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Abstract: Tunnels, a key technology of traffic obfuscation, are increasingly being used to evade
censorship. While providing convenience to users, tunnel technology poses a hidden danger to
cybersecurity due to its concealment and camouflage capabilities. In contrast to previous studies of
encrypted traffic detection, we perform the first measurement study of tunnel traffic and its unique
characteristics and focus on the challenges and solutions in detecting tunnel traffic among traditional
and machine learning techniques. This study covers an almost twenty-year research period from
2003 to 2022. First, we present the concepts of two types of tunnels, broad and narrow tunnels,
respectively, as well as a framework for major tunnel applications, such as Tor (the second-generation
onion router), proxy, VPN, and their relationships. Second, we analyze state-of-the-art methods from
traditional to machine learning applications to systematize tunnel traffic detection, including HTTP,
HTTPS, DNS, SSH, TCP, ICMP and IPSec. A quantitative evaluation is presented with five crucial
indicators applied to the detection methods and reviews. We further discuss the research work based
on datasets, feature engineering, and challenges that have are solved, partly solved and unsolved.
Finally, by providing open questions and the potential directions, we hope to inspire future work in
this area.

Keywords: cyber security; tunnel detection; network traffic; multilayer protocols; machine learning

1. Introduction

Tunnel technology offers numerous benefits, such as breaking firewall restrictions,
forcing data to a specified address, hiding private network addresses, providing secure
encrypted channels, etc. Tunnel technology is widely used [1], with applications including
proxy services, remote access, intrusion control, traffic stealing, etc.

By installing tunnel clients, users can indirectly forward data packets by bypassing
IP blocks by using the proxy service, which mimics socks5. Remote access means build-
ing a negotiatory channel between the private network and the company network and
then accessing secret data or applications. Intrusion control mainly includes establishing
C&C communication [2], stealing private data, realizing long-term control, guarding, etc.
Among the specific methods used are malicious Trojan, Botnet, ransomware, and advanced
persistent threat (APT) [3] techniques, etc. In traffic stealing, web traffic is encapsulated in
free DNS [4], ICMP, and other data packets to deceive the network billing system. Tunnel
technology is advancing, its threats are increasing with time, and the identification and
classification of tunnel traffic in a network are especially critical.

Challenges

In order to detect and classify tunnel traffic, we must find discriminative features
between normal traffic and tunnel traffic. Recently, in spite of dramatic progress having
been made in detecting encrypted traffic, the detection of tunnel remains difficult (or is
inaccurate). Actually, tunnel traffic is often encrypted, and so transferring the source
problem into the target problem is beneficial. Due to its concealment and camouflage,
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which are inherently unique, it poses the following challenges to current researchers. These
issues are different from those of encrypted traffic detection [5].

We must identify whether it is tunnel traffic. A network communication protocol is
easy to identify; however, identifying whether it is encapsulated as a tunneling protocol is
much more difficult. Additionally, most traffic is encrypted, and the encryption algorithms
obscure plaintext features, thereby reducing the randomness of the original message to
a great extent. Furthermore, some software can mask tunnel traffic characteristics as
normal traffic characteristics by morphing and padding packets, which makes identification
more difficult.

We must identify a passenger protocol for the tunnel. To avoid censorship, tunnel
traffic may be mixed between multiple passenger protocols, such as FTP-DNS, DNS-HTTPS,
TELNET-HTTP, and SMTP-TLS. To identify each passenger protocol in the specific tunnel,
it is necessary to have an accurate command of multilayer protocols so that lower traffic
heterogeneity within the same tunnel renders the tasks more complex.

We must identify applications and behavior in tunnel traffic. Further, there are several
specific granularities used to identify different applications and their behaviors in tunnel
techniques. These include ongoing applications, service benign/malicious behaviors of
the same application, webpages, and content parameters related to the same webpage, etc.
A tunnel’s traffic is extremely homogeneous, and the application traffic in that tunnel is
the same quintuple, so determining its beginning and ending times is difficult, and tunnel
noise also makes fine-grained identification difficult.

Contributions

To clarify the search status of solving the problems and challenges mentioned above,
we have made two contributions.

• The first thing we have done is focus on three challenges of tunnel traffic detection
from the perspective of protocol classification within the TCP/IP protocol stack, which
is different from the closely related topics of encrypted traffic detection in detail.
A new method of tunnel traffic identification and classification is presented based
on the combination of traditional and machine learning detection methods within
seven protocols: HTTP, HTTPS, DNS, SSH, TCP, ICMP and IPSec. We use the thesis
database (scopus database, occasionally assisted by web of science) and use a certain
keyword (such as HTTP/HTTPS/DNS/TCP/ICMP/IPSec tunnel traffic detection,
traffic detection, etc.) to search and determine a large range of initial related literature
review papers (LRPs) [6]. The simplest way is to filter the paper’ date (we have
been looking for papers for nearly 20 years), publishing platform, field and so on
with the filter that comes with the database, including journal article and conference
paper. By browsing abstracts, keywords and the objective statements of pieces of
literature, we can determine their relevance. Then, the results of rough reading,
based on inductive coding and of intensive reading, based on co-occurrence analysis,
are presented. The papers are selected based on three main criteria: whether they
(i) provide new techniques or ideas on tunnel detection, (ii) i they have a high degree
of completion and reproducibility, and (iii) if they have an ability to solve three
challenges above.

• Second, five evaluation indices are used to evaluate the three typical tunnel detec-
tion methods from over the past ten years using AHP (analytical hierarchy process).
Additionally, we also conclude by exploring and analyzing the direction of tunnel
identification and detection. Figure 1 summarizes our work.
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Figure 1. Our review of tunnel detection process.

Terminology

We first introduce the broad and narrow concepts of tunnel technology. We then
arrange them as protocols and mainstream application frameworks, including anonymous
networks, proxies, and VPN technology.

1.1. Broad & Narrow Tunnel

Broad Tunnel. Simmons [7] proposed a general tunnel as a classic prisoner commu-
nication model in 1983 and described a network tunnel in detail. As shown in Figure 2,
the OSI computer network model is based on a classic prisoner communication model. In
this model, Alice and Bob communicate through two networked machines. Despite the
fact that their communication data appears to be sent through an open communication
channel, they can create a private tunnel that is only visible to them. This generalized
tunnel is formally defined as ‖A ◦ B‖. For any kind of tunnel ti, ∀ti ∈ ‖A ◦ B‖, i ∈ R, there

is ti =
{‖A◦B‖T
‖A◦B‖S

.
‖A ◦ B‖S represents the hidden tunnel of network storage. As the most commonly

used tunnel, this tunnel is also the tunnel most discussed in our paper because it changes
the header fields and payloads of various network protocols to hide information. Both
communication parties will only deal with keywords and optional parameters with this
tunnel, specified ahead of time, and any keywords or optional parameters not specified in
the protocol will be automatically discarded. It is also beneficial for covert communication
to hide more information in the message payload.

‖A ◦ B‖T is a network time covert tunnel which encodes covert information based on
a control time interval. For example, data packets’ delivery times are directly changed,
but data packet timestamps are changed indirectly. In this tunnel, data packet arrival time
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depends on network stability. As time jitter, packet disorder, and loss often lead to decoding
failure, we are not focusing on these tunnels.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 4 of 35 
 

Alice

Old header Original data

Covert Storage/Time

New data

Old header Original data

New data

Covert Storage/TimeBobAlice Tunnel Bob

 
Figure 2. Broad Tunnel. 

S
A B  represents the hidden tunnel of network storage. As the most commonly 

used tunnel, this tunnel is also the tunnel most discussed in our paper because it changes 
the header fields and payloads of various network protocols to hide information. Both 
communication parties will only deal with keywords and optional parameters with this 
tunnel, specified ahead of time, and any keywords or optional parameters not specified 
in the protocol will be automatically discarded. It is also beneficial for covert communica-
tion to hide more information in the message payload. 

T
A B  is a network time covert tunnel which encodes covert information based 

on a control time interval. For example, data packets’ delivery times are directly changed, 
but data packet timestamps are changed indirectly. In this tunnel, data packet arrival time 
depends on network stability. As time jitter, packet disorder, and loss often lead to decod-
ing failure, we are not focusing on these tunnels. 

Narrow Tunnel. In a narrow tunnel, the passenger protocol is encapsulated in a pay-
load and transmitted to the channel. This is purely responsible for the protocol encapsu-
lation and decapsulation of data packets like the edge of the network topology. Our paper 
formally defines this narrow tunnel as A B  in Figure 3. Moreover, the encryption of 

A B  is more prevalent. 

Old header Original data

Pack

Old header Original dataNew header

New data

Tunnel

Old header Original data

Unpack

Old header Original dataNew header

New data  
Figure 3. Narrow tunnel. 

1.2. Classification 
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Using the five-layer model of the TCP/IP protocol stack in Table 1, we propose a 
method of dividing tunnel traffic from protocol classification at each layer. 

Figure 2. Broad Tunnel.

Narrow Tunnel. In a narrow tunnel, the passenger protocol is encapsulated in a
payload and transmitted to the channel. This is purely responsible for the protocol encap-
sulation and decapsulation of data packets like the edge of the network topology. Our
paper formally defines this narrow tunnel as |A ◦ B| in Figure 3. Moreover, the encryption
of |A ◦ B| is more prevalent.
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1.2. Classification
1.2.1. Encapsulation Protocol

Using the five-layer model of the TCP/IP protocol stack in Table 1, we propose a
method of dividing tunnel traffic from protocol classification at each layer.

Table 1. Tunnels classified by TCP/IP protocol stack.

TCP/IP Protocol Stack Types of Tunnels According to Protocol

data link layer L2F tunnel, PPTP tunnel, L2TP tunnel
network layer ICMP tunnel, IPSec tunnel, GRE tunnel, VTP tunnel
transport layer TCP tunnel, UDP tunnel

application layer HTTP tunnel, HTTPS tunnel, DNS tunnel, SSH tunnel

1.2.2. Tunnel Application Frameworks
Anonymous Networks

An anonymous network protects the privacy of users’ communication in an open
network setting. Due to its enhanced security, deployment, availability, and flexibility, Tor,
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a typical application of a P2P [8,9] structure, is widely used by anonymous users. In this
scheme, data packets are forwarded at the entry node and bundled into nested layers of
encrypted packets of similar size at the entry node. After routing and decrypting these
data packets, the data are sent to a destination node.

Proxy

Proxy is a typical representative of |A ◦ B|, transferring data between client and server.
Client requests are sent to proxy servers, which access the targeted website instead of the
client, load its content, and then transmit the loaded content back to the client. As a result
of Chrome browser’s data compression proxy technology, web page loading speeds can be
increased, which reduces bandwidth consumption.

VPN

In VPN, the initial plaintext data (including the data to be transmitted, source/destination
IP) are encrypted by the VPN client and then a signature is attached. To re-package the
data packet, a new data header is added (including the new IP address, the VPN device’s
security information, and some initialization parameters) and it is sent via a “specific path”
over the public network. When data arrives at VPN server, they are unsealed and decrypted
after checking signature.

Relationships

Tor and VPN differ in how they guarantee data anonymity. As a result of the fixed IP
address between the VPN client and the VPN server during VPN communication, both
client and server can tell which real IP address is sending which data packet to what
destination address. However, Tor does not rely on a single server. Rather, it chooses a
random relay node and it updates more frequently than VPN. Thus, all nodes in the path
cannot obtain the information completely. As a result, Tor can be considered a distributed
VPN network if only its start and exit nodes are considered.

Whether to secure data transmission is the difference between a proxy and a VPN. The
final effect of using a user VPN or proxy server is the same, i.e., hiding one’s real IP from
the website or server of interest. Proxy servers are suitable for users who wish to access
websites blocked by their region but do not want to conceal their operations on the Internet.
When users need to visit a website for a long time or perform sensitive operations, such as
sending personal information over open Wi-Fi, VPNs are typically used.

2. Taxonomy

From a traffic fingerprint perspective, plaintext tunnel traffic may contain a specific
string. Statistically, even encrypted tunnel traffic has different temporal and spatial char-
acteristics than normal traffic. As shown in Table 2, traditional methods of tunnel traffic
detection and current popular methods based on machine learning are summarized in
this section.

2.1. Traditional Detection

As tunnel traffic becomes increasingly difficult to identify using the port [10] alone
as the criterion, fingerprint-based methods as well as behavior feature (statistical feature)
methods will become more popular for unencrypted tunnel traffic identification [11].

In a data packet, fingerprints are non-random features, such as keywords found in
DNS request fields QNAME and RDATA, as well as headers like Host, Connection, and
Content-type in HTTP requests. A variety of fingerprint-based detection technologies are
available, including threshold matching and MD5 matching. In these simple judgment
methods, we can quickly and accurately identify when the database capacity is adequate,
otherwise, we are highly likely to make mistakes. In text-like data analysis, N-gram word
frequency models (also known as unigrams and bigrams) and implicit Markov models
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(HMMs) are important. Combined with the Markov property, we can identify tunnel traffic
by predicting the value of normal traffic based on a specific string in a fixed field.

As a representation method, behavior features are detected by using the data ele-
ment information of statistical data packets/streams (hereinafter called statistical features).
Statistics (average, maximum, minimum, variance, etc.) are used in probability statistics,
statistical distributions (Poisson distribution, Zipf distribution, etc.), and cluster analyses.
An abnormal user behavior model can be observed from data analysis by comparing its
threshold with a normal behavior model.

2.2. Machine Learning Detection

Since tunnel technology is densely cultured and complex, fingerprint-based methods
have required maintaining a huge database with limited patterns, and statistical feature
methods have not been able to deal with traffic camouflage dynamically in recent years.
Tunnel traffic detection has gained new vitality with the advent of machine learning (ML).

There are three types of ML: supervised, unsupervised, and semi-supervised. In
supervised learning, accuracy is measured by constantly comparing prediction results
to training data. Supervised learning includes decision trees such as C4.5, RF (random
forest), SVM (support vector machine), etc. Additionally, its training process requires a
great deal of manual labels and selecting features is highly dependent on expert knowledge.
Unsupervised learning, also known as clustering, distinguishes between categories based
on unlabeled data in large datasets. In reality, this method is simpler, but its accuracy
is not high due to the large amount of unlabeled raw tunnel traffic in real networks.
Moreover, semi-supervised learning, which combines advantages from both supervised
and unsupervised learning, is more accurate than unsupervised learning, and manual
involvement is reduced to some extent.

Since deep neural networks do not extract features in the training process, which can
automatically learn high-dimensional abstract data (called E2E), they are extremely popular
for the classification of tunnel traffic on large scales. RNN (recurrent neural network),
LSTM (short- and long-term memory networks), etc., can handle the temporal features of
tunnel traffic well, CNN (convolutional neural networks) can handle the spatial features of
tunnel traffic well, and the GAN (generative adversarial network) can be used to alleviate
class imbalance in datasets. A deeper and more complex network model structure also
means that parameter adjustment is more time-consuming.

Table 2. Traditional and ML models of tunnel detection.

Traditional ML

Fingerprint Statistic Supervised Unsupervised Semi-Supervised

�Match [12–24] �Markov [25,26] �SVM [16,21,27–33] �CAE [34] �VAE [35]

�N-gram [28,36,37] �MaMPF [38] �Decision Tree (C4.5/5.0) [29,32,33,39–43] �OLDBSC [44] �Bi-GRU [35]

�MD5[24] �KNN [40,43,45,46] �RF [29,37,43,47,48]

�Degree Distribution [49] �Naïve Bayes [17,27,32,48] �LSTM [50,51]

�MNB [52] �Bi-LSTM [53,54]

�k-means [55–57] �CNN [34,50,58,59]

�TF-IDF [60] �Linear Regression [29]

�GP [42] �MLP [51]

�AdaBoost [42,61,62]

�RIPPER [61]

�RBFN [43,57]
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3. Encapsulation Protocol

In this section, tunnel traffic detection methods are systematically classified to focus
on the above three challenges according to the five-layer model of the TCP/IP protocol
stack, including HTTP, HTTPS, DNS, SSH, TCP, ICMP and IPSec.

3.1. HTTP

Intro

The existing forms of ‖A ◦ B‖S include a URL-based HTTP tunnel and an HTTP
header field-based HTTP tunnel. The optional segments of HTTP messages can be altered
and confused. For example, headers such as Host, Connection, Content-Type, etc., in HTTP
requests can be filled out and confused. Attackers use the referer field to construct covert
tunnels since it has a fixed function in normal communication. Common tunnel tools
include Neo-reGeorg, Frp, HTTPTunnel, etc.

3.1.1. Traditional Detection

Fingerprint

The goal of most papers (in Table 3) is to determine whether the traffic is tunnel traffic
or not, and so signature-based fingerprint detection is of particular importance among
them. For the detection of suspicious strings in the payload, Dharmapurikar [12] generated
hash values for strings using the same hash function. In order to identify tunnel traffic, it
must maintain a large database and have a high false negative rate. The model can detect
10,000 predefined fine strings, but has a high false negative rate. In Wang et al. [36], two
innovations were presented: Wang’s N-gram(N = 1) word frequency model calculates the
average frequency of ASCII characters as one of tunnel traffic’s characteristics. First, the
model is made more robust by combining it with Mahalanobis to realize unsupervised
learning. Second, “Z-String” derived from byte distribution is used as a signature to
represent payload, which can be stored quickly in the real-time distributed detection
system. Almost a 100% detection rate and about a 0.1% false alarm rate are achieved for
HTTP tunnel traffic in DARPA’99 [63].

It is also common for tunnel traffic to be characterized by detecting the header of HTTP
packets. If the user agent is filled, or if they are filled by an unknown browser, this method
can also be used. Using Bortolameotti’s [13] model, top-level and second-level domain
names, constant header fields, and language fields in Host are extracted, and a module is
added for dynamically updating the fingerprint database, making it more flexible. During
private datasets, the model achieves a false alarm rate of 0.9%, with a detection accuracy of
97.7% on average.

Statistic Feature

As well as identifying tunnel traffic, statistical flow characteristics also describe how
tunnel traffic is classified from applications and behaviors. The temporal and spatial
features of a data stream are often determined by the packet size and the inter-arrival
time (IAT) between successive packets. Besides these factors, various pieces of statistical
information on packet length and packet intervals, such as the estimation of a round-trip
time, the size of the TCP segment, and the total number of retransmissions, and simple
statistical knowledge such as average, median, maximum, minimum and variance are
used by researchers to create models. To determine whether traffic is tunnel traffic, Li [64]
utilized hierarchical clustering technology and a scoring mechanism model to establish
a normal behavior clustering model by comparing the characteristics of normal HTTP
traffic, including packet/stream time intervals. Despite being able to achieve an accuracy
of more than 93.9%, this model is heavily influenced by the long HTTP traffic that transmits
large files. As a measure of the randomness of data, the entropy criterion is often used
to distinguish tunnel traffic, and the entropy value in tunnel traffic differs from that in
normal traffic. Nasseralfoghara [14] used the entropy of message exchange traffic. The
HTTP protocol request text should contain the address of the requested page, the required
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method, and the parameters for that method. If its entropy value exceeds its predetermined
threshold, it is classified as HTTP tunnel traffic. However, if the unintentional increase in
noise changes the entropy, it incorrectly classifies the traffic as HTTP tunnel traffic.

The outbound bandwidth usage in tunnel traffic will differ from normal HTTP requests.
In addition to counting outbound bandwidth usage, long streams account for a substantial
share of tunnel traffic, which is important. Piraisoody [27] introduced the concept of
“occupancy rate” as a key element in the classification process, and proposed the definition
of “stream groups”. HTTP tunnel applications such as audio, video, and file transfer
software are classified based on parameters such as download rate, bytes per stream,
bytes per packet, and “occupancy rate,” with a high accuracy rate of at least 70% in
private datasets.

3.1.2. Machine Learning

To avoid the problem that the exponential growth of feature dimensions makes the
accuracy of the N-gram model lower when n > 2, Perdisci [28] used a feature clustering
algorithm to reduce the dimensions in different feature spaces and multiple single-class
SVM classifiers to vote in different feature spaces, making the model extremely accurate
at detecting HTTP tunnel traffic. Thus, the author achieved an FPR of 10−5 in DARPA’99
data [63]. The URL and payload string were extracted using a deep neural network model
built with Bi-LSTM (bi-directional long and short-term memory). In private datasets,
experiments [53] have shown that the accuracy of identifying tunnel traffic can reach 90%.
With CNN and LSTM, Wong [50] developed a deep learning model for detecting URL-
based HTTP tunnels. In privately balanced datasets, the best model averages 95% accuracy.
However, the model it cannot handle seriously unbalanced datasets.

He [54] combined classical classifiers with bagging, boosting, etc., with classical
classifiers such as C4.5. The packet payload size, variance, packet count, data stream
length, and IAT of adjacent packets can be used to identify whether the traffic is HTTP
tunnel traffic.

It is also possible to classify passenger protocols in tunnel traffic using detection
methods based on ML. Based on private datasets, Ding’s [39] method can identify tunnel
traffic and distinguish SMTP-HTTP and P2P-HTTP passenger protocols with 95% accuracy.
What is remarkable is that the model is 100% accurate at identifying gray pigeon traffic.
According to Wang [16], it is necessary to analyze the second-order statistical correlations
between consecutive packets, including the packet distribution difference in HTTP sessions
and the entropy in N-RPP and N-RMI distances. An SVM classifier can distinguish tunnel
traffic from non-tunnel traffic and identify FTP-HTTP, SMTP-HTTP, and POP3-HTTP
passenger protocols. HTTP tunnel traffic is recognized with an average accuracy of 82.5%
on private datasets.

3.2. HTTPS

Intro

HTTPS protocol adds an SSL/TLS layer between the transport layer and HTTP pro-
tocol, supporting encryption, authentication and integrity checking, and which is mainly
used to realize secure HTTP data transmission. As opposed to HTTP tunnel traffic de-
tection, HTTPS traffic is encrypted, and the hidden message content makes fixed string
matches and character statistics ineffective. This section emphasizes the spatial–temporal
characteristics of plaintext packets as well as their interaction during SSL/TLS handshakes.
There are two tunnel modes of HTTPS, the first one is |A ◦ B|, and the second one is VPN,
i.e., a typical HTTPS tunnel, which is an encryption |A ◦ B|. We also separately summarize
the methods of ML used to detect VPN traffic. Tools that can be used to build HTTPS
tunnels include abptts, Shadowsocks Obfs, reGeorg, etc.
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Table 3. Summary of HTTP tunnel detection. T represents traditional method. ML represents machine learning method. I represents detecting with coarse content.
II represents detecting in a specific location.

Ref. Year Datasets T/ML Fingerprint Statistic Flow Packet Spatial Temporal I II Model

Dharmapurikar [12] 2003 Private T
√ √ √

Payload Strings Match
Wang [36] 2004 Public T

√ √ √
Payload Strings N-gram + Mahalanobis

Perdisci [28] 2009 Public ML
√ √ √

Payload Strings N-gram + SVM
Ding [39] 2011 Private T

√ √ √ √ √
Payload Size + Duration C4.5

Wang [16] 2013 Private ML
√ √ √ √

Payload Size + Duration Match + SVM
Piraisoody [27] 2013 Private T

√ √ √ √ √
Payload Size + Duration + occupancy Naïve Bayes + SVM

Li [64] 2014 Private T
√ √ √ √ √

Payload Size + Duration Hierarchical Clustering +
Scoring Mechanism

Bortolameotti [13] 2017 Private T
√ √ √

Head Host + Language + User-Agent Match
Yu [53] 2018 Private ML

√ √ √
Payload Strings Bi-LSTM

He [54] 2019 Private ML
√ √ √

Payload Duration Bi-LSTM
Wong [50] 2019 Private ML

√ √ √
Field URL CNN + LSTM

Nasseralfoghara [14] 2020 Private T
√ √ √

Head Request Method + URL Match
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3.2.1. Traditional Detection

Fingerprint

For |A ◦ B|, an SSL/TLS handshake fingerprint (including supported cipher suites,
TLS extensions, etc.) is mostly focused on detecting tunnel traffic in HTTP header (as shown
in Table 4). According to Durumeric et al. [15], certificate authority-based detection can be
improved by examining the trust relationships between root/intermediate authorities and
leaf certificates extracted by the Web server.

Statistic Feature

Besides identifying tunnel traffic, classifying the applications in tunnel based on
features such as the length of certificate packets, IAT, and an SSL/TLS handshake session is
popular. In Herrmann’s [52] model, traffic features were only determined by the normalized
frequency distribution of IP packet sizes in the stream using Multinomial Naïve Bayes
(MNB). As a result of TF-IDF transformation, HTTPS tunnel traffic can be identified with
97% accuracy in private datasets. Korczyński [25] labeled SSL/TLS handshake state,
established first-order homogeneous Markov fingerprints and judged 12 applications
within HTTPS tunnel traffic based on their convergence toward the normal traffic state. In
private datasets, the accuracy rate is above 97%, but two disadvantages occur with this
method. First, IP can only be resolved into a domain name model through DNS, and second,
the efficiency and accuracy of this method will decrease as packet numbers increase.

In order to increase the diversity and multi-attribute quality of traffic characteristics,
Sun [17] used a hybrid method in the first byte of handshake-based messages to identify
HTTPS tunnel traffic. With fine granularity, Liu [38] proposed using Markov Probability
Fingerprints (MaMPF) to identify tunnel traffic applications. MaMPF can calculate the
power law distribution and relative probability of all 18 applications modeling for each
application in order to avoid the overfitting caused by excessive packet length. MaMPF
achieves 96.4% TPR and 0.2% FPR in private datasets.

3.2.2. Machine Learning

As part of the detection methods, ML includes not only detecting tunnel traffic, but
also identifying the application involved. Specifically, Draper-Gil [40] and Anderson [29]
examined spatio-temporal characteristics, including in/out bytes, packet sizes, packet
numbers, packet length, time series, distribution of bytes, etc.

It has always been important to monitor VPN traffic under HTTPS tunnels due to its
role as an indicator of HTTPS tunnel traffic. Draper-Gil [40] used only time-related features
along with C4.5 and KNN to achieve an accuracy rate of over 80% in the ISCXVPN2016
public datasets [65]. Guo [34] proposed two models based on deep learning: CAE (convolu-
tional automatic coding) and CNN, which separated traffic into VPN and non-VPN traffic,
and further identified VPN traffic generated by six different applications. By using the
unsupervised algorithm of CAE, they can extract the hidden layer features from the traffic
samples to generate conversation images. CNN excels at extracting two-dimensional local
features. The CAE-based model has the best recognition effect in the selected datasets, with
an overall recognition accuracy rate of 98.77%; CNN is the best for all six types of applica-
tion traffic. In ISCXVPN2016, Parchekani [51] classified VPN and non-VPN traffic based on
E2E with MLP and LSTM, achieving an overall recognition accuracy rate of 92.92%.

3.3. DNS

Intro

In a DNS tunnel, the DNS server checks its database for the address to be resolved
when it receives a DNS request. If no records are found in the database, the server sends
the request to the specified domain. According to known analysis of the DNS protocol, the
QNAME field in the query area and the RDATA field in the response area are the highest
frequency areas where features are embedded. In terms of analyzing ‖A ◦ B‖S from DNS
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traffic, extracting resource records such as TXT, A, AAAA, and MX and observing the
access count of resource records are common methods.

The parser depends on the number of resource records specified in the header to
determine the parsed data, and the last record is considered to have reached the end. As
a result, DNS packets can be tipped with any amount of data, and RawUDP is where the
information is embedded at high frequency. The statistical distribution of DNS tunnel
traffic is very different from that of normal domain. The former obeys random distribution,
while the latter obeys Zipf distribution. A number of studies have been conducted on
detecting DNS tunnels by analyzing the statistical information in DNS packets, such as
domain name length and entropy. Tools such as NSTX, DNSCat, and Iodine have been
used to detect DNS tunnels.

Table 4. Summary of HTTPS tunnel detection. Summary of HTTPS tunnel detection. T represents
traditional method. ML represents machine learning method. I represents detecting with coarse
content. II represents detecting in a specific location.

Ref. Year Datasets T/ML Fingerprint Behavior Flow Packet Spatial Temporal I II Model

Herrmann [52] 2009 Private T
√ √ √

Payload Size MNB

Sun [17] 2010 Private T
√ √ √ √ √ Handshake

+ Payload
Size +

Duration Match + Bayes

Durumeric [15] 2013 Private T
√ √ √

Handshake Entities Match
Korczyński [25] 2014 Public T

√ √ √
Handshake ClientHello Markov

Draper-Gil [40] 2016 Public ML
√ √ √

Payload Duration C4.5 + KNN

Anderson [29] 2017 Private ML
√ √ √

Payload Size +
Duration

Linear Regression +
L1/L2-logistic

regression + RF +
SVM + Decision Tree

+ Multi-layer
Perceptron

Liu [38] 2018 Private T
√ √ √

Payload Duration
+ Order MaMPF

Guo [34] 2020 Public ML
√ √ √ √

Payload Size +
Duration CAE + CNN

Parchekani [51] 2020 Public ML
√ √ √ √ √

Payload Size +
Duration MLP + LSTM

3.3.1. Traditional Detection

Fingerprint

In traditional detection methods (in Table 5), most researchers focus on whether it is
tunnel traffic or not. Because most DNS tunnel detection data are text-like, word frequency
analysis is a good starting point. The statistical distributions of domain names in data
packets were analyzed by Burghouwt [49] as features for detecting and identifying DNS
tunnel traffic. N-gram (N generally takes 1 or 2) word frequency modeling is used to
identify tunnel traffic. The abnormal degree distribution of the visited domain in the
message was detected by Burghouwt [49] without requiring any statistical information
about message content and traffic. Using graph theory, the author calculated the degree
distribution of domains based on the number of computers connected to different domains
over a specified time period. Abnormal domains can be distinguished from normal domains
to identify DNS tunnels, and their FPR is 0.073% in private datasets.

Statistic Feature

There has been a significant interest in detecting DNS tunnel traffic based on the
time and space statistical characteristics of packets/streams, such as the number of pack-
ets/streams, the number of bytes, and the duration of streams. These features have been
used by Marchal [55]. The average TTL value of domain records, total number of domain
name requests during the observation period, request ratio in each time period, whether the
domain name is blacklisted, and other characteristics were also extracted by Marchal [55].

There is also a high degree of entropy detection in DNS tunnel traffic. Meanwhile,
Karasaridis [18] determined whether the packet size distribution was met with cross
entropy, and then defined a distance function to measure entropy, which controlled the
threshold range to identify DNS tunnel traffic effectively.
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3.3.2. Machine Learning

Most of machine learning detection has been conducted to detect whether traffic is
tunnel traffic, while Wang [48] introduced eight features to analyze five kinds of DNS
tunnel behaviors. Bilge [41] has integrated the above statistical features. To describe
different attributes of DNS names and how they are queried, Bilge [41] used 15 DNS traffic
features, nine of which were not previously proposed, including time-based features, DNS
response-based features, TLL change features, and domain name features. When combined
with a decision tree, this method can identify DNS tunnel traffic accurately, resulting in
fewer false alarms than 1% and a 98% accuracy rate.

Wang [60] and Palau [58] developed a way to solve domain name text detection lightly
to reduce storage overhead and computational complexity. A domain name specificity
score, enhanced TF-IDF, and other algorithms were used by Wang [60] to detect DNS tunnel
traffic in private datasets, with 99.92% accuracy in detecting DNS tunnel traffic. It is worth
noting that Palau [58] proposed a detection method based on CNN with a simple structure
called 1D-CNN that detects 99% of normal domains and 92% of tunnel domains, even
though its structure is simple. D’Angelo [59] also used 2D-CNN with a straightforward
network structure to detect tunnel traffic. They used a 24-dimensional matrix to represent
22 different features, including request/response type, etc.

Siby [37] focused on DoH [66] (DNS over HTTPS) in order to detect encrypted DNS
tunnel traffic because traditional website fingerprint features are insufficient for describing
DoH traffic. As a result, when it is combined with RF, it introduces N-grams with TLS
record lengths as new features and is able to identify DNS tunnel traffic with 84% accuracy
in private datasets. A variational autoencoder (VAE) [67] was proposed by Ding [35] as an
E2E model for learning long sequential and structural information beyond the capability of
traditional machine learning methods. VAE used bidirectional Gated Recurrent Units (Bi-
GRU) as encoders and decoders to automatically extract latent feature representations from
raw traffic. Semi-supervised training is used to train the model on normal traffic patterns.
The accuracy rate is over 99% on the CIRA-CIC-DoHBrw-2020 dataset [68]. Moreover, the
complexity of their model from the number of parameters and consuming time are all
obviously less than others [69].

3.4. SSH

Intro

The SSH protocol provides users with secure remote login or other network services
through encryption in unsecured networks. As a result, plaintext features are made obsolete
in a dense stream of information. To identify SSH tunnel traffic, statistical features and
machine learning methods have become mainstream, along with the identification of
passenger protocols, applications, or services.

3.4.1. Traditional Detection

Statistic Feature

It is possible to identify SSH tunnel traffic among the detection methods (in Table 6),
as well as to classify passenger protocols and applications in traffic using statistical fea-
tures. With fine granularity, Alshammari [61] and Maiolini [56] classified SSH tunnel traffic
applications and services. Ashammari [61] used AdaBoost and RIPPER to identify SSH
tunnel traffic with 95% accuracy in public datasets. The classification covers 11 applica-
tions/services, including local tunnels, remote tunnels, FTP, and Shell, with the accuracy
of 99% and false alarm rates of 0.7%. According to Maiolini [56], the k-means clustering
analysis is used for real-time traffic classification, which results in an accuracy of 99.5% for
SSH tunnel traffic and 99.88% for SCP-SSH, SFTP-SSH, and HTTP-SSH passenger protocols
in tunnels. Although these two methods are lightweight, their disadvantages include their
confusion when there are similar applications or services in the tunnel traffic, such as HTTP
and FTP, and the model will become less accurate as more protocols are added.
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3.4.2. Machine Learning

In addition to detecting passengers, ML is capable of classifying their protocols and
applications. Agghey [43], Alshammari [42], Jian [44], Pradhan [57] and Hynek [62] have
all selected features to train from including packet size, forward/backward average IAT of
the first few packets of flows. Without using IP, port number, and payload, Alhammari [42]
used C4.5, genetic programming (GP) and AdaBoost classifiers to classify SSH tunnel
encrypted traffic. Experiments are conducted in public and private datasets using 39 packet
header features (IP header length, checksum, etc.) and 22 flow-based features. In the best
case, GP can achieve 98% accuracy, and it can also be classified by applications in tunnel
traffic such as SCP, SFTP, Shell, X11 session, Telnet, etc. At its best, C4.5 can achieve 100%
accuracy. An unsupervised clustering algorithm On-Line Density-Based Spatial Clustering
(OLDBSC) was proposed by Jian [44] to resolve the problems of large computation and
high memory consumption. Instead of clustering the entire stream’s features, the best
priority feature algorithm is used to find an optimal feature set for a sub-stream and then
to map the applications that have the highest probability to the application types using the
best priority feature algorithm. This method is capable of identifying SSH tunnel traffic as
well as classifying applications and identifying unknown application types in traffic. The
accuracy rate in private datasets is as high as 99%.

3.5. TCP

Intro

TCP tunnel is a common form in the transport layer. Based on ‖A ◦ B‖S, it is possible
to hide information in IHL, checksum, ISN, and IP ID field. In addition, ‖A ◦ B‖T is also
used as a common form of TCP tunnel by changing the time interval sequence of packets,
network jitter and network delay.

3.5.1. Traditional Detection

Fingerprint

Most fingerprint detection methods (as shown in Table 7) analyze tunnel construc-
tion in a theoretical manner, without an actual detection model. As such, they can only
determine whether it is tunnel traffic. According to Zseby [19], TCP acknowledgment and
sequence number fields and ISNs are common methods for building covert tunnels.

Statistic Feature

Statistical feature detection methods can identify both tunnel traffic and passenger
protocol. Gianvecchio [20] detected hidden time channels based on entropy and modified
conditional entropy. The author focused on four typical ‖A ◦ B‖T : IPCTC, TRCTC, MBCTC
and JitterBug. To detect these above, they combined fine-binned and coarse-binned esti-
mation of corrected conditional entropy. The corrected conditional entropy can detect the
‖A ◦ B‖T with abnormal regularity, while the entropy test can detect the hidden time tunnel
with small changes throughout the distribution. It is possible to achieve 100% detection
using a combination of the two methods. To detect hidden communication in TCP flows
under passenger protocols such as HTTP, FTP, TELNET, SSH and SMTP, Zhai [26] proposed
a detection method based on maximum a posteriori probability MAP, a Markov chain
description of TCP handshake behavior. For small traffic windows of private datasets, the
algorithm is 100% accurate.
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Table 5. Summary of DNS tunnel detection. T represents traditional method. ML represents machine learning method. I represents detecting with coarse content.
II represents detecting in a specific location.

Ref. Year Datasets T/ML Fingerprint Statistic Flow Packet Spatial Temporal I II Model

Burghouwt [49] 2010 Private T
√ √ √

Payload Domain Degree distributuion
Bilge [41] 2011 Public ML

√ √ √ √ √
Payload Domain + TTL + Duration + Answer Decision Tree

Marchal [55] 2012 Private T
√ √ √ √ √

Payload Domain + TTL + Duration k -means
Wang [60] 2019 Private ML

√ √ √
Payload Domain TF-IDF

Siby [37] 2019 Public ML
√ √ √

Handshake TLS N-gram + RF
Palau [58] 2020 Public ML

√ √ √ √
Payload Domain CNN

Ding [35] 2021 Public ML
√ √ √ √

Payload Size + Duration VAE + Bi-GRU
D’Angelo [59] 2022 Private ML

√ √ √
Header + Payload Size + Record CNN

Wang [48] 2022 Private ML
√ √ √ √ √

Header + Payload Domain + Size + Duration RF + KNN

Table 6. Summary of SSH tunnel detection. T represents traditional method. ML represents machine learning method. I represents detecting with coarse content.
II represents detecting in a specific location.

Ref. Year Datasets T/ML Fingerprint Statistic Flow Packet Spatial Temporal I II Model

Alshammari [61] 2007 Public T
√ √ √ √ √

Payload Size + Duration AdaBoost + RIPPER
Maiolini [56] 2009 Private T

√ √ √ √ √
Payload Size + Duration + Direction k -means

Jian [44] 2010 Private ML
√ √ √ √ √

Payload Size + Duration + Direction OLDBSC
Alshammari [42] 2011 Private ML

√ √ √ √
Payload + Head Size + Duration C4.5 + GP + AdaBoost

Pradhan [57] 2018 Public ML
√ √ √ √ √

Payload + Head Size + Duration + Number k -means + RBFN
Hynek [62] 2020 Private ML

√ √ √ √ √
Payload Size + Duration AdaBoost

Agghey [43] 2021 Public ML
√ √ √ √ √

Payload Size + Duration + Number + Port KNN + NB + RF+ Decision Tree

Table 7. Summary of TCP tunnel detection. T represents traditional method. ML represents machine learning method. I represents detecting with coarse content.
II represents detecting in a specific location.

Ref. Year Datasets T/ML Fingerprint Statistic Flow Packet Spatial Temporal I II Model

Gianvecchio [20] 2010 Public T
√ √ √

Payload Corrected Conditional Entropy Match
Zhai [26] 2013 Private T

√ √ √ √
Field Flag Markov

Shrestha [30] 2015 Private ML
√ √ √ √

Field
Kolmorov–Smirnov Test Score (K–S score) + Regularity

Score + Entropy + Corrected Conditional
Entropy (CCE)

SVM

Zseby [19] 2016 Private T
√ √ √ √

Head + Field Time-Related Properties Match

Fu [31] 2018 Private ML
√ √ √ √

Payload + Field Kernel Density Estimation + Variation Coefficient +
Fragility Entropy + Autocorrelation Coefficient SVM
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3.5.2. Machine Learning

Machine learning detection methods typically use SVMs with excellent pattern classi-
fication performances, but most of them are used to detect whether tunnel traffic is present,
and little research is available on tunnel traffic protocol and application behavior. To study
covert tunnels and distinguish between normal TCP traffic and tunnel traffic, Shrestha [30]
used the IP header’s identification and the TCP header’s serial number field.

In addition to the header fields of the IP and TCP headers, machine learning is also
an objective method for analyzing the regularity and inner correlation. The regularity
or correlation between continuous packets will be changed if the information in the TCP
header is hidden. Using kernel density estimation, variation coefficient, fractal entropy
and autocorrelation coefficient, Fu [31] further transformed these features into an eigen-
vector matrix.

3.6. ICMP

Intro

The principle of ICMP ‖A ◦ B‖S is to encapsulate IP traffic in the data field of ICMP
request packet and send it to the ICMP server, which unpacks and forwards IP traffic. In
order to establish an ICMP tunnel, packets are encapsulated in an ICMP reply packet and
sent back to the client. ICMP tunnels can be built using icmptunnel, ptunnel or icmpsh.

3.6.1. Traditional Detection

Fingerprint

Among the traditional detection methods (in Table 8), most papers focus on detecting
whether ICMP tunnel traffic is present, without paying much attention to fine-grained
classification. A simple string scan of “passwd”, “root”, “tmp”, “ls”, and “dir” was used
to complete Singh’s [70] preliminary detection in the unencrypted ICMP tunnel. While
this method has low overhead and high speed, there are a few disadvantages to its use,
including the need to maintain a database of suspicious strings regularly, as well as a high
false negative rate. As characteristics of ICMP tunnel traffic matching, Govil [22] defined
89 field types (such as AS MPLS label, IPv6 address, and AS number related to data) and
found that hiding data in ICMP tunnels is also common practice by using byte of payload.

Statistic Feature

ICMP tunnel traffic can be identified by marking abnormally large and often persistent
or burst packets to proxy nodes. According to Barbhuiya [23], ICMP tunnel traffic can be
detected by detecting traffic congestion in gateways according to bandwidth utilization,
processing all unreachable messages from hosts and networks in the network, establishing
a protocol for unreachable messages, etc. The paper presents only theory, not experimental
data. To identify normal traffic or ICMP tunnel traffic, Sayadi [24] first compared the
number of packet bytes, then checked the ICMP message rate, ICMP sequence number,
and fast random pattern matching in the feature library or MD5 hash verification.

3.6.2. Machine Learning

Machine learning detection methods include detecting whether tunnel traffic is the
majority, while few people pay attention to fine-grained classified traffic. From the original
packets, Sohn [21] extracted 13-dimension features from the ICMP payload, 15-dimension
features from the 2-dimension features from the ICMP payload, and 4 bytes from the ICMP
header. The SVM was able to detect ICMP hidden tunnels with almost 99% accuracy.
A model proposed by Cho [47] combining RF with ICMP checksum status, identifier,
serial number, and data has a higher accuracy (over 99.9%) than the SVM and Naïve
Bayes models.
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Table 8. Summary of ICMP tunnel detection. T represents traditional method. ML represents
machine learning method. I represents detecting with coarse content. II represents detecting in a
specific location.

Ref. Year Datasets T/ML Fingerprint Statistic FlowPacket Spatial Temporal I II Model

Sohn [21] 2003 Private ML
√ √ √ Payload +

Head Size + Flag SVM

Singh [70] 2003 Public T
√ √ √

Payload String Match
Govil [22] 2007 Private T

√ √ √ √
Field MPLS + AS Match

Barbhuiya [23] 2012 Private T
√ √ √ √

Payload Duration Match

Sayadi [24] 2017 Private T
√ √ √ √ √

Payload Size + Rate
+ SEQ

Match +
MD5

Cho [47] 2019 Private ML
√ √ √ Payload +

Field SEQ + Flag RF

3.7. IPSec

Intro

IPsec security architecture includes three basic protocols: AH (Authentication Header)
protocol provides information source verification and integrity assurance for IP packets,
ESP (Encapsulated Security Payload) protocol provides encryption assurance, and ISAKMP
protocol provides shared security information when both parties communicate. IPSec
tunnel mode is mostly IPSec VPN, which is a kind of encrypted |A ◦ B|. Due to the limited
number of existing studies, this section only presents the methods of machine learning
detection in this mode.

Machine Learning

An important part of reading ciphertext is extracting sensitive features that are differ-
ent from plaintext. With EFM (Estimated Feature Method), Okada [32] selected 29 strong
correlation features with thresholds greater than 0.7 and then compared the accuracy of
SVM, Naïve Bayes, and C4.5. The best EFM using SVM was found to identify IPSec tunnel
traffic with 97.2% accuracy.

IPSec tunnel traffic can also be used to identify protocols and applications at a fine-
grained level. Okada [32] approximated each encrypted tunnel traffic feature through
Gaussian distribution by using a Naïve Bayes classifier. When mixed with HTTP, FTP,
SMTP and SSH passenger protocols, this method improves IPSec tunnel traffic protocol
identification accuracy by 28.5%. In order to reduce computation, Kumano [33] first used
C4.5 to classify the encryption types of tunnel traffic. The author then used a small number
of data packets to represent the flow characteristics and combined SVM to identify the
tunnel traffic applications. It is possible to achieve 92.5% accuracy when using private
datasets. KNN was chosen by Zhao [46], a decision followed by binary classification of
tunnel traffic noise and then multi-classification of tunnel traffic. In private datasets, TMT-
RF achieves the best classification performance of 93% by dividing overlapping traffic into
multiple segments and making predictions. It does not take time to find the dividing point
but divides the traffic into many segments and makes predictions.

4. Evaluation

In this section, we first use AHP to quantitatively evaluate the methods and reviews
of detecting tunnel traffic. This method aims to take a complex target of a decision-making
problem as a system, decomposes the target into multiple targets or criteria, and calculates
the correlation through qualitative indicators as a systematic method for multi-scheme
optimization decision making. In the process of AHP, there are generally four steps which
are shown in Figure 4.
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i. Construct hierarchical evaluation model:

3 Target layer: optimal paper selection/rank.
3 Criteria layer: innovation, granularity of distinguishing applications and be-

haviors, completion (including accuracy rate, precision rate, recall rate, F1,
etc.), computational complexity (time complexity and space complexity) and
reproducibility (in Section 4.1); protocol categories, granularity of distinguish-
ing applications and behaviors, diversity of detection methods, computational
complexity of methods (time complexity and space complexity) and compati-
bility (in Section 4.2).

3 Scheme layer: Paper 1, Paper 2, Paper 3, . . . , Paper i, . . . , Paper n.

ii. Construct judgment matrix

The construction of a judgment matrix is performed to compare each element with
each other and determine the weight of each criterion layer compared to the target layer. In
short, we do this to judge the indicators of the criterion layer in pairs, and usually we use
the 1–9 scalar method to designate them (as shown in Table 9).

Table 9. Constructing the scale table of judgment matrix.

Scalar Explanation

1 Two elements are of equal importance compared with each other.
3 The former is slightly more important than the latter.
5 The former is more important than the latter.
7 The former is extremely more important than the latter.
9 The former is completely more important than the latter.

2, 4, 6, 8, 10 The intermediate value of adjacent judgments.
Inverse of 1~9 The importance of the exchange order of the corresponding two elements.

For n elements, we can obtain pairwise comparison judgment matrix: A =
(
aij
)

n×n, which

satisfies: aij ≥ 0, aij =
1
aji

, aii = 1. (aij means that compared with j, i’s importance degree).



Appl. Sci. 2023, 13, 1974 18 of 30

iii. Hierarchical single sorting and consistency check

Then, the weights are calculated, the vectors of each row of A are geometrically
averaged, and the results are normalized to obtain the weights of each evaluation index
and feature vector W. We calculate a weight vector and maximum characteristic root λmax,
where n is the order of the judgment matrix:

W = (w1, w2, . . . , wi, . . . , wn)
T (1)

wi =
1
n

n

∑
j=1

aij

∑n
k=1 akj

(2)

λmax =
1
n

n

∑
i=1

(AW)i
wi

=
1
n

n

∑
i=1

∑n
j=1 aijwj

wi
(3)

Finally, we calculate the consistency indicator CI and consistency ratio CR. (The
average random consistency indicator RI is obtained by arithmetic average after repeated
calculation of the characteristic root of random judgment matrix for more than 500 times.
This can be obtained by looking up public information, and so this paper will not repeat
it here.):

CI =
λmax − n

n− 1
(4)

CR =
CI
RI

(5)

When it is less than 0.1, it is generally considered that the consistency of the judgment
matrix is acceptable. The meaning of consistency test is used to determine whether there
are logical problems in the constructed judgment matrix, for example, if the judgment
matrix is constructed with c1, c2 and c3, if it is judged that c1 is equivalent to c2 as 3 (c1 is
slightly more important than c2) and that c1 is equivalent to c3 as 1/3 (c3 is slightly more
important than c1). When judging that c2 is equivalent to c3, according to the above logic,
c3 is supposed to be more important than c2. If we mistakenly fill in c2 as equivalent to c3
as 3 when constructing the judgment matrix (c2 is slightly more important than c3), then
there will be a logical error.

iv. Hierarchical total sorting and consistency check

In the previous section, we obtained the weight vector of the second layer (criterion
layer) in relation to the first layer (target layer). Next, we need to obtain the weight vector
of the third layer (scheme layer) to each element of the second layer (criterion layer).

Because there are n schemes in our scheme layer (Paper 1, Paper 2, Paper 3, . . . ,
Paper i, . . . , Paper n), innovation, granularity of distinguishing applications and behaviors,
completion (including accuracy rate, precision rate, recall rate, F1, etc.), computational
complexity (time complexity and space complexity) and reproducibility (in Section 4.1)
are compared in pairs. For example, the first n-order matrix is formed by comparing the
completion of Paper 1 with the completion of Paper 2 and Paper 3, and so we should
construct five n-order matrices (B1, B2, B3, B4, B5) subjectively according to the content of
the papers. Therefore, after we calculate the weight vector of each matrix and consistency
check, we also should calculate the weight and consistency check of the total ranking
of levels. That is to say, we must calculate the weight vector of the scheme layer to the
target layer.

Here, the weight of Paper 1 to the total target, that is to say, the weight of completion,
reproducibility, computational complexity, innovation and distinguishing applications
(in Section 4.1) of Paper 1, Paper 2 and Paper i is multiplied by the weight vector of the
fifth-order matrix A to obtain the weight at the target level. Then, the ranking of papers’
contribution degree is obtained.
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4.1. Contribution of Detections

According to the background information, expert experience and engineering practice
knowledge of tunnel traffic detection, we have selected the most suitable criteria. Our
evaluation of tunnel detection papers (in Section 3) is based on their innovation, granularity
of distinguishing applications and behaviors, completion (including accuracy rate, precision
rate, recall rate, F1, etc.), computational complexity (time complexity and space complexity)
and reproducibility. Additionally, we have given them a subjective judgment matrix A1.
In Table 10, the weight ranking of these five indicators can be calculated and their results
can be obtained by the above four steps according to Figure 4. Our results are shown in
Figure 5a–f. In Figure 5, we rank the papers describing tunnel traffic detection papers from
the point of view of protocol (HTTP, HTTPS, DNS, SSH, TCP, ICMP and IPSec) according
to AHP method, and the contribution decreases from top to bottom. This provides a more
concise and convenient way for more scholars exploring in the field of tunnel detection
and saves a lot of time and energy.

A1 =


1 2 1/6 1/4 1/5

1/2 1 1/7 1/5 1/6
6 7 1 2 3
4 5 1/3 1 1/2
5 6 1/2 2 1

 (6)

Table 10. Evaluation indicators of tunnel detection.

Completion Reproducibility Complexity Innovation Distinguish Application

Rank 1 2 3 4 5
Weight 0.4292 0.2782 0.1841 0.0648 0.0437

4.2. Contribution of Reviews

We summarize some related reviews on tunnel detection in Table 11. Zander [45]
summarized the tunnel protocols between the application layer and the network layer,
such as HTTP, DNS, SSH and ICMP, etc., and also summarized the idea of detecting
‖A ◦ B‖T traffic by using time stamp, packet arrival interval and ‖A ◦ B‖S with payload.
Dakhane [71] introduced TCP tunnel in detail to ‖A ◦ B‖S and identified tunnel traffic
from the message field. However, the protocol and detection methods described in this
review are too monotonous and not suitable for most of the current situations. TCP tunnel
traffic detection methods in ‖A ◦ B‖S and ‖A ◦ B‖T were summarized by Goher [72], who
briefly classified the applications in tunnel traffic. By using statistics and machine learning,
Wendzel [73] identified tunnel traffic using 109 technologies that hide protocol information
through tunnels, simplified them into 11 patterns, and used statistics to identify tunnel
traffic. Although they gave a variety of patterns, they failed to give a formal representation
or give a specific detection method for each or fixed patterns. Carrara [74] regarded the
tunnel from an attacker’s perspective. By using bandwidth and entropy as metrics, the
attacker can identify tunnel traffic by determining the probability of passing through the
tunnel. Although this review has a novel angle, it failed to give an actual detection method,
and as time goes by, the attack patterns of attackers may be updated iteratively. Yassine [75]
summarized the ‖A ◦ B‖S detection methods of embedded data in DNS requests and
responses based on machine learning. Besides that, Wang [76] introduced a plethora of
literature, including rule-based and model-based methods. However, they only identified
whether the tunnel traffic or not in DNS tunnel and failed to give fine-grained classification
methods. At present, this kind of detection is not enough for all kinds of behaviors mixed
in tunnel traffic. According to Elsadig [77], tunnel traffic identification is affected by
three problems: the rapid advancement of network technology, switching techniques,
and micro-protocols. A comprehensive analysis of traffic’s metadata features and RF
performance was performed by Mazel [78], who summarized the methods for detecting
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and classifying tunnel passenger protocols and tunnel applications. Based on the analysis
of concealment, robustness, and transmission efficiency, Tian [79] proposed three new
network tunnels among streaming media, blockchain, and IPv6, described possible tunnel
forms and provided a new idea for tunnel detection. This is a new summary of tunnel
transmission environments, and so we should focus on a more novel detection environment
to obtain better results.
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Table 11. Summary of reviews on tunnel detection.

Ref. Year

Application Layer Transport Layer Network Layer

Classify Application

SS
H

H
T

T
P

H
T

T
PS

D
N

S

T
C

P

SS
L/

T
LS

IC
M

P

IP
se

c

Zander [45] 2007
√ √ √ √

Dakhane [71] 2012
√

Goher [72] 2012
√ √ √ √

Wendzel [73] 2015
√ √ √

Carrara [74] 2016
√ √

Yassine [75] 2018
√

Elsadig [77] 2018
√ √

Tian [79] 2020
√ √ √ √ √

Wang [76] 2021
√

Mazel [78] 2022
√ √ √ √

According to the background information, expert experience and engineering practice
knowledge of tunnel traffic detection, we have also selected the most suitable criteria,
including five indicators: protocol categories, granularity of distinguishing applications
and behaviors, diversity of detection methods, computational complexity of methods (time
complexity and space complexity) and compatibility. Additionally, we have given them a
subjective judgment matrix, A2. In Table 12, the weight ranking of these five indicators is
presented and their results can be obtained by performing the above four steps according
to Figure 4.

A2 =


1 4 2 5 7

1/4 1 1/3 3 4
1/2 3 1 4 5
1/5 1/3 1/4 1 2
1/7 1/4 1/5 1/2 1

 (7)

We evaluated the 10 reviews above and our paper (11 reviews in total) according to
AHP according to the method in Figure 4 and the results are shown in Figure 6. In Figure 6,
we rank the contribution degree decreases from top to bottom according to the contribution
degree of tunnel traffic detection reviews. Combined with the comprehensive analysis
above, we provide a more concise and convenient way for more scholars exploring in the
field of tunnel detection. Additionally, it can be found that this paper, as a review, has
certain advantages in the comprehensive score of the five indicators we have given and has
good reference value.

Table 12. Evaluation indicators of tunnel detection reviews.

Protocol
Category

Detection
Diversity

Distinguish
Application Complexity Compatibility

Rank 1 2 3 4 5
Weight 0.4422 0.2824 0.1514 0.076 0.048
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5. Conclusions
5.1. Datasets

Choosing abundant labeled and category balance datasets for machine learning train-
ing remains an urgent issue. There are three aspects of datasets that need to be considered.

The first is the impact of datasets from different network environments on traffic
features. Even within the same network, changing the location of geographic capture
will change the statistical features of the data flow, and traffic congestion will change the
time features significantly. It is important to ensure the reproducibility and authenticity
of datasets.

Furthermore, the unbalanced classification of training datasets is considered. Some
tunnel traffic applications will generate an enormous amount of traffic, while others will
generate only a very small amount. A huge imbalance in datasets will cause the training
models to fail. So, datasets should be trained by selectively extracting sensitive features
and suppressing unimportant ones, which reduced the class imbalance to some extent and
improved classification accuracy.

Finally, there are few public datasets (raw traffic) in detecting tunnel traffic, and so
the amount of labeled data is smaller. The situation of deficient data is detrimental to
supervised learning. To put it another way, even though we can collect tunnel traffic from
various software, all kinds of noises, mimic traffic or nothing to do with being detected
behavior caused by them in order to avoid censorship, also bring trouble to classification.

5.2. Feature Engineering

Feature engineering is an important step in machine learning that deserves considera-
tion in two ways. In general, stream-level data are not very accurately marked (packets
of the same quintuple are combined into one stream). In tunnel traffic, the applications
share the same quintuple, and so it is difficult to separate the streams by beginning and
ending times. Trojan malware is one of the typical applications for tunnels. As such, the
quintuple feature is invalid because ports are frequently changed, and so we should use
quadruple or triple depending on the actual situation. Additionally, the sample includes
not only tunnel traffic but also the flows generated by normal communication, these latter
flows being called noise traffic.

Conversely, if features from each flow are extracted separately, correlation features
between flows called host-level features may be overlooked (focusing primarily on com-
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munications between hosts, such as all traffic with hosts or all traffic with a particular
IP and port of hosts). Thus, not only must the number of packages, the average packet
length and IAT be aggregated, but also the number and expiration of flow-signed packages.
Additionally, since malicious IP semi-connections and non-connections are distributed
differently from normal IP, it is necessary to count the number of flows with Alert and the
connection status of different flows.

5.3. Trend of Tunnel Detection

In this paper, we compare the number of papers published over the past decade
between traditional and machine learning detection, based on the three challenges from
coarse to fine in Figure 7. We have found that among non-encrypted protocols, most people
study whether there is tunnel traffic or not whereas, in encrypted protocols, most people are
inclined to study passenger protocols, applications, and other fine-grained identification.
The flaws brought by plaintext transmission to the tunnel are enormous, and the tunnel
detection methods based on rules and features have been able to achieve good results.
Tunnel detections using encryption protocols (including custom encryption protocols) often
focus on hidden passenger protocols and services.
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Meanwhile, Figure 8 compares the papers that have solved these challenges over the
past decade. Even though there continue to be problems, we have found that the amount
of research on how to deal with these challenges is not adequate and that fine-grained
identification of encrypted traffic in tunnels should be a major focus of future research.
Additionally, we have also found DNS tunnel research has prevailed more than others in
recent years.
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6. Discussion
6.1. Open Questions

i. Principle of classification. Our classification primarily depends on the discriminative
features between normal and tunnel traffic. Using fingerprint detection, plaintext
tunnel traffic may be found to contain specific strings. From the point of view of traffic
statistics, even encrypted tunnel traffic has different temporal and spatial character-
istics than normal traffic. As a result, tunnel traffic detection and classification are
based on determining how to best fit the tunnel traffic characteristics.

ii. Classification of unknown tunnel protocol and passenger protocol. There are not
enough self-adapting studies of detecting unknown protocols, and some classification
results continue to be inaccurate. A significant number of passenger protocols in the
tunnel are very similar, making classification difficult.

iii. Granularity of classification. There is a need for fine-grained tunnel traffic classifica-
tion, and this is currently lacking. Identifying the type of protocol to which tunnel
traffic belongs is the first step but identifying applications and user behavior is much
more important.

iv. Efficiency of classification. The classification efficiency of most methods cannot be
met by real-time tunnel traffic classification, and so they can only be trained and
tested offline.

6.2. Future Direction

We present the future direction of research after taking into account the public ques-
tions that are mentioned above.

i. Identifying more fine-grained behaviors of applications in tunnel is extremely impor-
tant. Tunnel traffic is frequently mixed with a variety of applications and noise, and
so when more and more new applications/services emerge, the question of how to
classify them accurately will be extremely vital.

ii. The tunnel application scenario calls for distinguishing malicious tunnel traffic from
legitimate tunnel traffic, which can generally be divided into three types. In type one,
normal traffic is sent by the agent, and the sending function is limited to one protocol
for passengers; whereas type two contains suspicious traffic that encapsulates some
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(any) types of passenger protocols without causing a threat; in type three, malicious
traffic is transmitted by external network attackers to achieve multiple-stage behaviors
within the internal network.

iii. The universality of machine learning models needs to be explored further. Machine
learning provides a new idea for detecting and identifying tunnel traffic, but in
machine learning, selection of datasets determines how well the model will train,
and feature extraction determines whether the model will be overfitted, all of which
determines how well it will generalize. Semi-supervised and unsupervised learning
methods may provide new ideas for the classification of unlabeled datasets.

iv. Balance and exploit the capability of traditional methods and machine learning meth-
ods. Although traditional methods are gradually being omitted by more researchers,
machine learning methods still fail to be implemented at scale without incurring
significant collateral damage from false positives in real time and traditional methods
can deal with it quickly. Therefore, for some specific situations, traditional methods
do achieve better results.

v. There is a need to identify which device and cluster generate tunnel traffic. As internet
devices are continuously updated, different types of tunnel traffic will be generated
by the same device. By generating device fingerprints based on traffic characteristics,
it is difficult to identify IoT devices. In the cloud market, detecting tunnel traffic and
locating the cluster from which it originates has become more challenging due to the
popularity of cloud services.
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