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Abstract: This article concerns the application of the FEM method for the prediction of stress and
deformation states in the workpiece during diamond sliding burnishing (DSB). An updated Lagrange
(UL) description was used to describe the phenomena at a typical incremental step. The states of
strain and strain rate are described by non-linear relationships without linearization. The material
parameters were estimated during tensile tests to determine the characteristics of the 41Cr4 steel.
Its hardness was also tested. Its aim was to prepare a table with the material properties of the
above-mentioned steel and its implementation for numerical analyses. A Cowper–Symonds material
model was used to model the displacement process of the wedge on an elastic/visco-plastic body
reflecting the DSB process. The computer model was validated, and a good convergence of the results
was obtained. Applications in the ANSYS/LS-Dyna program were developed to simulate the process
of DSB. The results of numerical analyses were presented, among others, to explain the influence of
the rake angle on the condition of the surface after machining, as well as the phenomenon of chip
formation. The results of numerical simulations were verified experimentally on a test stand.

Keywords: FEM; ANSYS; DEM; modeling; analysis; stresses; strains; diamond sliding burnishing;
micro-cutting; chip; experimental plan

1. Introduction
1.1. Modeling of Selected Phenomena in the Diamond Sliding Burnishing Process

Diamond sliding burnishing is a quite well-known technological process. The main
advantages include, among others, improved quality of the surface layer, improved fatigue
strength or improved corrosion resistance. Numerous papers describe different advantages
of using diamond burnishing as an alternative method in relation to the turning process.
Below, several papers are shown as an example of the huge popularity of diamond sliding
burnishing. The Authors generally research the influence of technological parameters or
shape of the tool on the state of the surface layer after research. However, all the papers
have the same common features. The Authors will mention these after a brief analysis of
the literature.
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In paper [1], the Authors present the geometric changes taking place on the surface of
an object made of 16HG steel, hardened and burnished with a sliding diamond. They con-
ducted real and simulation tests in the ABAQUS program on the basis of a two-dimensional
section of the surface of a real object.

In works [2,3], it was found that the multiplicity of the load (the number of passes)
during burnishing should not be too high, as it may cause excessive crushing with all its
harmful consequences. Increasing the number of cycles above several is not advisable for
economic reasons either, because as a result of the phenomenon of metal hardening, each
cycle brings worse and worse effects [2,3].

The model of material deformation using a non-deformable rigid ball, known as the
Hertz model, is quite often and with good results, adopted for an analysis of deformation
processes in the contact zone of two elements, e.g., in an analysis of strengthened burnish-
ing [4,5]. However, this model is not useful in the case of burnishing and hardening, or
even in the case of burnishing itself. The formulas obtained on its basis in comparison with
the values of forces used in experimental studies [6,7] indicate significant differences in
the results.

The model of material deformation by means of a ball rolling on the machined surface
is a better approximation of the burnishing processes, and due to its high similarity to
sliding burnishing, it can be used to calculate the tool clamping force. However, attempts
to calculate the tool clamping force during smooth burnishing provide inflated results; the
values obtained differ significantly from the experimental data [8–10].

The model of material deformation by means of a ball sliding on the surface of the
workpiece was considered by many authors, among which the studies described in [11]
belong to the classics. The effects of burnishing, as practice shows, depend not only on
the elastic-plastic properties of the workpiece and the geometry of the contact between
the tool and the workpiece, but also on the initial surface roughness, and this factor is not
taken into account by classical models, treating output surfaces as perfectly smooth. This is
confirmed by the experimental formulas presented in the literature [12,13] that are used
to select the burnishing parameters, but do not take into account the effect of the initial
roughness of the surface machined. Therefore, it is necessary to take this factor into account
in theoretical considerations.

For the reasons mentioned above, in an analysis of burnishing, it is necessary to adopt
a different model than the one found in the literature. Such a model should take into
account the stereometric state of the surface and, in particular, the height of the initial
surface roughness, as the roughness of the surface after burnishing depends to a large
extent on it [14–20].

Work hardening of the surface layer increases the resistance to the development of
fatigue processes, especially in materials without very high hardness, such as aluminum
alloys [21]. The hardening depth should be up to about 0.25 of the cross-sectional dimension
of the part; at greater depths, no improvement in fatigue strength is observed [22].

In the work [23], it was found that anti-corrosion properties after burnishing are not
the best, although in some cases sliding burnishing improves them. On the other hand,
in [24–30] it was shown that the presence of compressive stresses may reduce the intensity
of tribological wear. After slide burnishing, the depth of hardening is much smaller than
in the case of the strengthening burnishing method (e.g., burnishing rolling), usually,
hardening occurs within the height of unevenness—this makes it impossible to meet the
anti-fatigue condition [31].

After sliding burnishing, compressive stresses are formed in the surface layer. Their
maximum value depends on the burnishing parameters and the properties of the mate-
rial processed. This was demonstrated in study [32], where the presence of compressive
stresses in the surface layer is generally considered to have a positive effect on the oper-
ational properties, especially on the fatigue strength of machine elements as well as on
tribological wear.
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In works [33,34] it was shown that the structural changes after sliding burnishing
are small and similar to changes after rolling pressure shot peening. In most cases, these
changes are invisible even under an optical microscope.

In the work [35], it was stated that sliding burnishing increases the strength of power
machine rotors. In the paper [36], a special device was designed and produced for bur-
nishing the curvilinear contours of injection molds made of AISI P20 steel with burnishing
forces reaching several hundred Newtons.

There are many studies related to testing the burnishing force of rough surfaces [25,37,38].
The Authors demonstrate how important it is to prepare the surface before diamond sliding
burnishing. Papers [39,40] present the decorative qualities of burnished surface layers,
which additionally gain increased fatigue strength and resistance to abrasion and corrosion.

An innovative approach was proposed in [41], where AISI 4140 steel was locally
heated before using the burnishing tool. This resulted in the use of a lower burnishing force
as well as a greater hardness of the surface machined, along with an improvement in the
quality of the surface layer.

It has been shown in many publications that burnishing will result in favorable
changes in the geometric structure of the surface through the plastic deformation of
micro-unevenness and shaping the structure with flat tops with a high load-bearing
capacity [32,42–45].

Diamond sliding burnishing is a very popular process. However, in every case we
could observe very precise descriptions of technological parameters or tool geometry, but
the beginnings of the burnishing process are discussed nowhere. Some tool geometry could
cause different technological processes. It is important to explain in what time we can
observe transition from one process to another. It is the main goal of this paper to describe
phenomena during the sliding burnishing process transition to the turning process for
two tool depths.

1.2. Modeling in Continuum Mechanics

Mathematical models describing a continuous medium usually constitute systems
of integral or partial differential equations. This is due to the fact that in a continuous
medium, variables are dependent on at least one spatial variable and time (if the object
tested is variable in time). The mathematical model is supplemented with appropriate
boundary and initial conditions. As a result, a boundary or boundary-initial problem is
obtained. Only in simple problems is it possible to obtain a precise analytical solution to
a given mathematical problem. Most often, the solution requires the use of approximate
methods. In practice, approximate numerical methods are used most often.

Numerical methods of an approximate solution of continuous boundary-initial prob-
lems include the finite difference method MRS [46], the method of boundary elements
MEB [47], the finite element method FEM [48–53], various meshless methods, such as
the fuzzy particle method (smoothed particle hydrodynamics, SPH) [54], the free point
method [55] and the material point method, also known as the material point method or
the particle-in-cell-method [56,57].

The essence of the finite difference method is to replace derivatives with appropriate
difference quotients determined on a discrete set of points. The finite difference method
was initially applied to differential equations (local formulation), later the range of its
applications was extended to problems formulated in variational forms (global formulation).
The standard MRS formulation used regular (square, rectangular or cubic) node grids.

In advanced formulations, an arbitrary mesh of nodes is used. Difference quotients
can be built on arbitrarily generated points, owing to which this MRS formulation can
be classified as a gridless method [58]. It is also used in the mechanics of solids, e.g.,
a well-known program for solving problems in geomechanics FLAC [59] is based on the
finite difference method.

In this paper, the finite element method (FEM) was used to discretize a continuous
problem. The essence of FEM is a division of the continuous area under consideration
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into a finite number of sub-areas (finite elements) connected to each other at node points
and an approximation of the solution in the area of elements using interpolation functions
(shape functions) and values in nodes [60]. FEM equations are obtained by means of
a formulation of an integral (global) problem using the principle of variation or the method
of weighted residuals.

The method of boundary elements [61] consists in reducing the system of differential
equations with given boundary conditions to the system of integral equations defined on
the boundary of the area considered. Contrary to the finite element method and the finite
difference method, its application does not require any discretization of the interior of the
area, but only its edge. This is the main advantage of this method.

One of the disadvantages of using FEM is the need to generate an appropriate mesh of
elements, which in the case of complex three-dimensional geometries is not easy for some
types of elements. In an analysis of large deformations, the mesh of elements is subject to
excessive distortions, which often makes it necessary to re-mesh the computational domain
many times. Avoiding these problems is one of the reasons for the growing popularity
of meshless methods. There are many meshless methods. The meshless finite difference
method was mentioned above. Other meshless methods include the smoothed particle
hydrodynamics method (SPH), the free point method, the finite point method [62] and the
element-free Galerkin method [63]. The fuzzy particle method was initially developed for
discrete problems in astrophysics [64]. Later, it was applied as a discretization method for
continuous problems.

2. Materials and Methods
2.1. Modeling of Diamond Sliding Burnishing and Micro-Cutting Processes

This article concerns the use of the FEM method to predict stress and strain states and
the geometric structure of the surface of the workpiece after the diamond sliding burnishing
process. The updated Lagrange description was used to describe the phenomena at a typical
incremental step. Non-linear incremental models without any linearization were used to
describe physical phenomena. The results of the numerical simulation were experimentally
verified on the example of selected parameters of the surface roughness profile.

Sliding burnishing, similarly to micro-cutting, can be treated as a process of moving
a wedge (tool) over a workpiece. For a given tool geometry (vertical angle β and radius of
cutting edge rounding rd) and machining depth ap, there is a limit rake angle γgr at which
material flash is formed in front of the tool, but no chip is formed. Thus, for rake angles
γ ≤ γgr, the sliding burnishing process takes place, while for γ > γgr, the flash turns into
a chip and then the micro-cutting process takes place (Figure 1).

Figure 1. Scheme showing the processes of sliding burnishing (a) for γ ≤ γgr and micro-cutting
(b) γ > γgr.
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The processes of sliding burnishing and micro-cutting were considered as a geometri-
cally and physically non-linear boundary-initial problem, in which there are non-linear,
moving and variable in time and space boundary conditions. The boundary conditions in
the tool–workpiece contact areas are unknown.

A mathematical description of non-linear phenomena requires the use of principles of
formulating boundary-initial problems, which are different than those in linear problems,
and require more complex methods of solving them.

Geometric non-linearity results from a non-linear relationship between strain and
displacement. It is caused by a change in the geometry of the workpiece during the
machining process (deformation, cracking).

Physical (material) non-linearity is caused by the non-linear mechanical properties of
the workpiece material, leading to a non-linear stress–strain relationship.

2.1.1. The Concept of Incremental Description

To describe the phenomena in a typical incremental step, the updated Lagrange
description was used, assuming three systems of orthogonal Cartesian coordinates ({x}
movable associated with the object, {y} movable associated with the tool and {z} fixed
reference system). The purpose of an incremental analysis is to determine the geometry of
the body and the states of incremental displacements, displacement velocities, accelerations,
strain, strain rates, stress, etc., existing in this body, in subsequent, discrete moments of time
τ = 0, ∆t, 2∆t, . . . , corresponding to a small increment of time. It is assumed that solutions
are known for all the time steps in the interval [0, t] (including time t), and solutions will be
searched for at time τ = t + ∆t. By repeating this procedure for subsequent moments ∆t,
a solution is obtained in a given time interval [tp, tk].

Issues related to incremental description were presented in some works, e.g., in the
paper by M. Kleiber, various concepts of incremental descriptions in non-linear mechanics
were analyzed. An updated Lagrange description (Figure 2) was adopted to describe
the wedge displacement process, which is characterized by high universality, based on
the assumption of an additivity of individual deformation components on the original or
current configuration. This concept of incremental description and algorithms of solutions
developed for typical incremental step time has already been used by the Authors for
numerical analyses of other technological processes of plastic forming, i.e., cutting [65–72],
thread rolling [73], burnishing [74–78], drawing [79–81], grinding with a single abrasive
grain [82] and for analyses of large plastic deformations and for predicting fatigue strength
and product life [83–85], and it has been positively verified.

Figure 2. Schematic diagram of the step-by-step analysis of the slide burnishing process (a) and the
configurations adopted by the body in subsequent steps in an updated Lagrange description (red
arrows means movement and rotation directions) (b).
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According to the updated Lagrange description, at times τ < t, the values of all the
functions appearing in the problem are known. According to the assumption referred to
above, at the current moment t, the initial (original) configuration of the body 0C and the
current configuration tC are known. On the other hand, the next equilibrium configuration
t+∆tC is sought, at the moment τ = t + ∆t (Figure 2).

The incremental description formulated in this way in a non-linear process analysis is
associated with a number of significant problems. They concern the selection of appropriate
coordinate systems, the definition of strain and stress measures and their increments, as
well as the determination of the rules for their accumulation at each incremental step.

2.1.2. Measures of Increments of Physical Quantities

The non-linearity of the object material was described using an incremental model,
taking into account the influence of the strain history and the strain rate. The object is
treated as a body in which elastic deformations (in the range of reversible deformations)
and viscous and plastic deformations (in the range of irreversible deformations) may occur
with non-linear hardening. This body was abbreviated as E/VP. The non-linear Huber–
Mises–Hencky (abbreviation: HMH) plasticity condition, associated flow law and mixed
reinforcement (isotropic-kinematic) were used to build a material model. The state of the
material after the preceding treatments was also taken into account by introducing the
initial states: displacements, stresses and strains.

An increment τt ∆f(τx, τ) of any function t
tf(

tx, t) at a typical step t→τ = t+∆t is defined
using the formalism differential, in the following form:

τ
t ∆f(τx, τ)

def=τ
t f(τx, τ = t + ∆t)− t

tf
(tx, t

)
, (1)

where τx is a vector (with components τxi, i = 1, 2, 3) of the position of the body particle X
at any time τ. The notation τt ∆f indicates an increment of the function f from time t to time
τ (the left superscript) expressed in the system {tx} and related to the configuration tC at
time t (the left subscript).

In the process analyzed of moving the wedge, the measures of increments of dis-
placement, strain, strain rate and stress need to be defined. The movement of the body is
described by smooth mapping:

τx = τx
(

0x, τ
)

. (2)

The particle displacement vector τt u and its components τt ui, and the increment dis-
placement τt ∆u vector and its components τt ∆ui take the following form:

τ
t u = τ

t x − t
tx, τt ui =

τ
t xi − t

txi, i = 1, 2, 3, (3)

τ
t ∆u = τ

t u − t
tu, τt ∆ui =

τ
t ui − t

tui, i = 1, 2, 3, (4)

where all the components of vectors are related to a common frame of reference tC. An ad-
equate measure of the strain state of the workpiece, in the adopted updated Lagrange
description, is the Green–Lagrange strain tensor t

tTε, while the measure of the strain rate
state is the Green–Lagrange strain rate tensor t

tT ·
ε

.
The tensors listed are defined and related to the current configuration tC. The measure

of strain increment, strain rate and stress increment are the increments of strain tensors
τ
t ∆Tε and strain rate τt ∆T ·

ε
using Green–Lagrange, respectively. The t

tεij components of the
t
tTε tensor are related to ui displacements according to the formula in Cauchy notation [48]:

t
tεij =

1
2

(
t
tui,j +

t
tuj,i +

t
tuk,i·ttuk,j

)
, (5)
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where t
tui,j is the partial derivative t

tui,j = ∂(t
tui)/∂(txi). The components t

tεij can be
decomposed into a linear part

t
tεij =

1
2
(t

tui,j +
t
tuj,i

)
, (6)

and a non-linear part
t
tε̃ij =

1
2

t
tuk,i·ttuk,j. (7)

The increment of the components τt ∆εij of the tensor τt ∆Tε will be derived based on
the definition of the increment of any function. Thus, writing the components according to
Equation (5) at times τ and t and substituting them into Equation (1), after applying the
incremental decomposition (τt ui,j =

t
tui,j +

τ
t ∆ui,j) and performing the appropriate algebraic

operations, we obtain the following:

τ
t ∆εij =

τ
t εij − t

tεij =
1
2

(
τ
t ui,j +

τ
t uj,i +

τ
t uk,i·τt uk,j

)
− 1

2

(
t
tui,j +

t
tuj,i +

t
tuk,i·ttuk,j

)
= 1

2

(
τ
t ∆ui,j +

τ
t ∆uj,i +

t
tuk,i·τt ∆uk,j +

τ
t ∆uk,i·ttuk,j +

τ
t ∆uk,i·τt ∆uk,j

)
,

(8)

where τt ∆ui,j = ∂(τt ∆ui)/∂(txi) denotes the partial derivative.
Equation (8) is valid for various incremental descriptions. For a specific description,

an appropriate simplification should be used. For the updated Lagrange description
adopted here, the expression t

tuk,i·τt ∆uk,j +
τ
t ∆uk,i·ttuk,j = 0. The increment of the τt ∆εij

components can be decomposed into a linear part

τ
t εij =

1
2
(
τ
t ∆ui,j +

τ
t ∆uj,i

)
(9)

and a non-linear part
τ
t ∆ε̃ij =

1
2

(
τ
t ∆uk,i·τt ∆uk,j

)
, (10)

In a similar manner, the following formulas for the increments of the components
τ
t ∆

.
εij of the strain rate increase tensor τt ∆T .

ε for the linear part τt ∆
.
εij are

τ
t ∆

.
εij =

1
2
(
τ
t ∆

.
ui,j +

τ
t ∆

.
uj,i
)

(11)

as is a non-linear part
τ
t ∆

.
ε̃ij =

1
2

(
τ
t ∆

.
uk,i·τt ∆

.
uk,j

)
. (12)

The introduction of non-linear terms means that exact formulas will be used, without
any linearization.

The stress state and stress increment were described by the second (symmetric) Pioli–
Kirchhoff stress tensor t

tTσ and its increment τt ∆Tσ, respectively.
The components ∆σij of the stress increase tensor τt ∆Tσ for the body E/VP were

calculated from the following formula:

∆σij = C(E)
ijkl ·(∆εkl −Akl/B), (13)

where Akl are tensor components and B is a scalar, according to the following formulas:

Akl = S̃kl

{
S̃ij·C

(E)
ijkl ·∆εkl −

2
3
·σY

(
ε
(VP)
e ,

.
ε
(VP)
e

)
·

.
E
(VP)
T ·∆ .

ε
(VP)
e

}
, (14)

B = S̃ij·C
(E)
ijkl ·S̃kl +

2
3
·σ2

Y

(
ε
(VP)
e ,

.
ε
(VP)
e

)
·〈

.

C̃
(
ε
(VP)
e ,

.
ε
(VP)
e

)
+

2
3
·E

(VP)

T
〉. (15)
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In Equations (13)–(15) ∆εkl are the components of the increment of the tensor of total
strain (elastic, plastic and viscous), C(E)

ijkl is the fourth-order tensor characterizing the elastic

properties of the object material, S̃ij is a cumulative component of the stress deviator at

the time t considered, E(VP)
T is the instantaneous strain-hardening modulus,

.
E
(VP)
T is the

instantaneous strain rate-hardening modulus, C̃
(
ε
(VP)
e ,

.
ε
(VP)
e

)
is the instantaneous modulus

of translational hardening and σY

(
ε
(VP)
e ,

.
ε
(VP)
e

)
is the instantaneous plasticizing stress of

the object material, depending on the instantaneous values of the effective deformation
ε
(VP)
e and visco-plastic strain rate

.
ε
(VP)
e .

The yield stress model σY

(
ε
(VP)
e ,

.
ε
(VP)
e

)
takes the following form:

σY

(
ε
(VP)
e ,

.
ε
(VP)
e

)
= K

(
ε0 + ε

(VP)
e

)n
·[a·
( .
ε
(VP)
e

)3
+ b·

( .
ε
(VP)
e

)2
+ c·

( .
ε
(VP)
e

)
+ d]

n1

(16)

The constants a, b, c, K, n, n1, ε0 in the yield stress model (16) were determined in
experimental studies and for 41Cr4 steel are listed in Table 1.

Table 1. Material parameters used in the simulation.

ρ [kg·m−3] E [GPa] Re [MPa] ET [MPa] ν [-] K [MPa] ε0 [-] C [s−1] P [-]

7830 207 310 763 0.27 938 0.05 40 5

n [-] n1 [-] a [-] b [-] c [-] d [-] β [-] m [-] εf [-]

0.1694 1 3·10−10 −10−6 7·10−4 1.0 1 0.2 2.0

where ρ—mass density of the object material, E—Young’s modulus, ν—Poisson’s ratio, K—hardening parame-
ter, Re—initial yield stress, ET—strain-dependent hardening modulus, ε0—initial strains, n—hardening factor,
n1—hardening coefficient depending on the strain rate, m, P—material constants determining the sensitivity of
the material to the rate of plastic deformation, C—parameter dependent on the strain rate, a, b, c, d—coefficients
depending on the strain rate, εf—failure strain.

The increment of the yield stress at a typical step t → τ = t + ∆t is defined by the
following equation [74]:

∆σY

(
ε
(VP)
e ,

.
ε
(VP)
e

)
=

∂σY

(
ε
(VP)
e ,

.
ε
(VP)
e

)
∂ε

(VP)
e

·∆ε(VP)
e +

∂σY

(
ε
(VP)
e ,

.
ε
(VP)
e

)
∂

.
ε
(VP)
e

·∆ .
ε
(VP)
e (17)

where ∆ε(VP)
e and ∆

.
ε
(VP)
e are the increments of the visco-plastic effective strain and the

effective strain rate, respectively, and are calculated from the following formulas:

∆ε(VP)
e =

√
2
3
·∆Dε
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a given time t is equal to the tangents of the angle of inclination of the tangent to the
corresponding hardening curve at time t.
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2.1.3. The Equation of the Motion of a Discrete Object on Typical Step Time

An incremental functional of the total energy of the system, which consists of a tool
and an object, has been developed. From the condition of the stationarity of this functional,
a variational, non-linear equation of motion and deformation of the object was derived
for a typical step time. This equation was solved using spatial discretization employing
the finite element method, obtaining discrete systems of the equations of motion and
the deformation of the object in the process of displacement of the wedge, for a typical
finite element and for a typical time step t→ τ = t + ∆t . By writing specific equations
of motion for all the finite elements, separated from the tool and the workpiece, after
their summation, the equation of motion of a discrete object is obtained, in the updated
Lagrangian description, on a typical incremental step, of the following form [74]:

M·∆..
r + C·∆ .

r + (K + ∆K)·∆r = ∆R + ∆F + F + R (20)

where M is the instantaneous mass matrix, C represents theinstantaneous damping matrix,
K, ∆K, respectively, indicate the instantaneous stiffness matrix and its increment, F, ∆F,
respectively, indicate the instantaneous column vector of the internal loads of nodes and its
increment, R, ∆R, respectively, represent the instantaneous column vector surface loads
and its increment, ∆r indicates the column vector of node displacement increments, ∆

.
r

indicates the node velocity increment column vector and ∆
..
r indicates the node acceleration

increment column vector.
The Matrix Equation (20) being a system of N differential equations of the second order with

constant (incremental step) coefficients and appropriate initial conditions {r(t = 0)} = {r0},{ .
r(t = 0)

}
=
{ .

r0
}

and boundary values constitutes an incremental formulation of the
dynamic equilibrium of the deformed solids in contact, for the case of sliding the wedge on
the surface of the rough rollers.

The System of Equation (20) contains N equations with 2N known elements of the
vector of internal forces F and external forces R and 3N2 elements of the matrix M, C
and K. However, it also contains unknown elements, i.e., the components of the vectors:
an increment of displacements of nodes ∆r, an increment of the velocity of nodes ∆

.
r,

an increment of node accelerations ∆
..
r, an increase of the internal loads of the object ∆F and

N2 unknown elements of the object stiffness increment matrix ∆K. In this equation, there is
also a part of the components of the vector of the increase in external loads ∆R (in contact
areas) that is unknown.

Equation (20) was solved using partial linearization and the method of central dif-
ferences (explicit), in which the differential approximation of the derivatives of partial
displacements is assumed according to the following equations:

.
rt
=

1
2·∆t
·
(

rt+∆t − rt−∆t
)

(21)

..
rt
=

1
∆t2 ·

(
rt+∆t − 2·rt + rt−∆t

)
(22)

then Equation (20) takes the following form

M̃·rt+∆t = Q̃ (23)

where M̃ is the effective mass matrix and Q̃ the effective load vector.

M̃ =
1

∆t2 ·M +
1

2·∆t
·C (24)

Q̃ = R + F +
2

∆t2 ·R·r
t −
(

1
∆t2 ·M +

1
2·∆t
·C
)
·rt−∆t. (25)

From Equation (23), the unknown column vector of the displacements of the nodes of
the discrete object at the end of the considered time step rt+∆t is calculated.
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In the already formulated constitutive relationships (material models) Equations (8)
and (11), the Cauchy index notation was used to facilitate mathematical operations. In
order to use these relationships for the Object Motion Equation (23) derived and to develop
computer applications for a numerical simulation of the wedge displacement process, it is
convenient to write them in a matrix form.

Relationship (13) now takes a matrix form. The increment of the stress tensor ∆Tσ is
calculated from the following formula:

∆Tσ = C(E)·(∆ε−A/B) = C(E)·〈
(

1− S̃
∗∗)·∆ε− ∆ε∗∗〉, (26)

where C(E) is the Hook matrix, ∆ε and ∆ε∗∗ are the column vectors of the Green–Lagrange
strain increment, S̃

∗∗
is the scalar, A is the matrix and B is the scalar, according to the

following formulas:

A = S̃·
{

S̃·C(E)·∆ε− 2
3
·σY

(
ε
(VP)
e ,

.
ε
(VP)
e

)
·

.
E
(VP)
T ·∆ .

ε
(VP)
e

}
, (27)

B = S̃·C(E)·S̃ +
2
3
·σ2

Y

(
ε
(VP)
e ,

.
ε
(VP)
e

)
·〈

.

C̃
(
ε
(VP)
e ,

.
ε
(VP)
e

)
+

2
3
·E

(VP)

T
〉. (28)

The increment of the total strain tensor ∆Tε is calculated from the following formula:

∆Tε =
1

1− S̃
∗∗ ·
(

D(E)·∆σ−G/B
)
=

1

1− S̃
∗∗ ·
(

∆ε(E) − ∆ε∗∗
)

, (29)

where D(E) = [C(E)]
−1

is the inverse of Hook’s matrix, ∆ε is the column vector of the Green–
Lagrange increment of total strain and G is a matrix according to the following formula:

G =
2
3
·σY

(
ε
(VP)
e ,

.
ε
(VP)
e

)
·

.
E
(VP)
T ·∆ .

ε
(VP)
e ·S̃. (30)

In numerical calculations, the matrix notation of Formula (13) obtained after its dis-
cretization by the finite element method is also used:

∆σ = C(E)·
¯
B + [∆q]·B̃·{∆q}+ ∆σ∗∗ =

(
1− S̃

∗∗)·(¯
S + C(E)

)
·[∆q]·B̃·{∆q}+ ∆σ∗∗, (31)

where
¯
B and B̃ are the instantaneous matrices of the linear and non-linear dependence of

the strain increment ∆ε on the displacement increment of the nodal points ∆r, respectively,
¯
S = C(E)·

¯
B is the stress matrix of the discrete system, [∆q] and {∆q} are, respectively,

a matrix and a column vector of the displacements increment of the nodal points of the
system on a step time.

In the calculation process, it is necessary to accumulate incremental quantities, while
the problem of an accumulation of the components of the vectors of the displacement
increase ∆ui, and the components of the strain increment tensors ∆εij and the components
of the strain rate increment tensors ∆

.
εij at any time τ is trivial. It consists of adding their

respective components derived in the previous steps:

τui = ∑
τ

t=0∆ui, i = 1 ÷ 3 (6), (32)

τεij = ∑
τ

t=0∆εij, i = 1, 2, 3, (33)

τ .
εij = ∑

τ

t=0∆
.
εij, i = 1, 2, 3. (34)
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The accumulation of yield stress increments ∆σY and the increments of stress tensors
∆Tσ and their components ∆σij is not trivial; it requires the use of appropriate algorithms
named “Yield stress accumulation” and “Stress accumulation”.

2.2. Experimental Research
2.2.1. Research Position

Experimental tests of the diamond sliding burnishing process were carried out on the
stand shown in Figure 3. The NEF 400 CNC machining center with the CNC 3D Fanuc 210
is the control, manufactured by the German GILDEMEISTER Drehmaschinen GmbH from
Bielefeld, DMG, was used for the tests. The device is a multifunctional machining center. It
ensures a high quality and dimensionality of products.

Figure 3. General view of the NEF 400 CNC machining center: 1—front view, 2—control
panel, 3—working space; 4—shaft (sample) made of 41Cr4 steel, 5—tool holder with a diamond
burnishing tip.

The machining process was performed with a special tool for sliding burnishing
with glued diamond tips, made of a diamond composite with ceramic 512 bonding phase,
namely Ti3SiC2 [86], commissioned by the Authors to be performed by the Institute of
Advanced Manufacturing Technologies in Krakow (IAMT). The construction of the tool
is shown in Figure 4, while Figure 5 shows a general view of the tool and three spherical
tips with different values of the radius rd. In proper tests, a burnishing tip with a radius of
rd = 3.5 mm was used. The required radius rd was calculated from the following formula:
rd = 4.9− 0.0055HV = 3.5 mm, where HV was the microhardness of the workpiece (the
hardness of the samples made of 41Cr4 steel was HV30 = 255). During the burnishing
process, the rollers were lubricated with Prowadol VG-68 universal lubricating oil.

Figure 4. Technical drawing of the burnishing device: (1) body, (2) guide shaft, (3) adjusting
screw, (4) spring, (5) retaining nut, (6) stop plate I, (7) indicator, (8) stop plate II, (9) burnishing
head, (10) blanking plate, (11) stop pin, (12) clamping sleeve, (13) clamping sleeve of diamond tip,
(14) counter nut, (15) clamping nut, (16) set screw, (17) scale plate.
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Figure 5. General view of the tool used in the tests and the diamond tip with a radius of rd = 3.5 mm
(a) and the view of the Werth Video-Check-IP 250 measuring machine (b).

The actual radius rd of the diamond burnishing tip was measured on the Werth Video-
Check-IP 250 coordinate measuring machine (Figure 5b). The measurements were made
at five planes every 60◦, obtaining: rd = 3.335; 3.347; 3.340; 3.334 and 3.333 mm. Thus, the
average rounding radius of the active surface of the diamond tip (with an accuracy of 0.1)
is rd = 3.3 mm. This value of the radius was assumed in numerical computer simulations.

2.2.2. Test Samples

For the experimental tests of the burnishing process, cylindrical samples (Figure 6)
made of rolled bars of 41Cr4 steel in a normalized state were prepared, in accordance with
the PN-EN 10002-1+AC1 standard [87]. The chemical composition of the material is shown
in Table 2.

Figure 6. Technical drawing of roller samples for testing the sliding burnishing process.

Table 2. Chemical composition of 41Cr4 steel.

C [%] Mn [%] Si [%] P [%] Cr [%] S [%] Ni [%] Mo [%] W [%] V [%] Cu [%]

0.42 0.83 0.32 0.03 1.05 0.028 0.24 0.08 0.16 0.04 0.23

Before sliding burnishing, the outer surfaces of the samples were ground with a Ko-
rund grinding wheel type 05/0/8 38A80-LVBE 500 × 50 × 203 with a tool speed of
1500 [rev·min−1] with hydraulic feed. After grinding, each sample had 3 working zones
with an average roughness of Ra = 0.63 µm.
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The material parameters of the 41Cr4 steel used in the numerical calculations were
determined on the Zwick Roell Z400E in the uniaxial tensile test of one- and three-stage
samples (Figures 7 and 8). The tests were carried out at an ambient temperature of 18 ◦C.
The tests were carried out for 5 standardized cylindrical samples and for 5 three-stage
cylindrical samples. The strain rate was the default value in accordance with the B standard
for conducting static tensile tests. The stress–strain relationship diagram for 41Cr4 steel is
shown in Figure 9.

Figure 7. The shape of a cylindrical sample normalized to tension (a) and the shape of a three-stage
cylindrical sample (b) for determining the constants n and K of the hardening curve.

Figure 8. View of samples for testing the mechanical properties of 41Cr4 steel: (a) one-stage sample,
(b) one-stage sample after testing, (c) three-stage sample, (d) three-stage sample after testing.

The material constants K and n in the yield stress model (16) were determined using
the R. H. Heyer method [88].

n =
ln
(

bC0
bB0
· lC0

lB0
· lBlC
)

ln

[
ln
(

lB
lB0

)
ln
(

lC
lC0

)
] =

ln
(

19.8
18.18 ·

20
20 ·

22.46
20.952

)
ln
[

ln( 22.46
20 )

ln( 20.952
20 )

] = 0.1694,

K =
Fmax

bC0·g0·
lC0
lC
· ln lC

lC0

=
164000

19.8·307, 9· 20
20.952 · ln

20.952
20

= 938 [MPa]

In the computer simulations, the elastic/visco-plastic Cowper–Symonds model of
plastic stresses was also used. That model does not include any temperature parameters
(e.g., the Johnson–Cook model requires temperature parameters) and it is appropriate
for calculating the plastic strain rate which occurs during turning or diamond sliding
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burnishing, which was why it was used in the simulations. This model takes into account
mixed isotropic-kinematic or kinematic plastic hardening and the effect of equivalent plastic
strain and an equivalent rate of plastic strain, according to the Power Relation [89]:

σY = [1 +
( .
ε
(P)
e /C

)
]
m
·
(

Re + β·Ep·ε(P)e

)
(35)

where:

- B—the hardening parameter, isotropic-kinematic (β = 1) or kinematic (β = 0) plas-
tic hardening,

- Re—initial, static yield stress [MPa],

-
.
ε
(P)
e —effective plastic strain rate [s−1],

- C—material parameter determining the influence of the strain rate of plastic deforma-
tion [s−1],

- m = 1/P—material constant determining the sensitivity of the material to the plastic
strain rate [-],

- ε
(P)
e —effective plastic strain [-],

- Ep = ET·E/(E− ET)—material parameter dependent on the modulus of plastic hard-

ening, where ET = ∂σY

(
ε
(p)
e ;

.
ε
(p)
e

)
/∂ε

(p)
e is the strain-hardening modulus and E is the

Young’s modulus of elasticity.

Figure 9. Material characteristics of 41Cr4 steel after normalizing annealing, prepared on the basis of
stretching three-stage samples.

The material parameters in the Plastic Stress Models (16) and (35) were determined on
the basis of the results of experimental tests, and it was proven that they have a significant
impact on the accuracy of the simulation; these are summarized in Table 1.

—failure strain. The verification of the material parameters determined was carried out
by means of a numerical analysis of the tensile strength of a standardized cylindrical sample
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and a comparison of the sample geometry obtained numerically with those measured
experimentally. For this purpose, an original application known as “Stretching a cylindrical
sample” in the APDL language in the ANSYS/LS-Dyna program was developed. As
input data for the simulation, the material parameters previously determined from the
experiment for the power model were introduced. Figure 10 shows selected stages of
a numerical analysis of the sample stretching process. Figure 10a already shows the stage
of the formation of the so-called “necks”. It is the next stage after the stage of elastic
deformation. The material flowed and the neck formed. This is followed by plastic
hardening of the material. During the narrowing of the so-called “neck” there is a stress
concentration in this area. The strengthening capacity of the material is no longer high
enough to overcome the loss in the width and thickness of the material. After exceeding
the permissible deformations, the sample breaks in its smallest cross-section (Figure 10b).
The greatest stresses occur under the surface of the sample at the fracture site. It is in this
area that cracking occurs first, and then it moves outward from the sample.

Figure 10. View of the resulting neck during the simulation of the tensile process of the cylindrical
sample just before fracture and the visible stress concentration in the smallest section of the sample
(a), and the stage of breaking the cylindrical sample during tensile testing (b).

A numerical measurement of the sample geometry after fracture was also carried out.
For this purpose, a grid with a pitch of 1 mm was applied. The diameter of the sample in
the neck measured in the experiment was d = 14.98 mm, while the numerically calculated
one was d = 14.50 mm. Statistical tests of the significance of dimension differences showed
that they are insignificant at the significance level of α = 0.05. This proves the correctness
of the models, algorithms and numerical application developed.

2.2.3. Experiment Plan and Methodology of Statistical Elaboration of Research Results

Experimental tests were carried out in accordance with the five-level rotatable experi-
ment plan. The experimental plan along with the actual and coded values of the parameters
are listed in Table 3.

Ranges of the variability of technological parameters in the sliding burnishing process
were determined. The assumed area of research in the considered case is as follows:

(1) feed: f = 0.04 ÷ 0.1 [mm·rev−1],
(2) force: F = 5 ÷ 25 [N].
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Table 3. The five-level rotatable experiment plan.

Level Plan

Investigated Factors

Real Values Coded Values

Feed Force Feed Force

f [mm·rev−1] F [N] f [-] F [-]

1 0.05 8 -1 -1
2 0.09 8 +1 -1
3 0.05 22 -1 +1
4 0.09 22 +1 +1
5 0.10 15 α = +1.414 0
6 0.04 15 α = −1.414 0
7 0.07 25 0 α = +1.414
8 0.07 5 0 α = −1.414
9 0.07 15 0 0
10 0.07 15 0 0
11 0.07 15 0 0
12 0.07 15 0 0
13 0.07 15 0 0

Three-fold repeatability of the tests was used. This task required the following steps
to be conducted [90]:

1. Determination of the variability range of the parameters studied,
2. Choice of the class of the mathematical model,
3. Coding the parameters analyzed,
4. Collection of the experiment results,
5. Elimination of results with gross mistakes,
6. Calculation of inter-row variance and standard deviation,
7. Checking the homogeneity of variance,
8. Calculating the coefficients of regression function,
9. Statistical analysis of the regression function,
10. Examination of the significance level of the correlation coefficient,
11. Checking the adequacy of the mathematical model,
12. Decoding the regression function.

The average values of the outputs of the object ˆ̄Y were approximated with a polyno-
mial of the second degree with double interaction, obtaining the regression equation as
two-parameter functions:

ˆ̄Y = bo + b1·x1 + b2·x2 + b11·x1
2 + b22·x2

2 + b12·x1·x2, µm (36)

where
bo, b1, b2, b11, b22 and b12—unknown coefficients of the Regression Equation,
xi—input variables: x1 = f [mm·s−1] and x2 = F [N].
Using matrix calculus, the column vector {b} of the unknown coefficients in Equation (36)

was calculated from the following matrix formula:

{b} = (
[
X
]T[X])−1[

X
]T{Y

}
, (37)

where:

-
[
X
]
—input variable matrix of dimension N×L, for data N = 13 and L = 6,

-
[
X
]T—transposed matrix

[
X
]
,

- (
[
X
]T[X])−1

—covariance matrix,
-

{
Y
}

—column vector of the average values of the experimental results.
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The boundaries of the confidence region for Regression Function (36) were determined
from the following formula:

Ŷ± tkr(α;f=N−L)·
SR√

N− L− 1
·
√
{x}T(

[
X
]T[X])−1

{x}, (38)

where:
Ŷ —regression equation according to Equation (36),
tkr(α;f)—critical value of Student t test for significance level α = 0.05 and the number

of the degrees of freedom f = N − L,
N—number of measurement points in the experimental design: N = 13,
L—number of unknown coefficients in Regression Equation (36); here, L = 6,
{x} and {x}T—column vector of the functions of input variables (test factors in real

form) and its transposition: {x}T =
[
1 x1 x2 x1

2 x2
2 x1·x2

]
,

SR = ∑i=N
i=1
(
ŷi − yi

)2—residual variance,
ŷi—average values of model outputs for plan points calculated from Equation (36),
yi —average values of experimental results.
The test results after statistical processing according to the algorithm presented in the

study [90] were used to develop Regression Equations (38) and (41).

3. Results
3.1. Results of Numerical Analyses

The results of the displacement of a non-deformable wedge (E→∞) on an elastic/visco-
plastic substrate, which has the material characteristics of 41Cr4 steel after normalization
annealing, are presented. For this steel, a Cowper–Symonds non-linear material was se-
lected, according to Equation (35), obtaining a model dependent on the equivalent plastic
strain and the equivalent rate of plastic strain according to the power law.

The value of the static friction coefficient was µs = 0.1, and the dynamic coefficient
µd = 0.05. Wedge rounding radius rd = 25 [µm], wedge internal angle β = 60 [◦], wedge
depth ap = 25 [µm] and ap = 250 [µm], wedge travel distance s = 0.002 [m], simulation
time t = 0.0002 [s]. The displacement speed of the wedge is vc = 10

[
m·s−1]. The facility was

divided into 60.000 PLANE162 finite elements, which were compacted in the contact zone.
This number is based on multiple sensitivity analyses for different workpiece materials.
For 41Cr4 steel and given values of ap and s, this number is the optimal value. The shape
factor WK = 1 was assumed, resulting from the Authors’ own simulation studies and those
performed by other researchers [65,68,79]. The Cowper–Symonds model contains a critical
strain value above which the element is removed (the so-called element removal method).
The value of this parameter was determined and it equals Ef = 1.7.

The wedge in the contact area was discretized using 18.000 finite elements. A regular
hexagonal grid with regular fields was used in the simulations. In the material machined,
the mesh was refined in the contact zone and in the surface layer (the element’s size being
0.1 × 0.1 µm). The influence of the inclination of the wedge relative to the ground on the
type of machining (micro-cutting or sliding burnishing) as well as on the occurring strains
and stresses was examined. The range of the rake angle was γ = −7010 [◦] with a step
of 5 [◦]. Selected steps from the simulation are shown in the screenshots. Some drawings
have a 5 × 5 [µm] grid in order to better illustrate the size of the flash or chip created.
The scale in the drawings shows the values of Huber–Mises–Hencky (HMH) stresses and
is expressed in [Pa] or HMH strains expressed in a dimensionless number [-]. For each
wedge inclination angle, an exemplary displacement of the node along the Y axis located
just below the layer processed, located exactly 1 [mm] from the beginning of the sample, is
also provided.

Sixteen numerical simulations were performed for wedge depressions ap = 25 [µm]
and ap = 250 [µm], for different rake angles γ. In each simulation, the displacement along
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the Y axis of the same node, the number and location of which is shown in Figure 11,
was analyzed.

Figure 11. Diagram showing the location of the analyzed node No. 53170 (red point) before and after
machining for ap = 25 [µm].

A summary of the simulation results is shown in Figure 12. From the graph, one may
read the limit rake angles of the wedge for a given recess at which the sliding burnishing
process takes place. For depth ap = 25 [µm] and rake angles γgr < −43 [◦], ap = 250 [µm]
and γgr < −50 [◦], the surface is smoothed, while rake angles are greater for micro-cutting.
The influence of cutting conditions on the form of the chip created is also visible.

Figure 12. Graph of the influence of the depth ap and rake angles γ on the type of treatment.
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For example, the case for ap = 25 [µm] and γ = −70 [◦] is described in detail. Figure 13
shows stress and strain maps for γ = −70 [◦]. For this wedge rake angle, we observe the
phenomenon of flash formation but without chip formation. This process may be compared
to smooth burnishing. The maximum values of HMH stresses at the selected time step
prevail in the contact area of the wedge with the workpiece and are σe,max = 3670 [MPa]
(Figure 13a). The largest deformations were at the point of contact of the rake face of the
wedge with the workpiece, and they amounted to εe,max = 1.99 [-] (Figure 13b).

Figure 13. HMH stress (a) and HMH (b) strain maps for γ = −70 [◦].

From the mesh applied (Figure 14a) it can be read that the height of the flash created
was ca. 5 [µm]. The resulting burr due to the large rake angle had a size of approx.
20 [µm]. For this configuration of the wedge, the stresses propagate into the material.
Figure 14b shows a diagram of the displacement of the node lying under the contact surface
at a distance of 5 µm along the Y axis. It shows that in the initial phase of the process, up to
ca. 8 [ms], the node was slowly displaced due to the approach of the tool. At 10 [ms], the
tool was located exactly above the selected node, hence its rapid displacement to the value
of −2.5 µm. After the tool had passed through, the elastic return of the material node to
the value of −1.0 µm took place. Compared to the initial value, this result shows a WW
reduction of 1.5 µm.

Figure 14. A 5 × 5 [µm] mesh (a) and a diagram of the displacement of the node along the Y axis (b).
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The exemplary results presented of numerical analyses allow, for a given tool geometry
and the required burnishing depth, to determine the boundary rake angles for which the
process of smoothing surface irregularities (burnishing) takes place.

3.2. Results of Experimental Studies

After the diamond sliding burnishing process, surface roughness parameters were
measured: the root mean square height Sq [µm]; skewness Ssk [-]; kurtosis Sku [-]; the
maximum peak heigh of the surface Sp [µm]; the maximum pit height of the surface Sv
[µm]; the maximum heigh of the surface Sz [µm]; the arithmetical mean height of the
surface Sa [µm]. Other factors measured were the height parameters of the roughness
profile: the average maximum profile height of the ten largest peak-to-valley separations
in the evaluation area Rz [µm], the arithmetical mean deviation of the profile Ra assessed
[µm] and the total height of the profile Rt [µm] (Table 4). The measurements were carried
out in the Laboratory of micro- and nanoengineering located in the Department of Precision
Mechanics, the Koszalin University of Technology, using a Taylor Hobson Precision device
with the TalySurf CCI6000 system. A Nikon lens with a magnification of 50× was used.
The results were processed in the TalyMap Platinum program. Examples of the surface
roughness results according to the Ra parameter after the sliding burnishing process are
listed in Table 5. The view of the surface of the sample after grinding and after diamond
sliding burnishing is shown in Figure 15.

Table 4. Average values of surface and profile roughness parameters.

Plan
Level

Surface Roughness Parameters Profile Roughness Parameters

Sq [µm] Ssk [-] Sku [-] Sp [µm] Sv [µm] Sz [µm] Sa [µm] Rz [µm] Rt [µm] Ra [µm]

1 0.465 −0.028 3.14 2.39 2.54 4.93 0.369 1.98 2.30 0.326
2 0.769 −0.189 3.51 4.30 4.01 8.31 0.614 5.11 6.30 0.549
3 0.583 −0.255 3.70 5.20 2.94 8.14 0.444 2.74 3.22 0.384
4 0.721 0.098 3.31 3.82 4.38 8.20 0.568 4.65 5.17 0.557
5 0.753 0.003 3.18 3.74 3.96 7.70 0.599 4.23 4.52 0.556
6 0.567 −0.149 3.51 3.75 3.46 7.21 0.441 3.37 3.48 0.396
7 0.673 −0.187 3.36 3.66 3.82 7.47 0.528 3.87 4.40 0.479
8 0.957 −0.543 3.94 4.38 5.66 10.0 0.740 5.11 5.90 0.605
9 0.722 −0.212 3.30 3.84 4.48 8.32 0.571 3.59 4.06 0.529

10 0.810 −0.378 3.82 5.50 4.66 10.2 0.625 3.42 4.84 0.549
11 0.754 −0.245 3.44 3.98 4.51 9.20 0.613 3.61 4.13 0.473
12 0.796 −0.276 3.37 4.45 4.47 9.75 0.587 3.49 4.66 0.508
13 0.783 −0.306 3.67 4.38 4.58 8.64 0.596 3.54 4.28 0.504

Table 5. Results of measurements of the Ra [µm] parameter of profile roughness.

Plan Level

Rresults of Measurements of the Ra [µm] Parameter
of Profile Roughness

Ra1 [µm] Ra2 [µm] Ra [µm] Average Ra [µm]

1 0.295 0.350 0.335 0.326
2 0.58 0.504 0.565 0.549
3 0.39 0.364 0.398 0.384
4 0.572 0.557 0.544 0.557
5 0.535 0.556 0.577 0.556
6 0.395 0.37 0.424 0.396
7 0.477 0.481 0.479 0.479
8 0.641 0.623 0.551 0.605
9 0.528 0.527 0.534 0.529
10 0.453 0.540 0.656 0.549
11 0.458 0.473 0.49 0.473
12 0.479 0.513 0.533 0.508
13 0.490 0.521 0.502 0.504
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Figure 15. The view of the surface of the sample after grinding and after DSB.

Exemplary results of the study of the stereometry of the surface machined, which
had the lowest value of the Ra parameter, are presented in Figure 16. All the surfaces
analyzed have a degressive-progressive material share curve. The traces of diamond
sliding burnishing are clearly visible in the autocorrelation function. The distribution of
ordinates is close to normal with slight positive skewness. The distribution of the tops of
the local hills is close to normal, consisting of two overlapping independent processes, as
evidenced by the presence of two peaks.

Figure 16. Geometric Surface Structure for f = 0.048
[
mm·rev−1] and F = 8 [N]: (a) 3D surface

topography, (b) Abbot load curve, (c) roughness profile (colours means: above zero – green, below
zero – red).



Appl. Sci. 2023, 13, 1963 22 of 29

The results of the research, after statistical elaboration, allowed the Authors to obtain
the required mathematical model of the process. For example, the model describing the
dependence of the arithmetic mean deviation of the profile from the mean line Ra of the
surface after the process on technological parameters describes the equation for the coded
variables x̌1 and x̌2:

Ŷ = R̂a = 0.5134 + 0.055·x̌1 − 9.97·10−3·x̌2 − 3.61·10−6·
(
x̌1
)2

+ 3.9·10−4·(x̌2)
2 − 6.17·10−3·x̌1·x̌2, (39)

where x̌i ∈ [−1;+1]; i = 1, 2.
After decoding Equation (39) according to the code formulas:

x̌1 =
(

f− 0.07
)

/0.021, (40)

x̌2 =
(
F− 15

)
/7.072, (41)

the equation for the real values of the technological parameters f and F is obtained, along
with the 95% confidence area of the following form:

Ŷ =R̂a = −0.1464 + 14.9·f + 0.003296·F− 0.08227·f·F− 71.38·f2
+ 1.56·10−5·F2

±0.0103·
√

3.744·
[(

x̌1
)4

+
(
x̌2
)4
]
+ 7.488·

(
x̌1
)2·
(
x̌2
)2 − 0.989·

[(
x̌1
)2

+
(
x̌2
)2
]
+ 2.6,

(42)

where f ∈ [0.04; 0.1]
[
mm·rev−1], F ∈ [5; 25] [N], giving x̌1 and x̌2 according to formulas

(40) and (41).
The graphs presented in Figure 17 show that the surface roughness Ra after burnishing

treatment is affected by both the feed rate f and the burnishing force F. Figure 17b shows
the special effect of the feed rate on the quality of the surface obtained. For small feed
values, the surface obtained was characterized by the lowest value of the Ra coefficient.
As the feed rate increased, the roughness also increased. Increasing the clamping force of
the diamond burnishing tool in the case of 41Cr4 steel had a negative effect on the surface
quality. In general, an increase in the clamping force resulted in an increase in the roughness
coefficient Ra. Its lowest value was recorded for the lowest burnishing force.

a b

Figure 17. Influence of force F and feed f on surface roughness Ra after diamond sliding burnishing
(a); effect of feed on surface roughness Ra for F = 8 [N] (b).

Experimental research shows that the diamond sliding burnishing process is a very
complex process. The technological quality of the product depends on many parameters
related both to the condition of the semi-finished product and the conditions of the burnish-
ing process. An incorrect selection of these leads to obtaining a product with defects, e.g.,
visible grooves in the material due to an incorrectly selected value of the burnishing force,
etc. The most important parameters determining the quality of the surface, characterized
by the Ra parameter include the tool geometry, the feed rate and the burnishing force. The
oil mist lubrication used is also an important factor.
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The regression equations developed can be used to determine the burnishing process
conditions in terms of the required product quality, or vice versa, for given burnishing
conditions, the quality of the surface machined can be predicted. Determining the optimal
conditions for the process implementation requires solving the problem of a multi-criteria
optimization with constraints. Solving the optimization task will allow one to obtain
a product of the required quality at minimum production costs.

3.3. Validation of Models and Numerical Algorithms

The results of experimental research were also used to verify the developed models
and algorithms of numerical calculations. For example, in Figures 18–20, the results of
numerical analyses on the surface roughness profile were compared with the results of
experimental measurements.

Figure 18. Surface roughness profile after diamond sliding burnishing on the NEF400 station for
f = 0.04

[
mm·rev−1] and F = 15 [N].

Figure 19. Surface roughness profile after diamond sliding burnishing obtained in the ANSYS
program for f = 0.04

[
mm·rev−1] and F = 15 [N].
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Figure 20. Surface roughness profile after diamond sliding burnishing obtained in the ANSYS
program for f = 0.04

[
mm·rev−1] and F = 15 [N].

In order to better compare the surface roughness from the experimental tests with
the simulation tests, the points from the simulation in the ANSYS program were read and
implemented in the Matlab program. The roughness profile generated from the ANSYS
program is shown in Figures 19 and 20. The comparison of the results of numerical analyses
with the results of measurements shows that the differences at the adopted significance
level of α = 0.05 are not significant. Therefore, both the process model and computer
applications in the ANSYS/LS-Dyna system are developed correctly.

The comparison of the results of numerical analyses with the results of measurements
shows that the differences at the adopted significance level of α = 0.05 are not significant.
Therefore, it can be concluded that it is possible to predict the quality of diamond sliding
burnished products with an accuracy sufficient for engineering practice on the basis of
computer simulation results. The results of experimental research showed the usefulness
of the developed mathematical models and algorithms for numerical calculations of the
burnishing process. Numerical algorithms implemented in the ANSYS system can be used
to assess the impact of burnishing technological conditions on product quality. They allow
for a better understanding of the phenomena occurring in the contact and deformation
zones and, therefore, they may constitute the basis for developing guidelines for the
selection of burnishing conditions, due to the required technological quality of the product.
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4. Summary and Conclusions from Numerical Analyses

(1) The workpiece in the process of moving the wedge is subjected to a complex deforma-
tion process, characterized by large displacements and large deformations. Rendering
complex changes in the outline of an object requires a sufficiently fine mesh of finite
elements. The use of a very fine mesh of finite elements for the entire workpiece
and throughout the process leads to a numerical model with a very large number of
unknowns, requiring long calculation times. The developed effective discrete models
and numerical algorithms allow for automatic mesh refinement only in areas with
high curvature and large deformation gradients. In the numerical examples presented
in this article, discretization with 4-node PLANE 162 elements was used. The finite
elements used to discretize the object well modeled the complex deformation state,
and at the same time, they are characterized by high computational efficiency.

(2) The shape factor of the finite element (SF) significantly affects both the accuracy of
mapping the outline of the tool and the value of stresses and strains as well as the
course of cracking. The most favorable results of the stresses and strains calculated
are obtained for SF = 1. Further increase of SF (up to nine times) has no significant
impact on the accuracy of the stresses and strains calculated, defined as the difference
of their values in elements and nodes.

(3) The results of the computer simulation of the wedge displacement process on the
effective model and real material confirmed the results of the experimental research.
This proves the correctness of the developed mathematical model and the method of
integrating the discrete equation of motion.

(4) The results of numerical calculations confirm the possibility of a correct analysis
of the burnishing or micro-cutting processes and the determination of the states of
displacements, strains and stresses, using the discrete effective models developed.

(5) The application developed in the ANSYS system enables a time analysis of deforma-
tion and stress states at any point of the material.

(6) For example, Figure 14b shows the displacement of selected nodes in the contact area
in the direction of the Y axis. It is possible to determine the separation point of the
material moving with the chip or remaining in the surface layer of the product.

(7) The basic problem in the design of the wedge displacement process is the development
of appropriate tool constructions and the selection of process conditions in order to
ensure the technical requirements and properties of the product obtained, while
increasing tool life and process efficiency. The results of computer simulations may
form the basis for the selection of technological parameters in the machining or
burnishing process, and they can be used to develop a new technology with the
necessary technological equipment.

(8) As a result of the analyses carried out, it was found that the angle of inclination of
the shear plane is not the same for each rake angle γ and it varies in the range of
Φ = 37 [◦] − 55 [◦], which is consistent with the values given in the professional
literature. The values of maximum stresses, for almost every simulation, prevailed in
the contact area of the wedge tip with the base material, as well as in the contact areas
of the wedge rake surface with the surface of the forming chip, and in the area of the
shear plane.

(9) For given machining conditions and tool depth ap > rd(1− sinγ) there is a limited
rake angle γgr below which the burnishing process takes place (no chip) and above
it, the micro-cutting process (chip formation) occurs. For example, Figure 12 shows
two cases of wedge displacement, for which the limit rake angle was, respectively, the
depth of γgr = −43 [◦] for the depth of ap = 25 µm and γgr = −50 [◦] for the depth
of ap = 250 µm.
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Armature Masz-ZAP: Puławy, Poland, 2002.

36. Shiou, F.J.; Chuang, C.H. Precision surface finish of the mold steel PDS5 using an innovative ball burnishing tool embedded with
a load cell. Precis. Eng. 2010, 34, 76–84. [CrossRef]

37. Patyk, S.; Patyk, R.; Kukiełka, L. Study of the Main Force of Rolling Burnishing of a Rough Surface. In Contemporary Problems in
Burnishing Processing Technology; TON’2008: Gdansk, Poland, 2008.

38. Patyk, S.; Patyk, R.; Kukiełka, L. Analysis of forces in the burnishing process of rough surfaces. In Contemporary Problems in
Burnishing Processing Technology; TON’2008: Gdansk, Poland, 2008.
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