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Abstract: Electroencephalography (EEG)-based emotion recognition technologies can effectively help
robots to perceive human behavior, which have attracted extensive attention in human–machine
interaction (HMI). Due to the complexity of EEG data, current researchers tend to extract different
types of hand-crafted features and connect all frequency bands for further study. However, this may
result in the loss of some discriminative information of frequency band combinations and make the
classification models unable to obtain the best results. In order to recognize emotions accurately, this
paper designs a novel EEG-based emotion recognition framework using complementary information
of frequency bands. First, after the features of the preprocessed EEG data are extracted, the com-
binations of all the adjacent frequency bands in different scales are obtained through permutation
and reorganization. Subsequently, the improved classification method, homogeneous-collaboration-
representation-based classification, is used to obtain the classification results of each combination.
Finally, the circular multi-grained ensemble learning method is put forward to re-exact the charac-
teristics of each result and merge the machine learning methods and simple majority voting for the
decision fusion. In the experiment, the classification accuracies of our framework in arousal and
valence on the DEAP database are 95.09% and 94.38% respectively, and that in the four classification
problems on the SEED IV database is 96.37%.

Keywords: electroencephalogram; emotion recognition; homogeneous collaboration representation;
circular multi-grained scanning; ensemble learning

1. Introduction

Emotion is human beings’ subjective consciousness that can reflect their current phys-
iological and psychological state and affect their cognitive process, communication, and
decision-making ability in daily life [1]. Many studies indicate that emotion recognition can
improve the communication quality between humans and intelligent devices, so the auto-
matic recognition of emotional states has become indispensable [2,3]. In general, emotion
recognition methods rely on physiological data such as blood pressure, electrocardiogram
(ECG), and functional magnetic resonance imaging (FMRI), as well as non-physiological
data such as eye movements, expressions, and speech [4,5]. Relatively, methods based
on physiological data typically produce better results because they are less susceptible to
subjective will.

As a physiological signal that records electrical changes in brain activity, EEG signals
have received a lot of attention in neuroscience, psychology, and clinical medicine due to
their ability to capture and reflect emotional states in real time, which enables relevant
researchers to obtain convincing and unbiased results. Consequently, EEG signals are
widely used in engineering, education, and medical research [6–8].

Although promising results have been obtained with regard to EEG-based emotion
recognition methods, it remains a challenge to integrate useful EEG information to improve
machine learning prediction [9]. The interesting frequency range of EEG signals can be
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divided into five frequency bands based on the rhythmic characteristics. As the information
interaction of brain waves is a cross-frequency coupling process among the frequency
bands [10,11], it is reasonable to take this interaction effect into account when establishing
an EEG-based emotion recognition model. Additionally, from the perspective of statistical
parametric maps (SPMs), the band energy of EEG signals has a certain correlation, and the
frequency band beta is especially correlated with alpha [12]. This can prove that there is an
interaction between different EEG frequency bands.

To utilize the interacted information from different frequency bands, the emotion
recognition framework that uses the combinations of all the adjacent frequency bands is
designed to mine the complementary information as much as possible. The entire process
is shown in Figure 1. In the data preparation process, the raw EEG signals are preprocessed
for power spectrum density (PSD) extraction. After that, in the first step of the framework,
the combinations of the adjacent frequency bands are considered as a subset, each subset
is divided into a training subset and testing subset, respectively, and each training subset
and the corresponding testing subset are both tested by the homogeneous-collaboration-
representation-based classification (HCRC) method. In the second step, the testing results
of all the training subsets and testing subsets are spliced together, respectively, to form a
testing decision set and a training decision set. Then, the circular multi-grained ensemble
learning (CGEL) method is used to complete the decision fusion and obtain the final
classification result of the testing decision set.
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Figure 1. The flow chart of HCRC-CGEL framework.

The main contributions of our work include:

(a) The CRC_RLS method is optimized to retain the same dimension of the representation
coefficient in each category;

(b) The CGEL decision fusion method is designed to improve the prediction accuracy;
(c) An EEG-based classification framework HCRC-CGEL is constructed to utilize the

complementary information from different frequency bands;
(d) The experiments on two databases demonstrate the performance of the framework.

The remaining chapters of this paper are arranged as described below. We review
the different types of EEG features, current EEG-based emotion recognition methods, and
decision fusion methods in Section 2. We present the principle of HCRC-CGEL and the
related concepts, including PSD, the HCRC method, and the architecture of the decision
fusion method CGEL in Section 3. We present the used DEAP and SEED IV databases, the
preprocessing processes, and the experimental results in Section 4. The conclusions and
further work are demonstrated in Section 5.
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2. Related Work

On the basis of EEG signals, the emotion recognition technologies mostly concentrate
on extracting discriminative features and establishing effective emotion recognition models.
The commonly used features have mainly been based on the Fourier transform (FT), wavelet
transform (WT), statistics, and entropy [13–15]. These features have widely been used in
current studies, and each has its own set of benefits.

Driven by data, Sun et al. [16] proposed a feature extraction method in which the
EEG signals were encoded by an echo state network (ESN) and the features were extracted
by the recurrent autoencoder, and this method was more effective than the current SOTA
method. To save time and increase efficiency, Zhuang et al. [17] transformed the EEG
signals into intrinsic mode functions (IMFs), and the multidimensional information of IMF,
which has 8 channels, can be applied for emotion classification. To use the specificity of
EEG channels, Gupta et al. [18] switched the EEG signals into different sub-bands by the
flexible analytic WT so that the information potential could be applied for feature extraction
by those sub-bands. To overcome the disadvantages of manual features, Hu et al. [19]
proposed a ScalingNet that could dynamically generate many convolution kernels to make
a spectral map from the original EEG signal for emotion recognition.

The development of a high-performance classifier is another important stage in the
EEG-based emotion categorization model. Based on the convolutional neural networks
(CNNs), the complex neural network can be designed to produce inspiring emotion recogni-
tion results [20–22]. For example, using an extended CNN model combined with spectrum
theory, a graph CNN can learn structural information and different features at the same
time [23]. The dynamic graph CNN, which is different from the traditional graph CNN,
can take full advantage of the different channel information of EEG data through train-
ing the neural network and extracting more discriminative EEG features [24]. The long
short-term memory (LSTM), which can avoid gradient disappearance in the algorithm
backpropagation process, is applicable for dealing with time-related series problems [25].
The Bi-directional LSTM, which combines the forward and backward data of input on the
basis of LSTM, can capture different characteristics through the embedded loop structure
and acquire better classification results [26].

Despite the clear benefits of neural-network-based techniques, there are some draw-
backs as well. The neural-network-based methods require a lot of training data, and the
results largely rely on the adjustment of hyperparameters. However, due to the limitations
of equipment, manpower, and other reasons, the EEG dataset with a large sample size is dif-
ficult to obtain. To solve this problem, the sparse representation-based classification (SRC)
method uses the representation distance of the training set to minimize the regularized
residual and determines the classification results by the category that could produce the
minimum regularized residual. On the basis of SCR, the collaboration-representation-based
classification with regularized least squares (CRC_RLS) method considers the difference
in regularized residuals both in the target category and other categories, which has more
stable results in pattern classification problems [27].

In decision fusion, the results of each classifier are connected independently to obtain
the final result through some rules [28]. To preserve the maximal uniformity of decisions,
the Dempster–Shafer (DS) method takes all the pieces of available decisions into account
to combine the multimodal results [29]. Through the principle of minimum loss of the
training set, adaptive weight learning integrates the decisions through assigning different
weights to the results of each classifier [30]. The ensemble model, gcForest [31], which
uses multi-grained scanning to re-extract features and build an adaptive cascade forest for
representational learning, can automatically adjust the training process in the cascade forest
layers and is insensitive to the setting of hyperparameters [32]. However, the edge data
under the scanning rule would be ignored. Inspired by this problem, this paper designed
an ensemble learning method that is more suitable for decision fusion.
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3. Methods
3.1. Combinations of All the Adjacent Frequency Bands

The different frequency bands in EEG signals can reflect the specific brain conscious-
ness of humans [33,34], and the performances of the EEG-based emotion recognition
methods are closely related to the choice of the selected frequency bands [35]. Taking face
recognition task as an example, Shen et al. [30] explained that faces can show obvious
features and structures in different parts, and different parts provide complementary in-
formation to each other; reasoning by analogy, they considered that the combinations of
all the adjacent frequency bands have different emotional characteristics and complement
each other.

In view of the fact that different frequency bands contain identification and com-
plementary information, we assume that the combinations of all the adjacent frequency
bands have different emotional characteristics and complement each other. Based on this
assumption, we arrange the five frequency bands of EEG signals in order, and to the adja-
cent frequency bands, there are 15 combinations in total with the combined scale ranging
from one to five. For example, when we consider the situation of scale two, there are four
combinations, such as delta with theta, theta with alpha, alpha with beta, and beta with
gamma frequency bands.

3.2. The HCRC Method

CRC_RLS [27] is an unsupervised classification method that searches a representation
coefficient vector to combine the training set with the shortest representation distance
and determines the classification results by the categories with the minimal regularized
residual. As the data of different emotions are correlated, the regularized residuals of each
category are relatively small. If the sample numbers in different categories are uneven,
the dimension of the representation coefficient will be unequal when used to generate the
regularized residual of each category, and the classification result will be influenced to
some extent. To achieve better classification results, this paper proposes the HCRC method
to randomly select (and reject simultaneously) some samples to keep the sample number of
each category constant.

Specifically, for a dataset of sample size N, consider a training set Xtrain of a stimulus that
has n categories. The subset of the i-th category is noted as Xi =

[
xi1, xi2, . . . , xini ]

T ∈ Rni×m ,
where xij ∈ Rm×1 represents the j-th data of the i-th category with m elements, j =
1, 2, . . . , ni and i = 1, 2, . . . , n; then, the training set Xtrain can be expressed as Xtrain =[

X1
T , X2

T , . . . , Xn
T ]T ∈ R(∑ ni)×m . As shown in Figure 2, the sample number l of the

category with the minimum sample size in Xtrain is selected as the extraction number. For
category Xi, the simple random sampling method is used to sample l samples from it to

compose the sampled data
∼
Xi, and the sampled data from each category are combined

together to compose the extracted training set
∼
X =

[∼
X

T

1 ,
∼
X

T

2 , . . . ,
∼
X

T

n ]
T ∈ Rnl×m .

Appl. Sci. 2023, 13, x FOR PEER REVIEW  4  of  16 
 

3. Methods 

3.1. Combinations of All the Adjacent Frequency Bands 

The  different  frequency  bands  in  EEG  signals  can  reflect  the  specific  brain 

consciousness  of  humans  [33,34],  and  the  performances  of  the  EEG‐based  emotion 

recognition methods are closely related to the choice of the selected frequency bands [35]. 

Taking face recognition task as an example, Shen et al. [30] explained that faces can show 

obvious  features  and  structures  in  different  parts,  and  different  parts  provide 

complementary information to each other; reasoning by analogy, they considered that the 

combinations of all the adjacent frequency bands have different emotional characteristics 

and complement each other. 

In  view  of  the  fact  that  different  frequency  bands  contain  identification  and 

complementary  information,  we  assume  that  the  combinations  of  all  the  adjacent 

frequency  bands have different  emotional  characteristics  and  complement  each  other. 

Based on this assumption, we arrange the five frequency bands of EEG signals in order, 

and to the adjacent frequency bands, there are 15 combinations in total with the combined 

scale ranging from one to five. For example, when we consider the situation of scale two, 

there are four combinations, such as delta with theta, theta with alpha, alpha with beta, 

and beta with gamma frequency bands. 

3.2. The HCRC Method 

CRC_RLS  [27]  is  an  unsupervised  classification  method  that  searches  a 

representation  coefficient  vector  to  combine  the  training  set  with  the  shortest 

representation distance and determines the classification results by the categories with the 

minimal  regularized  residual.  As  the  data  of  different  emotions  are  correlated,  the 

regularized  residuals  of  each  category  are  relatively  small.  If  the  sample  numbers  in 

different categories are uneven,  the dimension of  the  representation coefficient will be 

unequal  when  used  to  generate  the  regularized  residual  of  each  category,  and  the 

classification  result will  be  influenced  to  some  extent. To  achieve  better  classification 

results,  this  paper  proposes  the  HCRC  method  to  randomly  select  (and  reject 

simultaneously) some samples to keep the sample number of each category constant. 

Specifically,  for  a  dataset  of  sample  size  𝑁 ,  consider  a  training  set  𝑋   of  a 

stimulus  that  has  𝑛   categories.  The  subset  of  the  𝑖 ‐th  category  is  noted  as  𝑋
𝑥 , 𝑥 , … , 𝑥 ∈ 𝑅 , where 𝑥 ∈ 𝑅  represents  the  𝑗‐th data of  the  𝑖‐th category 
with  𝑚   elements,  𝑗 1,2, … , 𝑛   and  𝑖 1,2, … , 𝑛 ;  then,  the  training  set  𝑋   can  be 

expressed  as  𝑋 𝑋 , 𝑋 , … , 𝑋 ∈ 𝑅 ∑ . As  shown  in Figure  2,  the  sample 

number  𝑙   of  the  category with  the minimum  sample  size  in  𝑋   is  selected  as  the 

extraction  number.  For  category  𝑋 ,  the  simple  random  sampling method  is  used  to 

sample  𝑙  samples from it to compose the sampled data 𝑋 , and the sampled data from 

each  category  are  combined  together  to  compose  the  extracted  training  set  𝑋
𝑋 , 𝑋 , … , 𝑋 ∈ 𝑅 . 

 
Figure 2. The flow chat of HCRC.



Appl. Sci. 2023, 13, 1954 5 of 16

For a testing sample x ∈ Rm×1, the representation distance from it to
∼
X can be

express as

d =‖ x−
∼
X

T
ρ ‖2

2 +λ ‖ ρ ‖2
2

=‖ x−∑n
i=1

∼
X

T

i ρi ‖2
2 +λ∑n

i=1 ‖ ρi ‖2
2

(1)

where ρ =
[
ρT

1 , ρT
2 , . . . , ρT

n
]T ∈ Rnl×1 are the representation vectors of

∼
X, ρi ∈ Rl×1 is the

representation coefficient of
∼
Xi, and λ is a regularization parameter. In Formula (1), the

minimum value of the representation distance d can be calculated by the least squares
estimation of ρ, which can be expressed as

ρ̂ = argmax
ρ

{
‖ x−

∼
X

T
ρ ‖2

2 +λ ‖ ρ ‖2
2

}
=

(∼
X
∼
X

T
+ λI

)−1∼
Xx

(2)

where ρ̂ ∈ Rnl×1 can be written as ρ̂ =
[
ρ̂T

1 , ρ̂T
2 , . . . , ρ̂T

n ]
T , where ρ̂i ∈ Rl×1 is the estimated

representation coefficient of
∼
Xi. Thus, the regularized residual of category

∼
Xi (i = 1, 2, . . . , n)

would be expressed as

ei =‖ x−
∼
X

T

i ρ̂i ‖2/ ‖ ρ̂i ‖2 (3)

Each category has a regularized residual ei, and the category with the minimum regu-

larized residual is the classification result of the HCRC method. For each sampled
∼
Xi, under

certain sparsity constraints,
∼
Xi only needs a small number of samples to represent x, which

proves that the imbalance of samples has little effect on the classification results. Therefore,
it is suitable to process the training sets of different categories into the same numbers of
samples, and this will make the dimension of ρ̂i in each type of training set the same. In
addition, the differences between the regularized residuals of each category are small, so
the units of data magnitude may slightly influence the classification results. In order to
eliminate that impact, we normalize the data before putting it into the HCRC method.

In the first step of our framework, for an EEG dataset, all the subsets of 15 adjacent
combinations are divided into the training subset and testing subset consistently and
respectively. Each training subset and testing subset has the corresponding prediction
result using the HCLC method, and the prediction result is noted as a column vector. For
the next step, the training decision set and testing decision set are made up by, respectively,
concatenating the results of all the training subsets and testing subsets by column for
decision fusion.

3.3. The CGEL Method

The decision fusion model CGEL is inspired by gcForest [31]. gcForest is designed to
re-extract features and then achieve classification through ensemble learning of random
forests. As the weight of the input data under the scanning rule of gcForest is uneven,
CGEL uses a circular multi-grained scanning method to generate majority voting of the
input samples. This gives equal weight to each element of the input sample and is more
suitable for decision fusion. In order to learn the structure of the scanned samples, CGEL
uses the ensemble learning of random forest (RF) [36], complete random forest (CRF) [37],
decision tree (DT) [38], and simple majority voting (SMV) layer by layer to learn the most
appropriate method for each cascade layer and the best number of the cascade layers.

The CGEL method can be divided into two steps: circular multi-grained scanning
and ensemble learning. Circular multi-grained scanning is designed to generate majority
voting features. In this section, the training decision set and testing decision set are noted
as Dtrain ∈ R(∑ ni)×15 and Dtest ∈ R(N−∑ ni)×15, respectively. The inputs of the circular
multi-grained scanning are the samples of the decision sets.
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As shown in Figure 3, for a sample t from the decision sets, considering that each
element of t should have the same weight in the scanning process, t is spliced back and
forth to form a closed loop t*. The closed loop t* is scanned by the sliding window of size
wi ∈ R (wi is smaller than the number of combinations) and stride si ∈ R(si = 1, 2, 3). In
one scanning process, a wi-dimensional scanned vector is produced by sliding the window
for one stride, and the scanning process stops when the head of the sliding window slides
a full circle in t*. One scanning process produces one scanned set Wi with several scanned
vectors. To each scanned vector, there is a simple majority vote of its element; all the voted
elements are spliced together to generate the scanned features lwi ,si . By setting up three
different sizes of sliding windows wi and strides si, all the generated scanned features in
the three scanning process can be stitched together to compose the final concatenated vector
l*
w,s = (lw1,s1 , lw2,s2 , lw3,s3) ∈ R1×h, where h is the dimension of the concatenated vector.

Appl. Sci. 2023, 13, x FOR PEER REVIEW  6  of  16 
 

forth to form a closed loop  𝑡∗. The closed loop  𝑡∗  is scanned by the sliding window of 

size  𝑤 ∈ 𝑅   (𝑤   is  smaller  than  the  number  of  combinations)  and  stride  𝑠 ∈ 𝑅 𝑠
1,2,3 . In one scanning process, a 𝑤 ‐dimensional scanned vector is produced by sliding 

the window for one stride, and the scanning process stops when the head of the sliding 

window slides a full circle in  𝑡∗. One scanning process produces one scanned set 𝑊  with 

several  scanned vectors. To each  scanned vector,  there  is a  simple majority vote of  its 

element; all the voted elements are spliced together to generate the scanned features  𝑙 , . 

By setting up three different sizes of sliding windows 𝑤   and strides  𝑠 , all the generated 

scanned features  in the three scanning process can be stitched together to compose the 

final concatenated vector  𝑙 ,
∗ 𝑙 , , 𝑙 , , 𝑙 ,  ∈ 𝑅 , where  ℎ  is the dimension of 

the concatenated vector.   

 

Figure 3. The flow chat of circular multi‐grained scanning. 

For  example,  to  a  decision  vector  𝑉 0,0,1,1,3,1,0,1,2,1,1,0,0,0,0  with  fifteen 

elements, each element is a classified result of a combination. If we use a window (𝑤
12   to scan  𝑉  with a stride (𝑠   = 2), the scanned set is 

𝑊  =  0,0,1,1,3,1,0,1,2,1,1,0 ,  1,1,3,1,0,1,2,1,1,0,0,0 , 3,1,0,1,2,1,1,0,0,0,0,0 , 

0,1,2,1,1,0,0,0,0,0,0,1 ,  2,1,1,0,0,0,0,0,0,1,1,3 , [1,0,0,0,0,0,0,1,1,3,1,0], 

0,0,0,0,0,1,1,3,1,0,1,2 ,  0,0,0,1,1,3,1,0,1,2,1,1 . 

where the elements of 𝑊   are scanned vectors, and all the simple majority vote results of 

the  elements of  scanned vectors are  1,1,0,0,0,0,0,1 . Then,  the  scanned  feature of one 

scanning process is  𝑙 , = [1,1,0,0,0,0,0,1]. 

Inspired  by  the  strategy  of  the  level‐by‐level  step  of  gcForest,  ensemble  learning 

adopts  a  cascade  structure  to  acquire  and  transmit  feature  information  through  the 

procedure of cascade layers. Each layer is an ensemble of RF, CRF, DT, and SMV.   

The training process of ensemble learning is shown in Figure 4. All the samples of 

the  𝐷   and  𝐷   are,  respectively,  scanned  to  generate  the  corresponding 

concatenated  vectors  to  compose  the  training  feature  set  𝐿 ∈ 𝑅 ∑   and  testing 

feature  set  𝐿 ∈ 𝑅 ∑   before  training.  For  𝐿 ,  four  prediction  results  are 

generated by RF, CRF, DT, and SMV through self‐training of  𝐿 , and from the four 

results, the best result  𝑝 ∈ 𝑅 ∑  with the highest prediction accuracy  𝑎   is chosen as 
the enhanced  feature.  𝑝   is concatenated with  𝐿   to generate an enhanced  training 

feature set  𝐿 𝐿 , 𝑝 ∈ 𝑅 ∑   as the second layer input. There are also four 

predicted results in the second layer. If the best result  𝑝 ∈ 𝑅 ∑   from the four results 

of the second layer with highest prediction accuracy  𝑎   is better than  𝑎 ,  𝑝   in this layer 
will be concatenated with  𝐿   to generate a new enhanced training feature set  𝐿

Figure 3. The flow chat of circular multi-grained scanning.

For example, to a decision vector Vi = [0, 0, 1, 1, 3, 1, 0, 1, 2, 1, 1, 0, 0, 0, 0] with fifteen
elements, each element is a classified result of a combination. If we use a window ( wi = 12)
to scan Vi with a stride (si = 2), the scanned set is

Wi= {[0, 0, 1, 1, 3, 1, 0, 1, 2, 1, 1, 0] , [1, 1, 3, 1, 0, 1, 2, 1, 1, 0, 0, 0], [3, 1, 0, 1, 2, 1, 1, 0, 0, 0, 0, 0],
[0, 1, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1], [2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 3], [1, 0, 0, 0, 0, 0, 0, 1, 1, 3, 1, 0],

[0, 0, 0, 0, 0, 1, 1, 3, 1, 0, 1, 2], [0, 0, 0, 1, 1, 3, 1, 0, 1, 2, 1, 1]}

where the elements of Wi are scanned vectors, and all the simple majority vote results of
the elements of scanned vectors are {1, 1, 0, 0, 0, 0, 0, 1}. Then, the scanned feature of one
scanning process is lwi ,si = [1,1,0,0,0,0,0,1].

Inspired by the strategy of the level-by-level step of gcForest, ensemble learning adopts
a cascade structure to acquire and transmit feature information through the procedure of
cascade layers. Each layer is an ensemble of RF, CRF, DT, and SMV.

The training process of ensemble learning is shown in Figure 4. All the samples of
the Dtrain and Dtest are, respectively, scanned to generate the corresponding concatenated
vectors to compose the training feature set Ltrain ∈ R(∑ ni)×h and testing feature set Ltest ∈
R(N−∑ ni)×h before training. For Ltrain, four prediction results are generated by RF, CRF,
DT, and SMV through self-training of Ltrain, and from the four results, the best result p0 ∈
R(∑ ni)×1 with the highest prediction accuracy a0 is chosen as the enhanced feature. p0 is
concatenated with Ltrain to generate an enhanced training feature set L1

train =
[
Ltrain, p0] ∈

R(∑ ni)×(h+1) as the second layer input. There are also four predicted results in the second
layer. If the best result p1 ∈ R(∑ ni)×1 from the four results of the second layer with highest
prediction accuracy a1 is better than a0, p1 in this layer will be concatenated with L1

train to
generate a new enhanced training feature set L2

train =
[
L1

train, p1] ∈ R(∑ ni)×(h+2) as the next



Appl. Sci. 2023, 13, 1954 7 of 16

layer input. In addition, the process continues until the highest prediction accuracy ai does
not increase any longer or the number of iterations reaches a threshold.
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Then, the number of layers stops increasing and the training stops. The best result in
the last layer is the training result, and the method from RF, CRF, DT, and SMV to generate
the best result pi in each layer is noted and used in the testing process. The final results
of Ltest is computed through the trained number of layers and the corresponding noted
method from RF, CRF, DT, and SMV to obtain the best results in each layer.

4. Materials and Experiments
4.1. Database Introduction and Preprocessing

To assess the effect of the emotion recognition framework, we conduct the experiments
on two widely used public EEG databases, and Table 1 shows the particulars of the original
and preprocessed data in both databases.

Table 1. The details of the pre-processed database. (Arousal and valence are represented by A and V,
respectively; happy, sad, fear, and neutral are represented by H, S, F and N, respectively.)

Database Data Content Data Shape Data Description

DEAP

Raw data 40 × 32 ×
(128 × 63)

Video × channel ×
(sample rate × time)

Preprocessed data W1 × 128 sample number × (channel × band)
Preprocessed labels W1 × 2 sample number × (A, V)
Number of dataset 32 trial

SEED IV

Raw data 15× 62× (200× ni ) video × channel × (sample rate × time)
Preprocessed data W2 × 310 sample number × (channel × band)

Preprocessed labels W1 × 4 sample number × (H, S, F and N)
Number of dataset 45 trial

The DEAP [39] database contains the EEG signals with 32 channels and a 512 Hz
sampling rate from 32 subjects (50% female, mean age 26.9 years) watching 40 videos with
a length of 63 s (a one-minute music video plus a three-second baseline). Each subject
has to perform a trial in which they have to self-assess their arousal, valence, liking, and
dominance in each music video, and the self-assessment score is the label of the current
recorded EEG signal.

In our experiment, the preprocessing processes of the DEAP database are conducted
by downsampling the EEG signals to 128 Hz, eliminating the artifacts, and filtering the
signal into different frequency bands. Then, the PSD of each frequency band is extracted
with a window size of three seconds and no overlap. Additionally, in the initial moment of
each music video, there is a three-second baseline signal. Thus, each processed segment
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has twenty-one samples, the first one is a baseline and the last twenty are useful samples
with specific emotions. The PSD feature is obtained by the deviation of PSD from useful
samples and the baseline. Afterward, the PSD features of one trial with 32 channels and
four frequency bands are processed into the shape of W1 × 128, where W1 = 800. In addition,
we only use the assessment scores of arousal and valence as the labels for each trial.

The SEED IV [40] database records the EEG signals of 15 subjects (7 males and 8 fe-
males) through inviting them to watch emotionally stimulating videos. Each subject has
to watch 24 stimulating videos with four emotional states (happy, sad, fear, and neutral)
for about ni seconds on three different days. This means that the SEED IV database has
three sessions, each with 15 trials. For each participant, the EEG signals are recorded with
62 channels and a 1000 Hz sampling rate, and the labels of the recorded EEG signals are
the emotion states of the corresponding video.

In our experiment, we use the preprocessed dataset “de_movingAve” from the SEED
IV database. The preprocessing includes downsampling the EEG signals to 200 Hz, re-
moving the noise, eliminating the artifacts, and extracting the differential entropy (DE)
feature with a time window of four seconds without overlap. Through the transformation
provided by Shi et al. [41], the PSD features can be calculated by:

h(Xi) =
1
2

log(p(Xi)) +
1
2

log(
2πe

n
) (4)

where n is the length of the specific time window, h(Xi) is the DE feature, and p(Xi) is the
PSD feature. As the preprocessed data have 310 features of 62 channels with 5 frequency
bands and the video length is distinguished in each time, the transformed PSD feature has
the shape of W2 × 310, where W2 is the sample numbers of one subject and those in the
three trials are 851, 832, and 822, respectively.

4.2. Experimental Setting

In this paper, we only consider the subject-dependent pattern. Suppose the prepro-
cessed data of each subject are expressed as Data = [D1, D2, . . . , Db] ∈ RN×(b*m), where N
is the trial sample number, b is the frequency band number, m is the channel number, and
Di ∈ RN×m is the corresponding dataset of the i-th frequency band.

In the DEAP database, the labels of arousal and valence are concerned in our research.
Considering that these labels have scores between one and nine, the median of five is
set as the threshold to distinguish the scores of low and high labels. Thus, in the binary-
classification problem of the DEAP database with b = 4, the EEG data of each subject can be
expressed as Data = [D1, D2, D3, D4], and can be divided into 10 sub-datasets. For example,
the sub-dataset corresponding to the combination of alpha and beta is D23 = [D2, D3], and
that of beta and gamma is D34 = [D3, D4]. In the SEED IV database, there are four emotional
labels. Thus, in the four-classification problem of the SEED IV database with b = 5, the EEG
data of each subject are expressed as Data = [D1, D2, D3, D4, D5], which can be divided
into 15 sub-datasets. For example, the sub-dataset corresponding to the combination of
theta, alpha, and beta is D234 = [D2, D3, D4]. Each sub-dataset is used to train the HCRC
method in the same way.

Our framework aims to generate combinations of adjacent frequency bands to acquire
prediction results for all the combinations through HCRC and fuse the decisions according
to these prediction results by CGEL. For example, for one subject in the SEED IV database,
the processed EEG dataset is divided into a training set and a testing set, and the training set
and testing set are divided into 15 subsets each, which correspond to the 15 combinations.
All of the training subsets and testing subsets are then consistently and separately fed into
the HCRC method to obtain prediction results, which are noted as column vectors. The
training and testing decision sets are then constructed by concatenating all the training and
testing subsets by column. The final results of the testing decision set, which are also the
results of the testing set, are computed by putting the decision sets into the CGEL method.
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In the HCRC method, there is only one regularization parameter λ. In terms of
statistics, HCRC does not change the principles of CRC_RLS. The regulation parameter
λ produced the best classification outcomes in the range [0.1–1 × 10−6] when Zhuang
et al. [27] assessed the effectiveness of the CRC RLS method. Therefore, λ is set to 0.015 in
both datasets. In the CGEL method, we set 100 as the threshold, and, respectively, set (9,2),
(8,2), (7,2) and (14,2), (13,2), (12,2) as the window size and stride on DEAP and SEED IV
databases. In addition, after the first step in our framework, there are 10 or 15 prediction
results; we directly calculate the simple majority voting by row and record it as HCRC-SMV.
In this article, we compare the prediction results of HCRC-CGEL with HCRC-SMV, KNN,
SVM, and RF in the same training sets and testing sets in our experiments. In the KNN
method, the classification results of the DEAP and SEED IV databases are conducted by the
function neighbors.kNeighborsClassifier in the Python package sklearn, with the parameter
n_neighbors set to 10. In the SVM method, the penalty parameter C in the DEAP and SEED
IV databases is, respectively, selected from [0.05, 0.1, 0.5, 1,5] and [0.001, 0.005, 0.01, 0.05,
0.1] by the python sklearn packag’s model_select.GridSearchCV function to choose the
best. In the RF method, the classification results of the DEAP and SEED IV databases are
conducted by the function ensemble.RandomForestClassifier in the Python package sklearn,
with the parameter n_estimators set to 100 and random_state set to 1234. In addition, we
also compare other neural-networks-based SOTA methods to evaluate the advantages of
our framework.

The experiment in this paper involves running Python software on a Mac system
using the Core i5 processor.

4.3. Statistical Analysis

In this paper, precision, recall rate, and accuracy are used as evaluation indicators of
the experimental results of different methods, and the corresponding formula is calculated
as follows:

Precision =
TP

TP + FP
, (5)

Recall rate =
TP

TP + FN
, (6)

Accuracy =
TP + TN

TP + FP + TN + FN
, (7)

True positive (TP), true negative (TN), false positive (FP), and false negative (FN)
represent the number of positive data points that the framework predicts to be positive,
the number of negative data points that the model predicts to be negative, the number of
negative data points that the model predicts to be positive, and the number of positive
data points that the model predicts to be negative, respectively. In addition, the standard
deviation of all the subjects is used to assess the stability of the prediction results.

4.4. Performances on DEAP Database

In this section, the five-fold cross-verification prediction results are verified in arousal
and valence on the DEAP database through the comparison of HCRC-CGEL with SVM,
KNN, RF, and HCRC-SMV. Figures 5 and 6 show the prediction results of arousal and
valence on 32 subjects, respectively. As shown in these two figures, the overall trend of
each method is roughly the same in arousal and valence. Compared to SVM, KNN, and
RF, HCRC-CGEL and HCRC-SMV have the highest prediction accuracy in all the subjects.
In addition, the prediction accuracy of HCRC-CGEL in arousal and valence is higher than
that of HCRC-SMV on most subjects. However, the prediction results of SVM are unstable.
This may be the reason that the SVM does not find the optimal classification surface in the
binary classification in some subjects.



Appl. Sci. 2023, 13, 1954 10 of 16

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 16 
 

This may be the reason that the SVM does not find the optimal classification surface in the 

binary classification in some subjects. 

 

Figure 5. Results of each method for arousal on DEAP database. 

 

Figure 6. Results of each method for valence on DEAP database. 

The average accuracies of arousal and valence on all subjects of each method are 

shown in Table 2. The prediction accuracies of HCRC-CGEL are 94.93% in arousal and 

95.09% in valence, which are much higher than those of SVM, KNN, and RF. Compared 

with HCRC-SMV, the accuracy rates of arousal and valence are increased by 1.05% and 

0.83%, respectively. This proves that in the DEAP database, our decision fusion method 

outperforms simple majority voting. In the prediction results of the compared method, RF 

performs better than KNN and SVM on almost every subject, and the mean accuracies of 

RF are higher than those of KNN and SVM on the arousal and valence of the DEAP da-

taset. Figure 7 shows the confusion matrices of HCRC-CGEL on the DEAP database. The 

accuracy of low arousal and valence is, respectively, 93.41% and 96.08%, and that of high 

arousal and valence is, respectively, 94.19% and 95.82%. In addition, the precision and 

recall rates of arousal are, respectively, 95.06% and 94.75%, and those of valence are, re-

spectively, 94.65% and 95.33%. The standard deviations of HCRC-SMV and HCRC-CGEL 

are 3.33 and 3.00 on arousal, and 3.40 and 2.90 on valence, respectively, which is lower 

    

    

    

    

    

    

    

    

    

    

    

                                                       

S  

   

R 

HCRC S  

HCRC C  L

 rousal

Su  ects of     data ase

 
cc

u
ra

cy
  

  
 

 

    

    

    

    

    

    

    

    

    

    

    

                                                       

S  

   

R 

HCRC S  

HCRC C  L

 alence

Su  ects of     data ase

 
cc

u
ra

cy
  

 
 
 

 

Figure 5. Results of each method for arousal on DEAP database.
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Figure 6. Results of each method for valence on DEAP database.

The average accuracies of arousal and valence on all subjects of each method are
shown in Table 2. The prediction accuracies of HCRC-CGEL are 94.93% in arousal and
95.09% in valence, which are much higher than those of SVM, KNN, and RF. Compared
with HCRC-SMV, the accuracy rates of arousal and valence are increased by 1.05% and
0.83%, respectively. This proves that in the DEAP database, our decision fusion method
outperforms simple majority voting. In the prediction results of the compared method,
RF performs better than KNN and SVM on almost every subject, and the mean accuracies
of RF are higher than those of KNN and SVM on the arousal and valence of the DEAP
dataset. Figure 7 shows the confusion matrices of HCRC-CGEL on the DEAP database. The
accuracy of low arousal and valence is, respectively, 93.41% and 96.08%, and that of high
arousal and valence is, respectively, 94.19% and 95.82%. In addition, the precision and recall
rates of arousal are, respectively, 95.06% and 94.75%, and those of valence are, respectively,
94.65% and 95.33%. The standard deviations of HCRC-SMV and HCRC-CGEL are 3.33 and
3.00 on arousal, and 3.40 and 2.90 on valence, respectively, which is lower than those of
other methods. This means that our framework has good results on the DEAP database.

As shown in Table 3, our framework is compared with the SOTA methods of other
researchers on the DEAP database. For fairness, only the emotion recognition results from
the binary classification problem are considered in the comparison group. The results
demonstrate that our framework outperforms the SOTA methods in terms of average pre-
diction accuracy in the DEAP database, and that our decision fusion method outperforms
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SMV. Consequently, the framework for using the combinations of the adjacent frequency
bands can offer greater potential to obtain good results.

Table 2. Performance (%) of each method on DEAP database.

Dataset RF KNN SVM HCRC-SMV HCRC-CGEL

DEAP(A) 92.86 88.94 87.81 93.88 94.93
DEAP(V) 93.14 88.13 87.48 94.26 95.09
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Table 3. Mean accuracy in arousal and valence of DEAP database.

Method Arousal (%) Valence (%)

3DCNER (Zheng et al.) [42] 84.53 83.83
ERDL (Yin et al.) [43] 85.27 84.81

ERHGCN (Zheng et al.) [44] 88.79 90.56
SFE-Net (Deng et al.) [45] 91.94 92.49
CR-GCN (Jia et al.) [46] 93.46 94.78

Our Approach (HCRC-SMV) 93.88 94.26
Our Approach (HCRC-CGEL) 94.93 95.09

4.5. Performances on SEED IV Database

In this section, the five-fold cross-verification prediction results of a four-category
classification problem are verified through the comparison of HCRC-CGEL with SVM,
KNN, RF, and HCRC-SMV on the SEED IV database. In Figure 8, the overall accuracies
of HCRC-CGEL and HCRC-SMV are higher than those of SVM, KNN, and RF, and RF
outperforms KNN and SVM. The prediction results of HCRC-CGEL are better than those
of HCRC-SMV for most subjects in the three sessions.

Table 4 shows the average prediction accuracy rates of the five methods. The accuracy
rates of HCRC-CGEL in the three sessions are 96.36%, 96.97%, and 97.61%, which are better
than those of SVM, KNN, RF, and HCRC-SMV. In addition, Figure 9 shows the confusion
matrices of HCRC-CGEL on the SEED IV database. In the four classification problems,
except for the neutral emotion classification accuracy of session one, which is 94.41%, the
neutral emotion in the other session and all emotions in all the sessions are all over 96%.
The standard deviations of HCRC-SMV and HCRC-CGEL are 2.18 and 2.01, respectively.
This means our framework has good performance on the SEED IV database.

As shown in Table 5, our framework is compared with the SOTA methods of other
researchers on the SEED IV database. For the sake of fairness, only the emotion recog-
nition results of the four-classification problem are considered, and the final results are
represented by the average prediction accuracy of all subjects in each session and the corre-
sponding standard deviation. The results show that, compared with the SOTA methods,
our framework has higher classification accuracy and lower standard deviations on the
SEED IV database.
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Table 4. Performance (%) of different methods in the three sessions of SEED IV database.

Dataset RF KNN SVM HCRC-SMV HCRC-CGEL

SEED IV 1 91.64 84.94 86.84 96.25 96.36
SEED IV 2 91.31 84.53 87.67 96.80 96.97
SEED IV 3 93.51 87.89 90.28 97.52 97.61
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As this section only discusses the decision fusion results of 15 combinations of all
adjacent frequency bands, we have published the prediction results of each combination
in some used datasets (the arousal of the DEAP database and the third session of the
SEED IV database) on Github (https://github.com/zipore/HCRC-CGEL, accessed on 21
August 2022). The 5-fold cross-validation results indicate that the accuracy of the prediction

https://github.com/zipore/HCRC-CGEL
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increases with the number of adjacent frequency bands used. This can also illustrate that
the frequency bands have complementary information to each other.

Table 5. Mean accuracy and standard deviations (Std) on SEED IV database.

Method Accuracy (%) Std

MSFBEL (Shen et al.) [30] 82.97 11.06
BDAE (Zheng et al.) [40] 85.11 11.79
DCCA (Qiu et al.) [47] 87.45 9.23
CAN (Qiu et al.) [48] 87.71 9.74

Our Approach (HCRC-SMV) 96.86 2.18
Our Approach (HCRC-CGEL) 96.98 2.01

5. Discussion

This paper proposed an emotion recognition framework aimed at generating adjacent
frequency band combinations to obtain all of their prediction results through the HCRC
method and then using the CGEL method to fuse the prediction results. Through the
good performances of HCRC and CGEL, the framework could combine complementary
information from different combinations to achieve better classification results. This had a
significant impact on the accuracy of EEG-based emotion recognition.

The CRC_RLS method was initially proposed to recognize emotions in face data, and
encouraging results were obtained in the classification of other types of signals, such as EEG
signals and oral odor signals. In terms of statistics, HCRC did not change the principles
of CRC_RLS. As a result, our framework could also be applied to those various pattern
classification problems. The HCRC method classified the samples of the testing set by
taking the value of the representative error of each category of the training set, implying
that a large-sample-size dataset was not required. Consequently, in HCRC, we used simple
random sampling to balance the samples. Compared with CRC_RLS, the sampling step
of HCRC could unify the length of the representation coefficient of each category, which
could result in a more accurate classification.

In decision fusion, the results of CGEL were better than SMV in almost every subject.
This was benefited by the fact that CGEL used SMV to scan the decision set and ensemble
learning to obtain classification results. By learning the characteristics of the training set,
CGEL made the classification result of the testing set as close as possible to the self-testing
result of the training set. In terms of structure, CGEL adaptively decided the number
of layers to train a different structure for each subject, which could improve prediction
accuracy and save the calculation costs.

However, there were some limitations. According to the property of collinear vectors,
the process that the HCRC method used the regularized residual of the training set to
achieve classification did not require many samples. Therefore, HCRC rejected some
samples by simple random sampling. While this operation had a positive impact on public
databases such as SEED IV and DEAP due to their relatively uniform sample distribution,
it might not have the same positive effects on datasets with drastically uneven sample
sizes. Moreover, in order to calculate the representation coefficient, a large number of
matrix inverse calculations were necessary, and the size of the matrix was proportional
to the training sample size. This means that HCRC was only suitable for datasets with
small sample sizes. The advantages of CGEL were limited to some degree in the subject-
independent pattern. For large sample size data, CGEL might produce superior decision
fusion results.

The combinations of all adjacent different frequency bands could make use of the
complementary information to a certain extent, but the correlations of frequency bands in
different brain regions still needed to be refined. For example, taking the frontal lobe, the
parietal lobe, the temporal lobe, and the occipital lobe into account, appropriate channels
or brain regions selection for each adjacent frequency band combination could be used to
design a more accurate emotion recognition framework. Our experiment was conducted on
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the SEED IV database with the tags of sad, happy, neutral, and fear, and the DEAP database
with the tags of arousal and valence. In order to demonstrate the applicability of the
suggested method, the subject of the dataset could be enlarged to include more examples
from different cultural backgrounds, and the tag could be given a fuller emotional re-
sponse (valance and arousal, positive and negative). Following this, a more comprehensive
discussion of emotional space could be proposed.

In this paper, the PSD feature was used because it could represent the distribution
and energy strength of signal power over a frequency range [49]. However, the statistical
features, Fourier and wavelet-transform-based features, and some deep-learning-based
features, all of which were very effective in EEG-based emotion detection models, could
also be utilized to support the validity of the proposed method. As the distribution of
samples in the experiment’s databases was relatively balanced, there was a good prediction
result from HCRC in randomly selecting (and rejecting simultaneously) some samples to
keep the sample number of each category constant. However, in datasets with a highly
imbalanced sample size, this operation might not produce satisfactory results. In the
following work, CRC_RLS could be optimized by comparatively selecting a more suitable
method to solve the imbalance of sample size. With the limitation of HCRC on sample
size, our framework was based on the subject-independent pattern, and this made the
advantage of CGEL insufficient. The classifiers that were suitable for the subject-dependent
pattern could be considered to achieve more advantageous decision fusion results by the
CGEL method. In addition, the specific working mechanism of EEG signals was still not
clear, which is also one of the main goals of our future work.
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