implementation of the proposed scheme. The advantages of
Figure 5 are listed as: (a) The proposed controller consists of only common components
such as flip-flops, comparators, and error amplifier. No special process is required for
fabrication; (b) The architecture of the adaptive TON/TOFF control is simple, which greatly
reduces the hardware effort; (c) Different from [22], the constant frequency mechanism can
be effectively used to keep the switching frequency constant.

2.2. Operation Principle

The detailed operation of the converter is listed as follows:

1. When the switch S1 is ON, and the other switch S2 is OFF.
2. The inductor (L) is in the charging state, and the ON-time of S1 is controlled by

the adaptive TON control block. In the adaptive TON control block, the ON-time is



Appl. Sci. 2023, 13, 1991 5 of 14

decided by Vramp and VCTR. The Vramp is the function of VIN and Vo, which replaces
the conventional method that requires a current sensor to sense inductor current.

3. When the switch S1 is OFF, and the other switch S2 is ON.
4. The inductor (L) is in the discharging state, and the OFF-time of S1 is controlled

by the adaptive TOFF control block. In the adaptive TOFF control block, the OFF-
time is decided by Vramp2 and VCMP, both of which are the functions of the Vo.
Since the Vo controls the OFF-time through two paths, the control scheme has good
transient response.

5. The operation of the constant frequency mechanism will make the REF_CLK and the
FB_CLK equal. The REF_CLK can be set by the user. In this paper, the REF_CLK is set
to 1 MHz.

6. The states of the switches S1 and S2 are complementary and non-overlapping. The
key waveforms in Figure 5 are drawn in Figure 6.

7. In Figure 6, the IL is the inductor current. In the steady state, we can find that the
IL is triangle wave, and the mean is Iavg. When the S1 is ON (i.e., VG is high), the
IL is linearly rising and the inductor (L) is in the charging phase. On the contrary,
the S1 is OFF (i.e., VG is low), the IL is linearly falling, and the inductor is in the
discharging phase.
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3. Mathematical Modeling and Components Selection
3.1. Mathematical Modeling

In order to guarantee the stability of the system, the derivation of the open-loop
transfer function is necessary. The literature about the mathematical modeling is presented
in [15]. Details of the design procedure can be found in [15]. Figure 7 shows the open-loop
structure of Figure 4. Similarly to [20], Equation (1) can be used to represent the open-loop
transfer function of Figure 7. The Gp(s) expression in Equation (2) represents the buck
converter. The compensation network A(s) with the error amplifier (EA) is represented by
Equation (3).

T(s) =
Vo(s)
Vi(s)

= GP(s)·A(s) (1)

GP(s) =
VFB(s)
Vi(s)

=
1
Ri

· 1

1 + s
Q·ω + s2

ω2

· RLOAD(RESRCos + 1)
(RLOAD + RESR)Cos + 1

(2)

A(s) =
Vo(s)

VFB(s)
= gm·Ro·

(
1 + s

wz

)
(

1 + s
wp

) (3)

wz =
1

R3·C1
, wp =

1
Ro·C1

(4)

In Equation (2),ω = π
Ton

and Q = 2
π , Ri is the gain of the TOFF ramp generator.
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3.2. Components Selection

Based on the above mathematical model, we can find out the relevant parameters with
the mathematical tools “MathCAD” [15,20]. Table 1 lists the components/parameters of
the scheme. (Figure 7)

Table 1. Component parameters.

Components Value Unit

Co 10 µF
L 4.7 µH

RESR 5 mΩ
RLOAD 3.6/18 (for load switching) Ω

R1 10 MΩ
R2 10 MΩ
Ro 1 MΩ
R3 400 kΩ
C1 300 pF

3.3. Implementation Processes

The future possible implementation processes can be explained as follows: (a) using
UMC 0.18 µm 1P6M CMOS processes for fabrication; (b) the switches (S1, S2) are inte-
grated in the chip; (c) UMC 0.18 µm 1P6M CMOS processes provide 1.8 V and 3.3 V MOS
devices for selection. For simplicity, the whole circuit uses the 3.3 V MOS devices for
implementation. In the future, a combination design with 3.3 V/1.8 V MOS devices can
be considered.

4. Simulation Results
4.1. SIMPLIS Schematic

The proposed converter was verified by SIMPLIS. Figure 8 shows its schematic.
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4.2. Transient Response

The same measurement conditions as in [20,21] are given below. (a) The load current
transition is between 0.1 A and 0.5 A at 3.3 V/1.8 V input/output voltage. (b) The recovery
time is defined as within 1% of the 1.8 V output voltage at load transition.

Figure 9 shows the load transient response. From Figure 9, the transient performance
is as follows: (a) The recover times for the step-up/step-down load current transition are
1.57 µs and 1.34 µs, respectively. (b) The overshoot/undershoot voltages are 21 mV/21 mV,
both within the range of 21 mV.

Figure 10 shows that the converter can operate in Vin range of 3.0–3.6 V, while output
can be set in the range of 1.0–2.5 V. In Vin range of 3.0–3.6 V, the maximum ripple voltage
for Vo is 2.2 mV, which occurred at Vin of 3.6 V and Vo of 2.5 V.
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4.3. Load Regulation

The load regulation is defined as Equation (5). Similarly to [20,21], the specification
of the load regulation is measured at an input/output voltage of 3.3 V/1.8 V and a load
current varying from 0.5 A to 0.1 A. From the simulation results shown in Figure 11, the
load regulation is 0.01% through Equation (5).

Load Regulation =
Vo@0.1A load current − Vo@0.5A load current

Vo@0.5A load current
·100% (5)

where Vo@0.5A load current is the output voltage at a load current of 0.5 A, and Vo@0.1A load current
is the output voltage at a load current of 0.1 A.
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4.4. Switching Frequency Regulation

By using the constant frequency mechanism, the converter can keep the switching
frequency constant. The switching frequency at different output voltages (1.0–2.5 V)
is shown in Figure 12. The measurement results in Figure 12 show that the switching
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frequency can be maintained at around 1 MHz for different output voltages and max load
current (500 mA).
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4.5. Performance Summary

The performance of the proposed converter is listed in Table 2. As Table 2 shows, for
the current transition between the 100 mA and 500 mA, the recovery time is less than 1.6 µs.
At the same time, the converter has good performance at an input voltage of 3.0 V–3.6 V
and an output voltage of 1.8 V. Finally, the performance comparison with the presented
converters is listed in Table 3.

Table 2. Performance of Proposed Converter.

Parameter Symbol Conditions Min Typ Max Unit

Output capacitor Co ESR: 5 mΩ 10 µF

Inductor L DCR *: 30 mΩ 4.7 µH

Output voltage Vo 1.0 2.5 V

Input supply voltage Vin 3.0 3.6 V

Load current Iload 100 500 mA

Output ripple Vpp Vin = 3.6 V, Vo = 2.5 V 2.2 mV

Switching frequency fsw
Load current: 500 mA

@ Vin = 3.3 V, Vo = 1.0–2.5 V 1 MHz

Recovery time (step-up) Tstep_up
Load current: 100 mA to 500 mA

@ Vin = 3.3 V, Vo = 1.8 V 1.57 µs

Recovery time
(step-down) Tstep_dn

Load current: 500 mA to 100 mA
@ Vin = 3.3 V, Vo = 1.8 V 1.34 µs

Overshoot Vovshoot
Load current: 500 mA to 100 mA

@ Vin = 3.3 V, Vo = 1.8 V 21 mV

Undershoot Vunshoot
Load current: 100 mA to 500 mA

@ Vin = 3.3 V, Vo = 1.8 V 21 mV

* DCR: DC resistance of inductor.

The comparisons in Table 3 are briefly discussed as follows:

(a) For the parameter in recovery time, we can find that the proposed scheme is better
than the simulation results of [15,21–25]. The measurement results of [11,26–28] are
worse than the proposed scheme, and the numerical differences are large. For this
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purpose, one is the measurement result, and the other is the simulation result. This is
the major difference.

(b) For the parameter in undershoot/overshoot: this parameter is greatly affected by
the load conditions and the output capacitor. For example, if the output capacitor is
large, then the undershoot/overshoot is small. Or, if the load current step of the load
conditions is small, then the undershoot/overshoot is small. Therefore, under the
same test conditions, the performance of the proposed scheme is better than [15,21,22].

(c) For the parameter in switching frequency, we can find that in most of the literature,
the switching frequency is designed around 1 MHz.

(d) For the parameter in switching frequency variation, we can find that the discussion
on switching frequency variation is a minority in all the comparison literature, and
only appears in [11,21,22]. The switching frequency variation of the proposed scheme
is less than 1.2%.

Table 3. Performance Comparisons with Reported Converters.

References 2018 [23] 2020 [24] 2021 [15] 2021 [22] 2022 [21] This Work

Results simulation simulation simulation simulation simulation simulation
Control scheme AOT AOT AOT AOT AOT AOT

Process (µm) 0.35 0.18 0.35 * 0.18 * 0.35 * 0.18 *
Input voltage (V) 12 3.3–5.0 3.0–3.6 3.0–3.6 3.0–3.6 3.0–3.6

Output voltage (V) 1.2 1.8 1.0–2.5 1.0–2.5 1.0–2.5 1.0–2.5
Inductor (µH) 1 1.5 4.7 4.7 4.7 4.7

Output Capacitor (µF) 47 20 10 10 10 10
Switching Frequency (MHz) 1 1 1 1 1 1

Switching frequency variation (%) N/A N/A N/A 1 3.5 1.2
Max. Load current (mA) 5000 2000 500 500 500 500
Load current step (mA) 4000 800 400 400 400 400

Undershoot/Overshoot (mV) 20/26 13/14 23/26 20/24 21/30 21/21
Recovery time (µs) (rise/fall) <3 6/2 1.98/1.6 1.69/1.62 1.8/1.5 1.57/1.34

References 2019 [25] 2021 [11] 2021 [26] 2021 [27] 2022 [28]

Results measurement measurement measurement measurement measurement

Control scheme Current-Mode
Hysteretic Hysteretic PLL COT COT AOT

Process (µm) 0.065 0.35 0.13 0.18 0.18
Input voltage (V) 3.3 3.3–3.6 7–15 4.25–15 1.6–2.2

Output voltage (V) 0.6–2.0 0.9–2.5 5–7 1.1 0.4–1.2
Inductor (µH) 2.2 4.7 2.2 0.47 0.33

Output Capacitor (µF) 10 10 10 47*3 10
Switching Frequency (MHz) 1 1 2 0.5–1.25 3

Switching frequency variation (%) N/A 1 N/A 42 N/A
Max. Load current (mA) 1500 600 2000 5000 500
Load current step (mA) 900 400 2000 5000 450

Undershoot/Overshoot (mV) 106/87 30/60 85/72 30/15.7 20/20
Recovery time (µs) (rise/fall) 3.4/3.6 2.6/2.2 3/2.7 80/45 3.4/3.6

* This work is system level simulation with SIMPLIS.

5. Conclusions

In this paper, a new control scheme of the buck converter was proposed. This con-
verter uses an alternative method to control the TON, and TOFF. The converter has three
features/advantages. First, the TOFF is controlled to keep the switching frequency constant.
The constant switching frequency feature can alleviate the EMI issue in applications. In
addition, it is not difficult to implement, requiring only the PFD, charge pump, and low
pass filter. Second, the control method is based on CMC technique, but does not require
the actual current sensor, which greatly reduces the complexity of the circuit. Third, the
circuit is easy to realize and does not have special layout considerations; thus, it is suitable
for mass production. Finally, the converter was verified by SIMPLIS. From the simulation
results, the control topology has good transient performance. In future, the scheme can be
implemented with UMC 0.18 µm 1P6M CMOS processes.
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