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Abstract: Abnormal sensory perception is among the earliest symptoms of autism spectrum disorders
(ASD). Despite mixed findings, olfactory perception seems to be altered in ASD. There is also evidence
that automatic responses to odours can serve as biomarkers of ASD. However, this potential use
of odour-based biomarkers for ASD is still underexplored. In this study, we aimed to investigate
whether physiological responses to social and non-social odours, measured with electrocardiography
(ECG) and facial electromyography (EMG), can be used to characterise and predict ASD in adults.
For that, we extracted 32 signal features from a previously collected database of 11 adults with
ASD and 48 adults with typical development (TD). Firstly, non-parametric tests were performed,
showing significant differences between the ASD and the TD groups in 10 features. Secondly, a
k-nearest-neighbour classifier with a leave-one-out strategy was employed, obtaining an F1-score
of 67%. Although caution is needed due to the small sample size, this study provides preliminary
evidence supporting the use of physiological responses to social and non-social odours as a potential
diagnostic tool for ASD in adults.

Keywords: autism spectrum disorders; odours; olfaction; facial EMG; ECG; machine learning

1. Introduction

Autism spectrum disorder (ASD) is a developmental condition characterised by im-
paired social communication and interaction and restricted and repetitive patterns of
behaviour, interests, or activities [1]. Moreover, ASD is often associated with abnormal
sensory perception, as shown by evidence of hyper-reactivity (i.e., heightened sensitivity or
response) and hypo-reactivity (i.e., diminished or absent sensitivity or response) to sensory
stimuli in individuals with ASD compared to individuals with typical development (TD)
(see [2]). For instance, 78.6% of the studies included in a systematic review found at least
one abnormal physiological response to sensory stimuli in ASD [3]. Similarly, a qualita-
tive study demonstrated that adults with ASD often report unusual physical experiences
(e.g., pain, discomfort) to sensory stimuli, such as olfactory stimuli [4]. These abnormali-
ties in sensory perception are linked to social, behavioural, and cognitive deficits in ASD
(e.g., [5,6]) and are among its earliest markers, which are observed at six months of age
in infants who are later diagnosed with ASD [7]. In addition, it has recently been shown
that responsiveness to sensory stimuli can help to classify ASD individuals, thus over-
coming some of the limitations of traditional diagnostic methods, namely their subjective
assessment, lack of ecological validity, and relation to linguistic abilities (e.g., [8]).
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While much attention has been paid to visual, auditory, and tactile perception over the
last few decades, only recently has olfaction become a subject of interest in ASD (see [9]).
Olfaction is strongly involved in various vital functions, such as the detection and identifi-
cation of potential health hazards (e.g., fire, spoiled food), nutrition and eating behaviour,
and social communication (see [10]). Olfaction is also closely linked to emotion processing
due to its association with primary emotional brain structures (see [11]). Furthermore,
odours are known to induce physiological responses, which can represent subtle changes
in emotional states (see [12]). For instance, He et al. [13] found a higher averaged heart
rate and skin conductance when adults with TD were exposed to unpleasant vs. pleasant
non-social odours—henceforth “common odours” (CO). Additionally, Delplanque et al. [14]
reported a higher percentage of activity over the facial medial frontalis muscle (involved
in raising the eyebrows) and corrugator supercilii muscle (corresponding to frowning) in
response to unpleasant compared with pleasant CO, with no difference between unpleasant
and pleasant CO over the facial zygomaticus major muscle (involved in smiling). A similar
effect was observed by Bensafi et al. [15] with a decrease in facial corrugator muscle activity
as pleasantness increased.

Concerning social odours, several studies demonstrated that individuals with TD
exposed to emotional body odours (BO) (e.g., samples of armpit sweat from other individ-
uals with TD, previously collected under distinct emotional states) exhibit physiological
responses that somehow mimic the emotional state of the the person who donated the BO,
namely in facial muscle activity (e.g., [16,17]) and cardiac activity (e.g., [18]).

Available evidence seems to suggest that olfactory perception is altered in ASD,
but results are highly inconsistent, which may reflect the dual pattern of atypical sensory
perception in ASD, but also the clinical, demographic (e.g., age), and methodological
heterogeneity between studies (see [19,20]). For instance, while some authors reported
intact olfactory sensitivity in ASD (e.g., [21,22]), others found decreased (e.g., [23]) or even
enhanced olfactory sensitivity in individuals with ASD than individuals with TD (e.g., [24]).
Furthermore, it has been proposed that ASD and non-ASD neurodevelopmental disorders
have distinct patterns of olfactory processing [25], and some authors argue that olfactory
changes might be a relevant aspect to consider in the development of psychosocial interven-
tions (see [9]). Nevertheless, studies on physiological responses to odour stimuli in ASD are
still scarce and utterly different in terms of population and odour type, thus not allowing
direct comparisons (e.g., [26–28]). For instance, Legisa et al. [27] found comparable facial
muscular behaviour (measured with action units) and cardic and electrodermal activities
in children with high-functioning ASD and children with TD exposed to CO. However,
while children with TD showed a congruency between their facial expression and hedonic
judgment of the odours, this effect was less frequent in children with ASD. The authors
suggested that children with ASD might have difficulties reporting their emotional re-
sponse to olfactory stimuli, while their automatic responses and facial behaviour might be
preserved [27].

Of foremost relevance to the present study, Rozenkrantz et al. [28] proposed that
automatic responses to odour stimuli might be a potential biomarker of ASD. In this study,
18 children with ASD (mean age = 7.0) and 18 children with ASD (mean age = 6.7) were
exposed to pleasant (rose or shampoo) and unpleasant (sour milk or rotten fish) CO while
they were viewing a cartoon. Sniff responses were collected as a measure of automatic
olfactory perception, using a pediatric olfactometer that allowed to simultaneously deliver
the odours and measure nasal airflow. Firstly, while children with TD adjusted their sniff
response based on odour valence, this effect was not observed in children with ASD. Sec-
ondly, abnormal sniff response was associated with the severity of social impairment in
ASD, suggesting that altered sensory coordination in sniff response is related to abnor-
mal olfactory perception, which in turn might contribute to social impairment in ASD.
Lastly, using a leave-one-out analysis with data on sniff volume and duration, the authors
were able to classify 17 of the 18 children with TD and 12 of the 18 children with ASD
(i.e., 81% accuracy). Later, 20 adults with ASD and 20 adults with TD were exposed to
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fearful BO during two experimental tasks: the Faces task, in which participants rated the
fearfulness of 27 faces, and the emotional Stroop task, in which participants indicated the
colour of emotional words. Electrodermal activity (EDA), nasal airflow, and heart rate
were collected [26]. While fearful BO led to a significant reduction in nasal inhalation in
both groups, the authors observed a dissociation in EDA: EDA increased significantly in
adults with TD but not in adults with ASD. Finally, using a discriminant-analysis classifier,
16 of the 20 adults with TD and 12 of the 20 adults with ASD were correctly classified
(i.e., 70% of accuracy). These findings are particularly relevant because they provide a novel
view on the use of olfaction as a potential diagnostic tool in ASD that does not require
instructions, attention, and explicit perception [29]. Using functional magnetic resonance
imaging, differences in olfaction between 18 adults with ASD and 18 TD controls were
investigated [23]. After testing odour threshold and identification, individuals underwent
a structural scan as well as functional scanning while perceiving two different odours.
Multivariate analysis using the Support Vector Machine classification technique was per-
formed to differentiate odour-evoked neural patterns in each region of interest between the
two groups. Results showed that individuals with ASD had decreased function for odour
thresholds and identification and decreased activation in the piriform cortex, suggesting
that alterations in olfaction in ASD are already present in the primary olfactory cortex.

In the present study, we aim to extend previous findings [26,28] on odour-related
biomarkers of ASD by providing preliminary evidence of the potential use of physiological
responses to classify ASD in adults, using both social and non-social odours. For that,
we used a database, previously collected by members of our research team, containing
electrocardiogram (ECG) and facial electromyography (EMG) signals of adults with ASD
and TD, while they were being exposed to positively, negatively and neutrally valenced
CO and BO [30]. The ECG is the electrical response of the heart muscles to its movement.
It presents a cyclic pattern with an almost standard representation which is composed of
three types of waves: the P wave, responsible for atrial depolarization; the QRS complex,
responsible for ventricular depolarization; and the T wave, responsible for ventricular
repolarization [31]. The shape of the ECG can reveal not only heart problems but also
variations in the heartbeat induced by distinct emotional states [32]. There is substantial
evidence that depending on how an emotional stimulus is presented, cardiovascular
activity can differ significantly based on both the valence and intensity of the stimulus [31].
EMG, on the other hand, is a technique for evaluating and recording the electrical activity
generated by muscle movement [33]. Here, EMG was used to monitor facial expressions
based on the activation of facial muscles associated with different emotional states [34],
specifically the zygomaticus major muscle, associated with happiness, and the frontalis
and corrugator supercilii muscles, associated with fear [35].

To explore physiological responses among ASD and TD during olfactory stimulation,
several features were extracted from ECG and facial EMG signals, and their potential to
differentiate between both groups was analysed. Moreover, although the main focus of our
work is concerned with the characterisation of physiological responses to olfactory stimuli,
we also attained a first approach to predict ADS based on those. Thus, two main research
questions were raised: (1) Are there significant physiological differences between the the
ASD and TD groups? (2) Is it possible to predict adults with ASD based on ECG and facial
EMG signals collected during olfactory stimulation?

2. Dataset

Data collection was performed at the Faculty of Medicine of the University of Tübingen,
Germany [30]. All procedures were approved by the Ethics Committee (956/2018BO2) and
conducted under the Declaration of Helsinki and the American Psychological Association.

2.1. Sample Characterisation

The database contained data from 48 adults with TD (24 women, 50%) and 11 adults
with ASD (2 women, 18.18%), aged between 19 and 59 years. Sociodemographic characteri-
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sation is presented in Table 1. Only participants meeting the inclusion/exclusion criteria
were included in the database: being aged between 18 and 59 years; being Caucasian; speak-
ing fluent German; being capable of understanding and following instructions; having no
illnesses problems (e.g., common flue), or regular medication intake affecting the sense of
smell; not being pregnant or lactating at the time of assessment, and not having participated
in the BO collection. Handedness was assessed with the Edinburgh Handedness Inventory
(EHI) [36], with all but one participant being considered right-handed.

The ASD diagnosis was based on the DSM criteria (mostly 5th edition) by independent
clinicians and ASD symptoms were evaluated with the German version of the Autism
Diagnostic Observation Schedule (ADOS) [37]. Lastly, adults with TD had no mental illness,
as confirmed with the German version of the Structured Clinical Interview (SCID-I) [38],
and no first-degree relative diagnosed with psychotic disorder or ASD, as self-stated.

Table 1. Characterisation of the sample. Notes. EHI, Edinburgh Handedness Inventory.
1 Comparisons between groups were performed with Mann–Whitney Test (for continuous vari-
ables) and Fisher’s Exact Test or Chi-Squared Test (for categorical variables). * p < 0.050; ** p < 0.010;
*** p < 0.001.

ASD TD p-Value 1

n = 11 n = 48

Age, Mdn (IQR) 36.0 (17.5) 24.50 (9.5) 0.002 **
Sex, n (%) Women 2 (18.2) 24 (50.0) 0.091

Men 9 (81.8) 24 (50.0)
Nationality, n (%) German 10 (90.9) 45 (93.8) 0.168

Swiss 0 (0.0) 2 (4.2)
Hungarian 1 (9.1) 0 (0.0)
Bulgarian 0 (0.0) 1 (2.1)

Working status, n (%) Full-time worker 5 (45.4) 6 (12.5) 0.001 ***
Part-time worker 2 (18.2) 3 (6.3)
Pensioner 2 (18.2) 0 (0.0)
Stick leave 1 (9.1) 0 (0.0)
Student 1 (9.1) 37 (77.1)
Working student 0 (0.0) 1 (2.1)
Unemployed 0 (0.0) 1 (2.1)

Smoking habits, n (%) Non-smoker 8 (72.7) 36 (75.0) 0.114
1–5 cigarettes/week 0 (0.0) 8 (16.7)
5–10 cigarettes/week 0 (0.0) 0 (0.0)
10–15
cigarettes/week 0 (0.0) 1 (2.1)

Daily 3 (27.3) 3 (6.3)
Hormonal contraceptive, n
(%) Yes 0 (0.0) 10 (41.7) 0.395

No 2 (100.0) 12 (50.0)
Menopause 0 (0.0) 2 (8.3)

EHI, Mdn (IQR) 100 (0) 100 (0) 0.894
Sniffin’ Sticks, Mdn (IQR) Threshold 5.2 (2.4) 7.6 (2.2) 0.008 **

Discrimination 11.0 (1.5) 13.0 (2.0) 0.040 *
Identification 13.0 (1.0) 14.0 (2.0) 0.176
Total 27.7 (2.7) 33.2 (3.6) 0.002 **

Alongside the ADOS (for the ASD group) and the SCID-I (for the TD group), all
participants completed a sociodemographic questionnaire and the Sniffin’ Sticks Test
(Burghart Medizintechnik, Germany). The Sniffin’ Sticks Test is a widely used instrument
to measure olfactory abilities (see [39]). The test comprises three subtests (odour threshold,
identification, and discrimination) and uses odour-dispensing pens with 4 mL of odourant
fluid or odourant substance dissolved in propylene glycol. In addition to scores for each
subtest (maximum of 16), the Sniffin’ Sticks Test contains a final score, ranging from 1 to 48.
Hyposmia and functional anosmia are established, on the reference group of 21 to 30 years,
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at a final score of less than 30.75 and 16 points, respectively (see [40]). Data concerning the
Sniffin’ Sticks Test are described in Table 1.

2.2. Odour Stimuli

BO were samples of armpit sweat from 10 healthy women and nine healthy men
(henceforth “donors”) collected across three individual sessions (separated by at least
one week). To avoid odour contamination, donors were asked to follow a strict hygiene,
dietary, and behavioural protocol in the two days before BO collection (e.g., avoid sites with
intense odours, avoid eating excessive flavoured food, use odours-free hygiene products),
similar to previous studies (e.g., [16–18]). Each session included a 5-min neutral film clip
(Baseline), which was followed by a 30-min set of film clips from comedy movies (to induce
happiness: positive BO), horror movies (to induce fear: negative BO), or documentaries
about nature and space (to induce a neutral state: neutral BO). The order of film clips
presented in each set was fixed, from the least intense to the most intense clip (in case
of the fearful and happy sets), to keep a constant state of activation. All film clips were
previously shown to induce the expected emotion (e.g., [41–43]); this was also confirmed in
the current dataset based on the analysis of the donors’ subjective emotional state. Donors
were not aware of emotional induction (single-blind experiment), and the order of the
sessions was randomised for each donor. Armpit sweat was collected during film-clips
visualisation using sterilised absorbent pads (Lohmann and Rauscher, Germany), which
were placed under each armpit and secured with an additional pad and a hypoallergenic
tape. To avoid sweat contamination, a strict protocol for BO collection was implemented
(e.g., use of steristerilizedes by the researcher handling the sweat samples, and sterilisation
of reusable laboratory material). After film clips, each pad was carefully removed and
saved in individual vials (Carl Roth, Germany). Vials were labelled and kept in a freezer at
−21º until the day of the experimental session. At the end of their participation, each donor
was fully debriefed about the purposes of the sweat collection and given 10€ per hour.

Concerning CO, positive, negative, and neutral CO were selected based on the liter-
ature (e.g., [44,45]) and experts’ consensus. The positive CO was rose, 2-phenylethanol
alcohol (28.16% v/v in propylene glycol, Sigma-Aldrich, Germany). The negative CO was
faeces, skatole (0.04% w/v in propylene glycol, Sigma-Aldrich, Germany). The neutral
CO was grass, cis-3-Hexen-1-ol (3.61% v/v in propylene glycol, Sigma-Aldrich, Germany).
Volume percentage was defined through pilot testing to ensure that all COs were similar in
terms of perceived intensity [30].

Before odour exposition, all stimuli were placed in individual amber vials (63 mm of
height by 46 mm of diameter, Bauchblueten, Germany). In the case of BO, four pad pieces of
distinct donors (same-sex and valence) were randomly combined to create a “super-donor”,
thus reducing inter-individual variability (e.g., [16,17]), with two coming from left armpits
and two coming from right armpits. Each super-donor was prepared one hour before the
first experimental session of the day. Each receiver was exposed to the same two super-
donors (one female and one male) across the three emotion conditions. Concerning CO,
150 µL of each CO was applied to an absorbent pad to mimic BO presentation approximately
one hour before the first experimental session of the day. Each pad was cut into four pieces,
and the four pieces were placed in an amber vial. Lastly, a “no odour” condition was created,
containing four pieces of an absorbent pad, which were also placed in an amber vial.

2.3. Procedures

All participants underwent an initial interview, in which they were informed about the
study, including the need to follow a hygiene, dietary, and behavioural protocol three
hours before the experimental session (e.g., refrain from using perfume). After giv-
ing their informed consent, participants completed a sociodemographic questionnaire,
the EHI, and the Sniffin’ Sticks, and they were assessed with the ADOS or the SCID-I.
To avoid acute changes in olfactory perception and physiological responses, participants
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were recommended to postpone the experimental session in case they were feeling sick
(e.g., common flu) or had any unexpected highly emotional event the days before.

Each participant was tested individually by two researchers: one responsible for
changing the vials in each trial and the other for monitoring signal collection. After checking
protocol compliance, participants were seated 40 cm in front of a computer screen (LG
24MB37PM-B computer screen; 1920 by 1080 pixels; 60 Hz refresh rate), and their head
was positioned on a chinrest. The chinrest included a vial holder to support the vials
(2 cm below participants’ nostrils). Then, the researcher cleaned the portion of the skin
where the electrodes would be placed with ethyl alcohol (70%) and attached the disposable
electrodes with their corresponding conductance gel. Finally, signals were checked without
any reference to emotions.

Next, participants completed the Odour Perception Task while their physiological data
were being recorded. The Odour Perception Task began with a 5-min Baseline, in which
participants watched a 4-min neutral film clip with landscape scenes from the documentary
Deutschland von Oben, without any odour stimulation. After the film clip, they were asked
to rate how angry, calm, disgusted, fearful, and happy they were, using Visual Analog
Scales (VAS) from 0 (not at all) to 100 (extremely), in a randomised order. Odours were
then presented in four blocks: two blocks with CO and two blocks with BO (one female
and one male). The order of the blocks was randomised for each participant. Each block
was divided into two sub-blocks (of the same odour type) with four stimuli each (Figure 1).
These stimuli were semi-randomly presented: each sub-block was initiated by the “no
odour” stimulus, which was followed by a random presentation of the positive, negative,
and neutral odour (of the same odour type). Each odour was presented for 5 s as prolonged
exposure can lead to adaptation (e.g., [46]). In each trial, participants were asked to smell
the odour and, after odour stimulation, to rate how intense, familiar, pleasant, and arousing
the odour was, again using the VAS scales (0–100), randomly presented. Preliminary
findings of the VAS are reported elsewhere [30]. Odours within the same block were
separated by approximately 30 s intervals. During this period, the researcher removed the
vial from the vial holder and prepared the presentation of the next vial. All vials not being
used were kept closed at about 100 cm from the participant.

A 5-min washout period (three washout periods in total) was applied between each
odour block. During this period, participants were exposed to a new 4-min neutral film clip
from the documentary Deutschland von Oben, without any odour stimulation, and were
again asked to rate how angry, calm, disgusted, fearful, and happy they were. The order
of neutral film clips exhibited in baseline and washout periods was randomised for each
participant. The task was concluded after the fourth odour block. At the end of the task,
electrodes were detached, and participants were debriefed about the purpose of the study
and were given 10€ per hour. All visual stimuli (film clips and VAS) were programmed in,
and displayed with, Open Sesame 3.2.6 (Mathot et al., 2012).

2.4. Signal Recording

Physiological data were recorded with SOMNOscreenTM plus 6120 (SOMNOmedics,
GmbH, Germany) using the DOMINO software (version 3.0.0.1; supplied with the SOMNO-
screen), with a sampling rate of 256 Hz. For ECG, a bipolar electrode was attached to
intercostal space (ICS) 4 right and ICS 2 parasternal left. For EMG, two electrodes were
attached to each muscle of interest (with a distance of 1 cm), namely, zygomaticus major,
medial frontalis, and corrugator supercilii. The guidelines by Fridlund and Cacioppo [47]
were followed to place the electrodes. Only the left side was monitored, since right-handed
individuals exhibit stronger emotional reactions on the left side of the face (e.g., [33]).
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Figure 1. Odour Perception Task.

3. Methodology

Our first step consisted of analysing, reorganising, and filtering the ECG and EMG
signals. Next, we used the NeuroKit2 [48] to extract 32 features from the signals. These
features were separated into different groups based on the triggers defined during data
collection. After these steps, we applied the sliding windows (SW) method, with windows
of 5 s and 50% overlap. The relatively short windows size was due to the short period of
odour exposition. Thereafter, statistical tests were applied to the medians to find which
features allow distinguishing between groups. Finally, we implemented a classifier using
a leave-one-out cross-validation (LOOCV) analysis, with the attributes showing a signif-
icant difference between the ASD and TD groups. Data pre-processing and processing
were performed with Python version 3.8.8 using Spyder version 4.2.5 [49] and packages
NeuroKit2 [48], SciPy (version 1.8.1) and scikit-learn (version 0.24.1).

3.1. Pre-Processing

After the inspection of the signal characteristics in the frequency domain, the filter
parameters and type were defined accordingly to the frequencies of interest. In terms of
the EMG signals, analysis of the periodograms revealed that the majority of the content
of interest was above 20 Hz. Considering the absolute and relative error, coefficient of
variation, and signal-to-noise ratio (SNR), the filter with the best response to the frequency
of interest was the Butterworth high-pass filter of order 4, with a cutoff frequency of 20 Hz
(notice that the electrical interference, at 50 Hz, was removed by the signal collection
software). Analysis of the ECG signals’ periodograms revealed that the content of interest
was less than 40 Hz. Several filters were then applied, and based on the absolute and
relative error, and coefficient of variation, we applied a Butterworth band-pass filter of
order 4 for the pass band (0.5 Hz, 40 Hz).
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3.2. Processing
3.2.1. Feature Extraction and Normalisation

A total of 32 features were extracted directly by the NeuroKit2 package or by further
calculations, as explained in Table 2. Subsequently, the slope between each pair of successive
peaks was calculated from parameter m (slope) based on linear regression. This allows us
to understand the abruptness of the oscillations between peaks.

Table 2. Features extracted from the signals. Notes. EMG_front, medial frontalis muscle; EMG_zygo,
zygomaticus major muscle; EMG_corr, corrugator supercilii muscle.

Feature Meaning

ECG_Clean Cleaned signal after filtering.

ECG_Rate Heart rate values interpolated between the R-peaks.

ECG_P_Interval
Distance between subsequent peaks in
seconds (for P, Q, R, S, and T peaks,
respectively).

ECG_Q_Interval
ECG_R_Interval
ECG_S_Interval
ECG_T_Interval

ECG_P_Peaks

Peaks amplitude (for P, Q, R, S, and T
peaks, respectively).

ECG_Q_Peaks
ECG_R_Peaks
ECG_S_Peaks
ECG_T_Peaks

ECG_P_Slope

Slope between subsequent peaks (for P,
Q, R, S, and T peaks, respectively).

ECG_Q_Slope
ECG_R_Slope
ECG_S_Slope
ECG_T_Slope

EMG_front_Clean
Cleaned EMG signals after filtering.EMG_zygo_Clean

EMG_corr_Clean

EMG_front_Amplitude Amplitude EMG signals (activation
level).EMG_zygo_Amplitude

EMG_corr_Amplitude

EMG_front_IntervalActivation Distance between a corresponding
onset and offset in seconds, for each of
the EMG signals.

EMG_zygo_IntervalActivation
EMG_corr_IntervalActivation

EMG_front_AmpOnset Onset amplitude, for each of the EMG
signals.EMG_zygo_AmpOnset

EMG_corr_AmpOnset

EMG_front_AmpOffset Offset amplitude, for each of the EMG
signals.EMG_zygo_AmpOffset

EMG_corr_AmpOffset

Afterwards, the feature values were normalised in order to reduce intra-subject vari-
ability and were based on the baseline block (at the beginning of the task). The calculation
was based on Equation (1), where x is the non-normalised value, µ is the mean of the
baseline for the participant in question, σ is the standard deviation of the baseline, and Z is
the normalised value.

Z =
x − µ

σ
(1)
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3.2.2. Triggers Application

Extracted features were segmented to divide the signal by phases (baseline, block 1,
block 2, block 3, block 4). Thus, according to the respective triggers, signals were grouped
by blocks of odour type, and the block corresponding to the baseline was stored in parallel.

In this regard, beyond the baseline, the signal was divided into two distinct groups,
each corresponding to a different odour type: CO and BO (Figure 2). The first group
corresponds to the interval covering the two blocks in which the participant was exposed
to CO, and the second group covers the two blocks in which the participant was exposed
to BO.

Figure 2. Division of signal into two distinct groups: CO and BO.

3.2.3. Sliding Windows

Following the application of the triggers, a 5 s SW with 50% overlap was applied.
The SW approach consists of sectioning signals into fixed-size time windows, which may
or may not be overlapped, thus reducing temporal complexity [50]. SW is particularly
advantageous when dealing with data with short collection intervals and small sample
sizes by allowing the collection of more data than non-overlapping SW (which in turn
makes it less likely to miss significant events). Having this in consideration, overlap-
ping SW were applied to all considered features, resulting in several time-series along
the blocks. In the EMG activation interval calculation (EMG_front_IntervalActivation,
EMG_zygo_IntervalActivation and EMG_corr_IntervalActivation), only intervals whose
onset occurred within the sliding window value range were taken into account. Since the
interval between odour presentation and blocks varied between participants (e.g., no time
limit for the subjective assessment of the odours), the number of SW also varied. Therefore,
each data segment was described by the median values of the features.

3.2.4. Data Analysis

Since the Shaprio–Wilk test showed that data were not normally distributed, we
performed Mann–Whitney tests for each of the 32 features in each block to explore which
physiological responses in which odour blocks presented significant differences between
ASD and TD groups.

3.2.5. Physiological Based ASD Prediction

To classify ASD, we used a Machine Learning (ML) technique with a k-nearest neigh-
bours (KNN) classifier based on a LOOCV strategy. For this purpose, we used only the
features able to distinguish physiological responses from ASD and TD groups (according
to the results from the Mann–Whitney tests). Regarding the prediction, we only considered
the CO and BO data because the inclusion of baseline did not improve the performance of
the KNN (as shown in preliminary analysis).

KNN is a supervised ML technique that can be applied to classification and regression
problems. The primary objective of the KNN classification technique is to determine the
class of a new case based on the classes of the k most comparable items in the database [51].
In other words, the KNN method seeks out elements with the highest degree of similarity
to a query element, where the degree of similarity is determined by a distance function,
to classify that point. Each database element has an associated label (class) [51].
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LOOCV is a special case of k-fold cross-validation, where the model is trained on
almost all data in each iteration, except for a single observation, and tested on that single
observation. A precision estimate derived by LOOCV is almost impartial but has a huge
variance, resulting in inaccurate estimations. Nonetheless, this technique is often used
when the dataset size is small [52]. Considering the small number of participants, especially
from the ASD group, this was the evaluation strategy for training and testing.

The True Positive (i.e., correct classification of a participant as belonging to the ASD
group), True Negative (i.e., correct classification of a participant as belonging to the TD
group), False Positive (i.e., incorrect classification of a participant as belonging to the ASD
group), and False Negative (i.e., incorrect classification of a participant as belonging to the
TD group) metrics were extracted from the contingency table. In a binary decision problem,
a classifier assigns positive or negative labels to examples; in this case, being the class of
interest, ASD are positive examples and TD are negative examples [53].

The respective precision, recall, negative predictive value, specificity, accuracy, and F1-
score were also calculated:

• Precision = TP/(TP + FP) is the proportion of instances predicted as Positive (ASD)
that were correct; the optimal value for precision is 1 [54].

• Recall = TP/(TP + FN) is the proportion of instances labelled as Positive (ASD) that
were correctly predicted; the optimal value for the recall is 1 [54].

• Negative Predictive Value = TN/(TN + FN) is the proportion of instances predicted
as Negative (TD) that were correct; the optimal negative predictive value is 1 [54].

• Specificity = TN/(TN + FP) is the proportion of instances labelled as Negative (TD)
that were correctly predicted; the optimal value for specificity is 1 [54].

• Accuracy = (TP + TN)/(TP + TN + FP + FN) is the ratio of the number of correctly
classified samples to the total number of samples, and its optimal value is 1 [55].

• F1-score = (2xPrecisionxRecall)/(Precision + Recall) is defined as the harmonic mean
of precision and recall. F1-score has a range of [0, 1], with TP = 0 (i.e., when all
of the positive samples are incorrectly categorised) as its lowest and FN = FP = 0
(perfect classification) as its maximum. F1 differs from accuracy in two key ways: it is
independent of TN, and it is not symmetric for class switching [55].

4. Results

The Mann–Whitney test was performed on data aggregated by odour type, including
the median values for each participant’s response to CO, BO, and baseline. Under a
significance level of 0.05, the Mann–Whitney tests revealed significant differences between
the ASD and the TD groups for six ECG features and four EMG features. Table 3 displays
the obtained features.

As an illustration of the distinction between features, Figure 3 represents violin plots
for the ECG_P_Peaks, a feature in which the Mann–Whitney test revealed significant
differences between the ASD and TD groups (ECG_P_Peaks) and for the ECG_Q_Slope,
which is a feature that did not reveal significant differences between the groups.
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Table 3. The features for which the Mann–Whitney test revealed a significant difference between the
ASD and TD groups.

Features

ECG_Clean

ECG_P_Peaks

ECG_P_Slope

ECG_S_Slope

ECG_T_Peaks

ECG_T_Slope

EMG_corr_OnOff

EMG_corr_Amplitude

EMG_front_Amplitude

EMG_corr_Clean

Figure 3. Violin plots of the ECG_P_Peaks and ECG_Q_Slope for the ASD and the TD groups.

Physiological-Based ASD Prediction

Using a LOOCV strategy, each participant was predicted as ASD or TD by a KNN
classifier trained by other participants. Figure 4 presents the obtained contingency table for
all the LOOCV and the performance metrics.

The best result achieved after testing the classifier for various values of k is shown in
Figure 4, which corresponds to k = 3. It was feasible to accurately categorise 7/11 ASD
subjects (TP), while the remaining four were incorrectly classified as TD (FN). In contrast,
45/48 TD participants were correctly predicted (TN), while three were misclassified as
ASD (FP). In addition to these values, it is important to emphasise the obtained F1-score,
which provides a global assessment of classifier performance and is usually more useful
than accuracy in imbalanced class distribution, and the Recall value, which reflects the
classifier’s ability to correctly classify examples of the class of interest, in this case, ASD.
As illustrated in Figure 4, the F1-score value was 0.67 and the Recall value was 0.64.
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Figure 4. Contingency table and respective precision, recall, negative predictive value, specificity,
accuracy, and F1-score values.

5. Discussion

In this study, we aimed to explore whether physiological responses to CO and BO
can be used to distinguish and predict ASD in adult individuals. For these purposes, we
analysed the ECG and facial EMG responses collected from adults with TD and adults with
ASD. Considering that the potential use of autonomic responses to olfactory stimuli as
biomarkers is an under-explored hypothesis [26,28], this research may provide evidence
supporting their use as a potential tool to support the diagnosis of ASD in adults.

A significant difference between groups emerged for 10 out of the 32 features. Partic-
ularly, the majority of facial EMG features showing a significant difference is associated
with negative emotions, namely fear: medial frontalis and corrugator supercilii [35]. This
raises the possibility that stimulating negative emotions via odours may induce distinctive
physiological responses in adults with ASD compared to adults with TD. In this vein,
Endevelt-Shapira et al. [26] found significant differences in the EDA between adults with
ASD and TD, with EDA being significantly higher in adults with TD, compared to adults
with ASD, exposed to fearful BO. Therefore, the present study reveals new features with
the potential to establish this distinction. Moreover, taking into account the number of
features, it can be concluded that the obtained results support the hypothesis that there is a
significant difference between the responses of the two groups.

When predicting ASD and TD with these discriminatory features, the best result
was achieved for k = 3, where it was possible to correctly classify approximately seven
out of 11 participants in the ASD group, with an F1-score of 0.67. Establishing a point
of comparison with other studies in the field, according to Endevelt-Shapira et al. [26],
a classifier following an LOOCV was developed based on heart rate, EDA, and nasal
airflow data regarding the response of TD and ASD adult subjects to fearful BO, and the
results showed the correct classification of 16 out of 20 TD subjects and 12 out of 20 ASD
subjects, with an accuracy of 70%. With a similar goal, the study [28] relied on oflactometer
sniff–response data to pleasant and unpleasant odours to develop a classifier, which was
followed by an LOOCV analysis. In this work, 17 out of 18 children with TD were correctly
classified, while 12 out of 18 children with ASD were correctly classified, for an overall
accuracy of 81%.

6. Conclusions and Future Work

To sum up, despite the imbalanced data (which is known to pose difficulties in
classification methods), this study supports the use of physiological responses to odours
to classify ASD in a sample of adult individuals. This is consistent with previous studies
relying on sniff responses and EDA [26,28] and provides preliminary data on the potential
use of facial EMG data as well. Since the most significant features correspond to the activity
of facial muscles associated with negative emotions, the difference between ASD and
TD groups may be greater when negative emotions are induced via the sense of smell.
Given that these physiological changes occur at an unconscious level and are strongly
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independent of language, communication, and attention, the use of ASD classifiers could
aid in the development of diagnostic tools used in both clinical and research settings.

Nevertheless, several limitations need to be considered. Firstly, caution is needed
when interpreting the data due to the small and unequal sample size, which lowers the
performance in predicting ASD. Additionally, the clinical manifestation of ASD is highly
heterogeneous, which might be particularly critical in studies with small sample sizes due
to an increased likelihood of artefacts. To overcome this limitation, future studies could
focus on specific subgroups of ASD (e.g., ASD with or without Speech Onset Delay) or
adopt a dimensional “autistic traits” approach (as proposed by [56]). Moreover, a pro-
found assessment of possible comorbidities was not conducted in the ASD group. This
is of foremost relevance, since approximately 70% of individuals diagnosed with ASD
have co-occurring medical, developmental, or psychiatric conditions, such as intellectual
disability, attention-deficit hyperactivity disorder, anxiety, and depression (see [57]). A de-
tailed clinical (and cognitive) assessment would help to clarify if the obtained outcomes
are indeed explained by the ASD diagnosis or rather by an interplay between multiple
conditions. Another limitation concerns the non-inclusion of a clinical control group
(e.g., individuals diagnosed with schizophrenia) and, therefore, it is not possible to assure
our results are limited to ASD rather than generalised to other neurodevelopmental or
psychiatric conditions. It should also be considered that groups were not matched for
sex, age, and cognitive abilities. There is evidence that in general, women have better
olfactory abilities than men (see [58]). Moreover, de Groot et al. [59] found a facial muscle
response indicative of a fearful state in women exposed to fearful BO, whereas men failed
to show any emotionally differentiated response to fearful and happy BO, suggesting that
women are capable of establishing emotional synchrony via the sense of smell. Concerning
a dimensional approach to ASD, Barros et al. [60] found that being a woman and reporting
higher attention to detail—a subscale of the Autistic Spectrum Quotient—was associated
with better odour discrimination in the general population. Despite this evidence, since
ASD diagnosis is more prevalent in men than in women (see [61])—a pattern also observed
in our sample—most studies addressing olfaction in ASD either recruit male individuals
exclusively or fail to acknowledge sex differences. Having this in mind, we cannot fully
exclude a potential role of sex differences in the obtained outcomes and urge researchers to
recruit larger samples, allowing them to further explore this effect.

Furthermore, it is proposed to extend the dataset to better support the classifier and
enable the application to the sub-block data, as it could not be used at this time due to
the short response time associated with each sub-block (30 s). Concerning the prediction
goal, other ML models should be considered so that performance comparisons can be
made. Moreover, feature normalisation, such as min–max normalisation, could be a future
enhancement to reduce the influence of the difference in feature scales as much as possible.
On the other hand, it would be essential to implement a dimensionality reduction procedure
that permits the selection of only those features from which the best results can be obtained.
Lastly, applying balancing techniques to mitigate the imbalance caused by the disparity
between the number of participants in the ASD group (11) and the number of participants
in the TD group (48), which may be negatively impacting the classifier, may also lead to
improved classification results.
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