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Abstract: The development of distant-talk measurement systems has been attracting attention since
they can be applied to many situations such as security and disaster relief. One such system that uses
a device called a laser Doppler vibrometer (LDV) to acquire sound by measuring an object’s vibration
caused by the sound source has been proposed. Different from traditional microphones, an LDV can
pick up the target sound from a distance even in a noisy environment. However, the acquired sounds
are greatly distorted due to the object’s shape and frequency response. Due to the particularity of the
degradation of observed speech, conventional methods cannot be effectively applied to LDVs. We
propose two speech enhancement methods that are based on two-stage processing with deep neural
networks for LDVs. With the first proposed method, the amplitude spectrum of the observed speech
is first restored. The phase difference between the observed and clean speech is then estimated using
the restored amplitude spectrum. With the other proposed method, the low-frequency components
of the observed speech are first restored. The high-frequency components are then estimated by the
restored low-frequency components. The evaluation results indicate that they improved the observed
speech in sound quality, deterioration degree, and intelligibility.

Keywords: distant-talking speech measurement; speech enhancement; deep neural network; laser
Doppler vibrometer

1. Introduction

Distant-talk measurement is useful in crime prevention, security, and disaster relief.
A traditional microphone obtains an acoustic signal by converting the sound wave into
electric signals through an internal diaphragm. However, since the energy of a sound
wave attenuates as the distance increases when propagating in the air, it is difficult to
acquire distant sounds using traditional microphones. To solve this problem, parabolic
microphones and shotgun microphones have been developed [1]. These microphones can
pick up remote voices by changing the shape and position of the diaphragm. When using
these microphones to acquire remote sound, however, the noise around the microphone
will also be picked up. Therefore, it is difficult to pick up only the distant target sound
in a noisy environment. Based on the fact that a laser can reach over a long distance
and its energy attenuates slowly, systems using a laser Doppler vibrometer (LDV) [2] to
acquire sound have been proposed [3–5]. By emitting a laser beam to a vibrating object
and receiving the reflected light, an LDV can compare the phase difference between the
reflected light and reference light in real time to calculate the current vibration velocity
of the object. Thus, the vibration of the sound source can be restored from the calculated
vibration velocity. This technology is used in many fields such as industrial and medical
measurements [6–8].

When acquiring sound using an LDV from an irradiated object, however, the observed
speech is distorted by the vibration characteristics of the object. In other words, non-
stationary noise due to the technical design of an LDV is mixed in the observed speech and
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phase delay occurs due to the reflective and vibration characteristics of the irradiated object.
Moreover, there is a lack of observed speech components in the small amplitude response
frequency bands. Therefore, to obtain high-quality speech using an LDV, it is necessary to
apply processing such as non-stationary noise suppression and high-frequency component
restoration to the observed speech.

Speech enhancement methods for LDVs have been proposed [9–12]. Li et al. [9]
developed a method of first using a band-pass filter to filter out the noise in the non-voice
frequency band of the acquired speech and then using a Wiener filter to reduce the noise of
the speech signal. Peng et al. [10] proposed acquiring speech with two LDVs then applying
the coherent-to-diffuse ratio (CDR) and multi-channel linear prediction (MCLP) between
the acquired two-channel signals for noise reduction. However, these methods only execute
noise-reduction processing for the acquired speech, and any components missing due to
the frequency response are not restored. Xie et al. [11] proposed a method for encoding
the mapping between observed speech by using an LDV and clean speech as an auxiliary
feature to improve the speech recognition accuracy in a noisy environment, but this method
still does not solve the problem of degradation caused by the vibration characteristics of
the irradiated object. In recent years, deep neural networks (DNNs) have shown excellent
results in speech signal processing [13–17]. With these conventional speech enhancement
methods, the mapping between the input power spectrum and target power spectrum can
be learned through the network, and the phase of the observed speech is generally used
when restoring the speech [13,14] or directly inputting the waveform into the network to
learn the mapping of the observed speech and clean speech [15]. The research on phase is
also gradually attracting attention. When the phase information is unknown, the initial
phase spectrum can be learned from the power spectrum and then adjusted using the
Griffin–Lim algorithm (GLA) [16,17]. Since the observed speech has various types of
deterioration, conventional speech enhancement methods cannot be effectively applied
directly to the observed speech from LDVs.

Considering the deterioration of observed speech, we propose two speech-enhancement
methods that are based on the frequency and time domains, respectively. Both methods
use multiple DNNs to handle different types of deterioration. With our frequency-domain-
processing method (hereafter, short-time Fourier transfer (STFT)-based method), the noise
power in the power spectrum of the observed speech is first removed. The phase differ-
ence between the observed speech and clean speech is then calculated using the noise-
suppressed power spectrum to obtain the phase spectrum of the enhanced speech. With our
time-domain-processing method (hereafter, waveform-based method), the low-frequency
waveform is first restored, then the high-frequency waveform is estimated using the re-
stored low-frequency waveform. We conducted experiments to evaluate the proposed
methods, and the results indicate that both methods can effectively handle most types
of deterioration in the observed speech from LDVs, an improvement over conventional
speech enhancement methods.

This paper is organized as follows. Section 2 introduces the characteristics of observed
speech from LDVs and the two proposed methods. Section 3 presents the evaluation
experiments we conducted to evaluate the effectiveness of the proposed methods and the
results. Section 4 concludes this paper and introduces future work.

2. Proposed Speech Enhancement Methods for LDVs

We first discuss the problems with LDVs when acquiring sounds then introduce the
two proposed speech-enhancement methods, i.e., STFT- and waveform-based methods.
The STFT-based method involves STFT-based two-stage processing of amplitude and phase
reconstructions, and the waveform-based method involves waveform-based two-stage
noise suppression processing and high-frequency component reconstruction. Each method
is described in the following sections. All variables are listed in Table 1.
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Table 1. List of notations.

Variable Signification Variable Signification

x Clean speech φx Phase spectrum of clean speech

y Observed speech φy Phase spectrum of observed speech

xNB Narrow-band clean speech φPD Phase difference between φx and φy

yNB Narrow-band observed speech K Fourier transform length

xWB Wide-band clean speech k Frequency index

yWB Wide-band observed speech m Frame index

|XLPS| Log-power spectrum of clean speech n Sampling index

|YLPS| Log-power spectrum of observed speech ˆvalue Estimated value

2.1. Problems with Sound Measurement Using LDVs

The sound wave can be restored by measuring the vibration generated by sound
excitation. An LDV is a device that measures the moving velocity of an object by calculating
the phase difference between the reference light and reflected light that irradiates the object
surface [3]. Since a laser beam has high straightness, it is possible to measure vibration
occurring far away and acquire only the sound near the irradiated object not affected by
the noise surrounding the LDV. Therefore, the speech acquired from an LDV includes the
frequency characteristics of the vibrating object. Therefore, the sound quality of observed
speech greatly depends on the shape and vibration characteristics of the object. For example,
objects with rough surfaces will cause tiny changes in the intensity and direction of reflected
light. This also causes noise to mix into the observed speech. The vibration characteristics
can also result in a lack of speech components in a small amplitude and phase delay in
the frequency spectrum, as shown in Figure 1. Figure 1 also shows the spectrogram of the
observed speech acquired from different irradiated objects, which are common everyday
objects. From Figure 1, it can be seen that there are varying degrees of noise and a lack of
speech components (see Figure 1c 2–5 kHz), and certain frequency bands are enhanced
(see Figure 1c 5–8 kHz). We selected the observed speech in Figure 1b PET bottle as the
processing object that has the greatest lack of speech components at the frequency band of
3–8 kHz with a noise of about 30 dB.

(a) (b) (c)

Figure 1. Cont.
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(d) (e) (f)

Figure 1. Power spectrum of observed speech acquired from different irradiated objects, i.e., (a) clean
speech, (b) PET bottle, (c) cardboard box, (d) printing paper, (e) aluminum sheet, and (f) plastic
plate. All objects were placed about 0.1 m from the sound source, and the output sound pressure was
85 dB(A).

2.2. Stft-Based Speech Enhancement

Figure 2 shows the power spectrum of clean speech (a), observed speech (b), amplitude
response of the observed object (c), and phase difference between the observed speech
and clean speech (d). As shown in Figure 2c, the amplitude response tends to decrease at
high frequencies. From the left figures of Figure 2a,b, when the amplitude of the speech
component is sufficiently smaller than the noise, the speech component in the frequency
band of 4–8 kHz becomes unobservable. As shown in the right figures of Figure 2a,b, the
phase spectrum has a complicated structure, so it is difficult to directly learn the mapping
between the phase spectrum of observed speech and clean speech. As shown in Figure 2d,
the phase difference between the observed speech and clean speech is strongly related to
the amplitude of the observed speech. Therefore, with the STFT-based method, the power
spectrum of enhanced speech is first estimated from the power spectrum of the observed
speech, then the phase difference between the enhanced speech and observed speech is
estimated using the power spectrum of the observed speech. Most speech components
above 4 kHz are unvoiced, and the human ear is not sensitive to the phase of such unvoiced
components, similar to white noise. Therefore, to increase the phase-restoration accuracy
of the voiced components, only the 0–4 kHz frequency band is processed during phase
restoration. For frequencies above 4 kHz, the phase of the observed speech is applied.

Figure 3 shows the processing procedure of the STFT-based method. Both the power
and phase spectra are processed using DNNs. In the learning stage, the logarithmic
power spectrum |XLPS| ∈ Rk×m, |YLPS| ∈ Rk×m (k, m are frequency and frame indices,
respectively) and the phase spectrum φx ∈ Rk×m, φy ∈ Rk×m are first extracted from clean
speech x and observed speech y by Fourier transform. In the DNN for amplitude-spectrum
reconstruction, the input and target of the network are |YLPS| and |XLPS|, respectively, and
optimized by minimizing the mean squared error (MSE) between them. The structure of
this DNN consists of two long short-term memory (LSTM) layers and three fully-connected
layers, as shown in Figure 4. The activation function uses a rectified linear unit (ReLU).
The input of the DNN for phase-spectrum estimation is |YLPS| and the target is the phase
difference φPD ∈ Rk×m obtained from φx and φy. Since the phase spectrum has a period of
2π, the loss function used for learning is defined using Equation (1), i.e., the sum of the
cosine distances between the input phase difference and target phase difference for each
frame at a low-frequency band of 0–4 kHz.

LossPD(m) =

K
4 +1

∑
k=0

(1− cos(φPD(k, m)− φ̂PD(k, m))) (1)
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As shown in Figure 5, the structure of the DNN for phase difference estimation consists
of five convolutional layers. The activation function uses gated linear units (GLU) [18].
Both DNNs used Adam [19] to calculate the gradient.

(a)

(b)

(c) (d)

Figure 2. Power and phase spectrum of clean speech and observed speech and phase difference.
(a) Power spectrum of clean speech (left) and its phase spectrum (right). (b) Power spectrum of
observed speech (left) and its phase spectrum (right). (c,d) Amplitude response and phase difference
between (a,b), respectively.

In the speech enhancement stage, the logarithmic power spectrum |XLPS| of the
recorded speech is input to both DNNs, and the estimated logarithmic power spectrum
|ŶLPS| and estimated phase difference φ̂PD are calculated. The reconstructed phase is
obtained by adding the estimated phase difference φ̂PD and phase φPD of the observed
speech. Finally, the enhanced speech can be obtained by inverse Fourier transform using
|ŶLPS| and φ̂PD.
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Figure 3. Block diagram of proposed STFT-based method.

Figure 4. Structure of DNN for amplitude spectrum reconstruction.

Figure 5. Structure of DNN for phase spectrum reconstruction.

2.3. Waveform-Based Speech Enhancement

Figure 6 shows the processing procedure of the waveform-based method. As described
above, speech shows the obvious harmonic structure in the low-frequency bands and white
noise distribution in the high-frequency bands. Therefore, with the waveform-based
method, low-frequency and high-frequency components are processed separately.
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Figure 6. Block diagram of the proposed waveform-based method.

In the learning stage, since the high-frequency components of the observed speech
x do not have the harmonic structure of speech, the high-frequency components of x
and clean speech y are first removed by down-sampling to increase the accuracy of low-
frequency component restoration. Down-sampled speech xNB and yNB are then input
to the noise suppression DNN to train the network. Then, the low-frequency-enhanced
speech x̂NB are up-sampled to match the length of the clean speech. Finally, the up-sampled
speech x̂WB and y are each 8-bit quantized by µ-law [20] and used to train the DNN for
high-frequency restoration.

The MSE is the most common loss function for deep learning. If set MSE as the loss
function, its gradient is given by the derivative of MSE that x̂NB − yNB. Here, the power
of the speech signal concentrates in the low-frequency range. In other words, x̂NB − yNB

is almost determined by the amplitude difference in the low-frequency bands, which is
beneficial to the restoration of low-frequency signals. Moreover, when training a network
on the basis of the MSE, the waveform of the recovered high-frequency component may
be smoothed more than clean speech [21]. Therefore, the network with the MSE as the
loss function is used for low-frequency band noise suppression. As shown in Figure 7,
the noise-suppression DNN consists of convolutional layers with a dilated convolution
structure of eight layers. The loss function and activation functions use the MSE and
parametric ReLu (PReLU) [22], respectively.

Figure 7. Structure of noise suppression DNN.

In the high-frequency component restoration process, recurrent neural networks
(RNN) are used to predict the sample at time n by using the previous samples. By 8-bit
quantization of the waveform, the amplitude of the waveform becomes an integer of 0–255,
which will be input to the network. The output of the last fully connected layer is the
probability distribution of each sample, which is a 256-dimensional vector. Figure 8 shows
the network structure. The DNN for high-frequency component reconstruction consists of
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two LSTM layers and two fully-connected layers and processes the input waveform sample
by sample. Equation (2) shows the processing of the LSTM layer at time n.

S(n) = G(S(n− 1), x̂WB(n)) (2)

Here, S(n) is the LSTM output, x̂NB(n) is the network input, and G(·) is the activation
function of the LSTM. The output ŷWB(n) at time step n is based on the conditional
probability of Equation (3).

p(ŷWB(n)|x̂WB(0), x̂WB(1), x̂WB(2), ..., x̂WB(n)) = FC(S(n)) (3)

Here, FC(·) is the output of the fully-connected layer. The DNN for high-frequency
restore is a classification network with cross-entropy as the loss function.

Figure 8. Structure of DNN for high-frequency restoration.

In the speech enhancement stage, high-frequency components are first removed from
the observed speech x by down-sampling. The down-sampled speech xNB is then subjected
to noise suppression by using the noise suppression DNN to enhance the low-frequency
components. Then, up-sample x̂NB, which is the result of low-frequency enhancement and
8-bit quantized with µ-law. The results are input to the DNN for high-frequency component
restoration, and the high-frequency components are reconstructed. Finally, the restored
speech is obtained by decoding the output ŷWB of the DNN for high-frequency restoration
using µ-law.

3. Evaluation Experiments

This section introduces the data collection for training and the hyperparameter setting
of the network for objective experiments to evaluate the effectiveness of the proposed
methods.

3.1. Training Data Set-Up

Speech data for network training were recorded using an LDV. The recording condi-
tions are listed in Table 2, The experimental setup is shown in Figure 9, and the recording
landscape is shown in Figure 10. An empty PET bottle with a capacity of 0.5 L was used
as the measurement object. By using an empty PET bottle, the effect of reverberation due
to the air inside the bottle can be considered. We set 4620 sentences in TIMIT Acoustic
Phonetic [23] as the training database. Each sentence was recorded twice to create the
experimental data using a total of 9240 sentences. Of these, 9000 (about 8 h) were used for
training the network, and 240 (about 12 min) were used for evaluation.
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Table 2. Experimental conditions.

Environment Sound-Proof Room

Ambient noise level 20.8 dB

Sampling frequency 16 kHz

Sound pressure of sound source 85 dB(A)

Quantization bit rate 16 bits

Data TIMIT Acoustic Phonetic
Continuous Speech Corpus
9000 files (8 h) for training
240 files (12 min) for validation

Audio interface Roland OCTA-CAPTURE UA-1010

LDV Equipment type Polytec VibroFlex Xtra VFX-I-120

Software & libraries Matlab R2022a, Deep learning HDL tool box v1.3

Vibrating object PET-bottle

Figure 9. Experimental setup.

Figure 10. Experimental recording landscape.

3.2. Hyperparameters and Training Conditions
3.2.1. Stft-Based Method

When extracting STFT features, the Fourier transform length was set to 1024, and
the frame shift length was set to 256. Considering the symmetry of the discrete Fourier
transform, the input and output dimensions of the DNN for amplitude-spectrum recon-
struction were set to 513 for each frame. The number of units in the LSTM layer and
intermediate fully-connected layer was set to 1024, and the learning rate was set to 0.001. In
the phase-recovery DNN, considering the continuity of the spectrum in the frame direction,
a total of five frames were input, including two frames adjacent before and after the current
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one-output frame. In the convolutional layers, the convolution kernel size of the first layer
was set to 5× 9, and the others were set to 1× 9. The number of kernels in the convolutional
layer was 1 in the output layer and 128 in other layers. The learning rate was set to 0.00001.

3.2.2. Waveform-Based Method

The input and output of the noise-suppression DNN were waveforms of 2048 samples.
The DNN consists of eight convolutional layers with a dilated convolution structure, and
the dilated factors are set to 2n, n = 0, 1, . . . , 7. The convolution kernel size was 9× 1.
The number of kernels in the output layer was 1, and the other layers were 128. The
learning rate was set to 0.0001. The number of units of the LSTM layer and fully-connected
layer used for the high-pass reconstruction DNN was set to 1024. When training the
network, the current time step sample was predicted using the previous 480 samples with
backpropagation through time (BPTT) [24]. The learning rate was set to 0.0001, the same as
the noise-suppression DNN.

3.3. Evaluation Experiments for Stft-Based Method

To confirm the effectiveness of the phase spectrum with the proposed STFT-based
method, we conducted an evaluation experiment using the observed speech, enhanced
speech restored only by amplitude-spectrum reconstruction, enhanced speech restored by
both amplitude spectrum and phase spectrum constructed using the GLA [25,26] (200 itera-
tions) with the initial phase of observed speech, and enhanced speech with the proposed
STFT-based method. The amplitude spectrogram of each speech is shown in Figure 11. It
can be seen from Figure 11 that the result Figure 11e of the proposed STFT-based method
has less noise than the result Figure 11c,d. And in particular, it can be confirmed that the
noise in the band below 0–1 kHz was suppressed, and the harmonic structure became clear.

(a) (b) (c)

(d) (e)

Figure 11. Spectrogram of speech-enhancement results: (a–e) are clean speech, observed speech,
enhanced speech with reconstructed amplitude and observed phase, enhanced speech with re-
constructed amplitude and phase reconstructed using GLA, and enhanced speech with proposed
STFT-based method], respectively.
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To evaluate the proposed phase reconstruction method, we conducted an evaluation
experiment using the phase of the observed speech, the phase applied to the GLA, and
the phase reconstructed with the proposed method. Figure 12 shows the cosine distance
between the restored phase and clean speech phase, and the smaller the cosine distance,
the higher the accuracy of phase reconstruction. The cosine distance with the proposed
method is about 0.4 smaller than that of using the GLA in the frequency band of 0–4 kHz.
In the 0–8 kHz band, the cosine distance with the STFT-based method was about 0.2 smaller
than that of the GLA. These results indicate the effectiveness of the STFT-based method for
phase reconstruction.

Figure 12. Cosine distance of reconstructed phases with each method.

3.4. Evaluation Experiment for Waveform-Based Method

To confirm the effectiveness of the proposed waveform-based method, we conducted
evaluation experiments using the observed speech, speech with only noise suppression,
and that with the waveform-based method. Figure 13 shows the amplitude spectrum of
each speech. The high-frequency components were restored with the waveform-based
method and the noise in high-frequency bands was smaller than those in Figure 13c.
As shown in Figure 13c, the noise-suppression DNN of the waveform-based method
sufficiently enhanced speech in the low-frequency band. Figure 13b–d were evaluated in
each frequency band using the criterion of log-spectral distance (LSD) [27]. The LSD is
defined by the following equation, and the smaller the value, the less speech degradation.

LSD =

√√√√ 1
f1 − f0

f1

∑
k= f0

(
10log10

P(k)
P̂(k)

)2

(4)

Here, f0 and f1 are the frequency band ranges, and P and P̂ are the clean and estimated
speech powers, respectively. Figure 14 shows the LSD in each frequency band. The LSD
was about 0.3 dB smaller in the 4–8 kHz band where the high-frequency band was restored.
In the 0–4 kHz band, the difference in the LSD between the presence and absence of high-
frequency restoration was very small. Therefore, the effectiveness of the waveform-based
method was confirmed.
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(a) (b)

(c) (d)

Figure 13. Spectrogram of speech-enhancement results: (a–d) are clean speech, observed speech,
speech obtained by only noise suppression, speech enhanced with proposed waveform-based method

Figure 14. LSD of enhanced speech with each method at each frequency band.

3.5. Evaluation Results and Discussion

To confirm the effectiveness of the proposed methods, we conducted speech enhance-
ment experiments using speech recorded with an LDV. We used wide-band perceptual
evaluation of speech quality (PESQ), LSD, and short-time objective intelligibility (STOI) as
evaluation criteria to compare sound quality, degree of deterioration, and intelligibility. The
higher the PESQ and STOI, the higher the sound quality and intelligibility. The objects for
comparison were clean speech, observed speech, the result of speech enhancement based
on the conventional method [9], the result of the STFT-based method, and the result of the
waveform-based method. Figure 15 shows the spectrogram, and Table 3 shows the evalua-
tion results of each speech. From Figure 15, the noise was suppressed with both proposed
methods. With the conventional method, band-pass filters were used to completely remove
speech components that were lacking due to the frequency response, and the proposed
methods restored these components. As shown in Table 3, it was confirmed that the PESQ
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scores of the proposed methods were almost the same as that of the conventional method;
the PESQ was about 0.5 higher than the observed speech. The proposed methods had
smaller LSDs than the conventional method. With the conventional method, the LSD was
larger than the proposed methods because it is difficult to enhance speech in the 4–8 kHz
frequency band of the observed speech where the noise is larger than the speech. For STOI,
the proposed methods improved by about 0.08 compared with the recorded speech, and
improved by about 0.06 compared with the conventional method.

It can be concluded from the above experimental data that, compared with the con-
ventional methods, the proposed methods significantly improve the sound quality of the
observed speech. Moreover, compared with the single-stage DNN-based method, the two-
stage processing can also better deal with the various deterioration in the observed speech.

(a) (b) (c)

(d) (e)
Figure 15. Examples of clean, observed, and enhanced speech spectrograms: (a–e) are clean speech,
observed speech, speech enhanced with the conventional method, speech enhanced with proposed
STFT-based method, and speech enhanced with the proposed waveform-based method, respectively.

Table 3. Objective evaluation result of each method.

PESQ Score LSD [dB] STOI Score

(b) 1.76 ± 0.40 1.62 ± 0.10 0.85 ± 0.04
(c) 2.25 ± 0.35 2.17 ± 0.30 0.87 ± 0.04
(d) 2.25 ± 0.30 1.09 ± 0.08 0.93 ± 0.02
(e) 2.35 ± 0.30 1.11 ± 0.08 0.94 ± 0.03

(b) observed speech, (c) conventional method, (d) proposed method 1, (e) proposed method 2, respectively.

4. Conclusions

We proposed two speech-enhancement methods with two-stage processing based on
DNNs for reducing distortion of speech observed with an LDV, i.e., a method using two-
stage processing with amplitude-spectrum reconstruction and phase-spectrum estimation
DNNs (STFT-based method), and a method with two DNNs of noise suppression and
high-frequency component reconstruction (waveform-based method). Since an LDV uses
a laser to measure vibrations caused by sound waves, various types of deterioration are
mixed in due to the frequency response of the irradiated object. Due to these various
types of deterioration, there is a problem that the accuracy of the conventional speech
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enhancement method for LDV is unsatisfactory. Objective evaluation experiments showed
that the proposed methods improved enhancement accuracy by comparing them with the
conventional method in terms of sound quality, degree of deterioration, and intelligibility.
The methods solve the problem of sound-quality degradation when using LDVs to acquire
speech. These methods can be applied to recording sounds from areas where people cannot
enter, such as disaster sites, or to recording target speech in noisy environments, such as
recording the sound of a stage at a concert.

We plan to study differences in enhancement accuracy due to the loss function in the
proposed STFT-based method. We also plan to investigate a speech enhancement method
that takes into account the deterioration of the observed speech due to changes in the
material of the measurement object and an increase in the distance between the irradiated
object and LDV.
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