
Citation: Bi, Z.; Xu, G.; Wang, C.; Xu,

G.; Zhang, S. A Method for

Translating Automotive

Body-Related CAN Messages Based

on Labeled Bits. Appl. Sci. 2023, 13,

1942. https://doi.org/10.3390/

app13031942

Academic Editor: Vicent Botti

Received: 28 December 2022

Revised: 27 January 2023

Accepted: 1 February 2023

Published: 2 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

A Method for Translating Automotive Body-Related CAN
Messages Based on Labeled Bits
Zixiang Bi 1 , Guosheng Xu 1,* , Chenyu Wang 1, Guoai Xu 2 and Sutao Zhang 1

1 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China
2 School of Computer Science and Technology, Harbin Institute of Technology, Shenzhen 518055, China
* Correspondence: guoshengxu@bupt.edu.cn

Abstract: Traditional mechanical parts have been increasingly replaced by in-vehicle electronic
control units (ECUs) that communicate via control area networks (CAN). For security reasons, the
Database CAN (DBC) file, which defines the contents of CAN messages, is deemed confidential by
original equipment manufacturers (OEMs). However, confidentiality has severely hindered research
on automotive intrusion detection systems (IDS) and automotive control network testing, which
makes automotive aftermarket device development difficult. Previous research has used tokenization
algorithms, machine learning algorithms, and diagnostic information to obtain coarse CAN message
contents. However, there is a large gap between the results obtained with these methods and the
information contained in DBC files. In order to reverse CAN messages in a fine-grained manner,
we propose a method to reverse a body-related CAN message based on tagged bits. This method
tags data bits by collecting CAN traffic in different vehicle states. The test messages are obtained by
fuzzing the CAN messages based on the tagging results, and the candidate messages are obtained
by combining them with the results of a packet analysis. The final reverse result was based on the
column AND bit-by-bit of the candidate messages. The reverse results showed that the method
proposed in this paper could accurately locate the bits representing or controlling the body behavior
with high reverse accuracy.

Keywords: electronic control units; controller area network; database CAN; reverse; fuzzing; AND
bit-by-bit

1. Introduction

Along with the increases in the number and computing power of onboard electronic
control units (ECUsciteECUrise), ECUs are replacing more and more vehicle components
that were previously controlled by mechanical systems. Various vehicular functions, such
as the powertrain control and the switching of body equipment, are controlled by different
ECUs. In addition to performing the specified functions, ECUs must transfer data quickly
and reliably to other ECUs. The control area network (CAN) bus has become the most
widely used standard communication protocol in current in-vehicle networks due to its
low cost, efficient propagation, and stability advantages [1]. However, the lack of security
mechanisms included in the CAN protocol means that the confidentiality and integrity
of CAN messages cannot be guaranteed [2], thereby exposing the control system in the
vehicle to greater risk in terms of its security. Numerous studies have proven that the CAN
bus can be attacked, and the consequences can be severe. For example, at the 2015 Black
Hat and DEFCON conferences, Charlie Miller and Chris Valasek demonstrated the ease
of controlling the steering wheel, brakes, lights, and turn signals of a JEEP Cherokee by
hacking into the infotainment system connected to the CAN bus and then writing attack
commands to the CAN bus [3]. In 2021, two researchers from Kunnamon used a drone to
attack a Tesla car, open its doors, and change the steering and acceleration patterns through
the injection of malicious CAN messages [4]. The consequences of the injection of malicious
messages into the CAN bus by the attackers were catastrophic.

Appl. Sci. 2023, 13, 1942. https://doi.org/10.3390/app13031942 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031942
https://doi.org/10.3390/app13031942
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-8458-029X
https://orcid.org/0000-0002-3310-926X
https://doi.org/10.3390/app13031942
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031942?type=check_update&version=1

Appl. Sci. 2023, 13, 1942 2 of 16

To prevent the malicious control of ECUs on the CAN network, original equipment
manufacturers (OEMs) attempt to hide the database CAN (DBC) [5] files that describe
CAN message definitions to prevent attackers from sending malicious control commands
to the CAN network. Although this measure can increase the cost of attacks to some extent,
it hinders the development of the automotive security research field and the automotive
aftermarket. Most affected is research on intrusion detection systems for CAN networks.
The proposed CAN intrusion detection techniques are based on the use of message transfer
characteristics to detect anomalies and are practically independent of the behavior and
state of the vehicle [6–9], which leads to limitations in the efficiency of existing solutions.
In addition, security researchers usually use fuzzy test automation to test the security of
communication protocols [2,10]. However, the lack of DBC files defining the CAN message
format leads to inefficient and blind fuzzy tests against the CAN bus [11–13]. Moreover,
the privatization of DBC files leads to ineffective access to vehicle status data for devices in
the automotive aftermarket, which renders automotive driver assistance devices and status
display tools meaningless.

In order to obtain a more effective basis for CAN bus intrusion detection and fuzz
testing, research in the security field is also trying to obtain a clear definition of CAN
messages. Initial research focused on the tagging of CAN message data types, mainly
through FBCA [14], READ [15], and LibreCAN [16], which were limited to the classification
of data according to its variability. Such methods cannot obtain vehicle-specific data. Later
research attempted to identify vehicle behavior in CAN traces using machine learning
algorithms [17,18], the efficiency of which depends on the coverage of the training data set.
However, the application of these methods is limited by the fact that each vehicle has a
unique CAN message definition. Some other researchers have tried to obtain a description
of the vehicle state with CAN messages through the Unified Diagnostic Services (UDS)
protocol [19,20]. However, these studies relied on vehicle state data supported by the UDS
protocol, causing the final results to have limitations.

In recent work, we used cheap sensor devices to accurately obtain the bits describing
vehicle driving data in CAN messages [21]. Since CAN traffic contains body-state-related
data such as lights, doors, and seat belts in addition to vehicle driving data, CAN messages
describing these data were not effectively obtained. In order to accurately translate the
CAN messages describing the body state, this paper proposes an innovative CAN message
translation method based on labeled bits. This method uses different car states to tag each
bit in CAN messages and filter them to get the candidate messages related to the body state.
For the candidate messages, using strategic fuzzing and packet analysis techniques, the
body event described in the CAN message can be translated, and the bits describing the
event can be located.

The contributions of this study can be summarized as follows:

• The reverse method described in this paper labels each bit of the data field correspond-
ing to each ID based on the vehicle state and applies the idea of fuzzy testing to the
production of test messages. It effectively filters the messages unrelated to the car
body and quickly locates the candidate messages with improved efficiency.

• The innovative method proposed in this paper innovatively uses column AND bit-
by-bit to locate useful bits, which improves the accuracy of the reverse method while
reducing the number of dependent candidate messages.

• The method proposed in this paper can be applied to most cars, regardless of the
vehicle model and make. Since commercially available vehicles must be equipped
with a standard CAN data interface, our method only uses this interface for data
transmission and reception.

The rest of the paper is organized as follows: In Section 2, we provide background
knowledge and present related work. Section 3 details the steps taken to reverse CAN
message based on tagged bits. Section 4 details experiments conducted on actual vehicles
and analyze the accuracy, advantages, and efficiency of the approach used in this paper.
The last section concludes the paper and gives some future prospects.

Appl. Sci. 2023, 13, 1942 3 of 16

2. Background and Related Work
2.1. Controller Area Network(CAN)

The composition and format of a standard CAN bus data frame are shown in Figure 1.
The structure consists of seven segments: frame start, arbitration segment, control segment,
data segment, cyclic redundancy check (CRC) segment, acknowledge character (ACK)
segment, and frame end. The two segments that are most relevant to this paper are the
arbitration and data segments.

Frame
Start Arbitration Segment Control Segment Data Segment CRC Segment ACK Segment

Frame
End

Frame
Structure

1 11 0-64 15 71 4 11111

SOF ID Data Field CRC ACK EOFRTR DLC
CRC

delimiter
ACK

delimiterR0IDE
Standard

Frame

Number
of Bits

Figure 1. Structure of CAN frame.

The arbitration segment consists of 12 bits, the last of which is the remote transmission
request (RTR), which is used to distinguish whether a frame is a data frame or a remote
frame. The first 11 bits form the CAN ID, which identifies this CAN message’s sending
node (ECU). The bus can only have one ECU transmitting at a time, and each ECU can
initiate message transmission. However, the bus does not specify the priority levels of the
ECUs. The CAN bus determines the priority levels of the messages using the CAN ID,
where the smaller the CAN ID is, the higher its priority, which is the arbitration mechanism.

The data segment is the entire data field of the message and is 8 bytes in size. This short
frame structure gives the CAN a high degree of real-time and interference immunity. The
data field contains the control commands or status data sent by the ECU, thus enabling the
different ECUs to work together to ensure the proper operation of the vehicle. In practice,
the data fields are defined differently for each ID. For example, bits 9 to 12 of the data field
corresponding to the message ID 0x100 are defined as data related to the lights, while bits
9 to 12 of the data field corresponding to the message ID 0x120 are related to the doors.
These definitions are determined entirely at the discretion of the vehicle manufacturer and
are non-public. The method described in this paper aims to quickly obtain the definition of
the body state in the CAN message.

2.2. Fuzzy Test

Fuzzy testing is a classic information security testing technique [22,23] that is often
used to detect security vulnerabilities in software or systems. The purpose of fuzzy testing
is to generate a large amount of data in a random or semi-random way and send it to the
system being tested to determine whether there is a potential security vulnerability by
monitoring the system’s abnormal response. The simplest fuzzy testing method inputs
completely random data to the target program, but this type of method is inefficient. The
current mainstream fuzzy testing methods use existing data variants and input data model-
ing to generate test data. Such methods can quickly and effectively discover vulnerabilities.
In this paper, fuzzy testing is not used for detecting security vulnerabilities but for finding
bits in CAN messages that describe the behavior of a vehicle body. We use the idea of
fuzzing to fuzz the candidate bits in the message and send them to the automotive CAN
network, recording the fuzzy messages with responses for bit locations.

2.3. Related Works

Whether monitoring abnormal CAN messages, studying the vehicle’s operating status,
or implicitly authenticating the driver, it is essential to have comprehensive and accurate
information on each bit of the CAN message’s data field. This is done through translation.
Currently, there are three types of reverse methods that can be used for the CAN message’s
data field.

Appl. Sci. 2023, 13, 1942 4 of 16

The first method type is based on the data variation characteristics of each bit. For
example, Markovitz et al. extracted the signals and their boundaries by observing the data
variation pattern of each bit of the data field corresponding to the same ID over time [14].
Mirco Marchetti and Dario Stabili proposed an algorithm to calculate the bit-flip rate and
the magnitude array for each bit of the data field for each ID in order to determine the data
field signal boundaries [15]. Mert D. Pesé et al. optimized the field segmentation algorithm
based on the study by [15]. They matched the correlations between the segments with
the help of OBD-II diagnostic and smartphone sensor data, which led to a more accurate
classification of the field segmentation [16]. However, these methods only classify at the
segment level and are not specific to each bit. Moreover, they do not form a mapping of the
segments in response to specific events, which makes the results less valuable.

The second approach is implemented based on diagnostic protocols. For example, Tae
Un Kanget al. located the exact bits by matching the return value of the OBD-II diagnostic
protocol with the data in the CAN message [24]. Bram Blaauwendraad et al. improved on
the study conducted by [24]. They made two data structures by simultaneously using the
results obtained with OBD-II diagnostics and the CAN bus data. They used the Pearson
correlation coefficient to determine the correlations and thus locate the valuable bits [20].
Miki E. Verma et al. used algorithms to extract CAN message signals and label them with
the help of OBD-II PIDs, thus enabling mapping from bits to ECU functions [25]. However,
these methods are limited by what the diagnostic protocol can provide. The diagnostic
protocol can only provide a small amount of information about the motion status and very
little about the vehicle body.

The third method type is implemented with the help of machine learning techniques.
For example, Alessio Buscemi et al. and Clinton Young et al. identified multiple CAN
message features as being needed for machine learning and trained their models with them,
thus making their models capable of classifying CAN messages [17,26]. However, the CAN
message features used to train machine learning models need to be defined manually, and
the number of classification categories they could eventually identify is limited.

In our previous work, differential-based [27] and linear-regression-based [21] CAN
message reversal methods have been successively proposed. The first proposed differential-
based scheme finds the control bits of the car operation by performing a differential on the
CAN datasets collected when the car is stationary and dynamic. Although this approach
enables bit-level CAN message reverse, it is inefficient and inaccurate. In 2022, a multiple-
linear-regression-based reverse framework was proposed, which built a multiple linear
regression model between sensor data and CAN message data bits and used the model
parameters to locate the bits controlling the vehicle’s behavior quickly. This approach
allows for the inversion of vehicle behaviors with higher efficiency and accuracy by only
collecting data once. However, as the sensor data only reflects the behavior related to the
vehicle driving or performing an operation (e.g., vehicle speed, acceleration, pedal angle), it
causes this method to fail for CAN messages describing the state of the vehicle (e.g., lights
and doors). The complete DBC file defines the content of each valid message in the CAN
network. In order to fill the gaps in the previous work and reverse the status CAN message,
this paper proposes a translation method based on labeled bits. The combined effect of this
paper’s solution and the previous work allows us to achieve results close to the DBC file.

3. Methodology

By analyzing related work and the current research status of the automotive cyberse-
curity field, we concluded that the research field and the automotive parts market are eager
to achieve technological and product breakthroughs related to DBC files. In the current
research, the reverse results obtained with existing methods were far from the contents of
DBC files, except when our team’s bit-level reverse method using multiple linear regression
models was employed. However, our previous work focused on the reversal of CAN traces
with messages related to car driving behaviors. Although the results were very similar to

Appl. Sci. 2023, 13, 1942 5 of 16

the information contained in the DBC files, the body behaviors defined in the DBC files
were still blank, for example, the information on lights, wipers, and doors.

In order to fill the gaps in the previous work, this paper proposes an innovative
technique to reverse body-related CAN messages based on labeled bits. This technique
first tags and segments the CAN traces collected in different scenarios and filters out the
body-related candidate messages based on tags related to the body behavior. After that,
the valid messages corresponding to the automotive body behaviors are recorded using
fuzzing and packet analysis techniques. Finally, the valid messages corresponding to each
body behavior are executed AND OPERATION bit-by-bit to get the valid bits describing
the automotive body behavior in CAN messages. The overall flow of the method described
in this paper is shown in Figure 2.

OBD-II

Stationary CAN traffic

Driving CAN traffic

Body Operation
CAN traffic

Data Collection Labeling and Filtering

Bit-flip Rate

Labeling

Fuzzing and Package Analysis

Fuzzing Package Analysis Column AND Bit-by-Bit

Figure 2. Overall flow of the translating method.

3.1. Data Collection

In the data collection phase, the approach described in this paper uses a combo cable
to acquire the CAN traces of the target vehicle, as shown in Figure 3a. This combo cable
consists of an OBD-II to DB9 diagnostic cable and a PCAN-USB FD adapter [28]. As shown
in Figure 3b, the cable connects the vehicle’s OBD-II port to a USB port on the computer
side, which allows the computer to read and write CAN bus information to enable the
experiment to proceed. It is not necessary to use the entire CAN message in our approach.
Only the message ID, data segment, and timestamp must be captured. In this phase, the raw
data include three data sets: the stationary (Ωs), the motion (Ωm), and the body operation
(Ωb) data sets. To avoid blindness when collecting data, we previously analyzed a portion
of the available DBC files and summarized the possible car body behavior described by
CAN messages. The results are shown in Table 1.

(a) (b)

Figure 3. Data collection equipment and environment. (a) Combination cable for data collection;
(b) In-vehicle data collection environment.

Appl. Sci. 2023, 13, 1942 6 of 16

• Ωs records the CAN traces without operation when the car is stationary after ignition;
• Ωm contains the CAN messages of the driver during everyday driving of the car on a

regular road;
• Ωb records CAN traffic during the execution of body operations in place after the car

is started. The operations are shown in Table 1.

Table 1. Vehicle-body-related functions and operations.

Automotive Features Body Operation

Light
Hazard Lights, Left Turn Signal, Right Turn Signal, Low Beam Light,

High Beam Light, Fog Light, Emergency Flasher
Wiper Low Windshield Wipers, High Windshield Wipers
Pedal Brake Pedal, Accelerator Pedal
Gear Gear

Seat Belt Driver’s Seat Belt, Passenger’s Seat Belt

Door
Driver’s Door, Passenger’s Door, Left Back Door,

Right Back Door, All Doors Closed, Trunk

3.2. Labeling and Filtering

In this phase, the bit-flip rate is used to label the messages corresponding to the IDs
appearing in the CAN traces and filter the candidate messages based on the labeling results.
The main flow is shown in Figure 4.

…

Bit-flip Rate

ID 0x1 ID 0x2 ID 0xn

ID
List

…

Bit-flip Rate

ID 0x1 ID 0x2 ID 0xn

ID
List

…

Bit-flip Rate

ID 0x1 ID 0x2 ID 0xn

ID
List

Stationary Message
Set

Motion Message Set Body-related Message Set

Only B in the labelled bit

Labeling

Body-related messages and bits

Figure 4. Labeling and filtering process.

First, the valid IDs are extracted from each dataset, and the messages are grouped
according to the IDs. Then, for each dataset grouped by ID, the message data fields are
sorted by timestamps. After that, to quickly and efficiently filter CAN messages for body-

Appl. Sci. 2023, 13, 1942 7 of 16

related purposes, the bit flip rate is calculated for each message corresponding to each ID,
and each bit is labeled based on the results of this calculation.

Calculating the bit flip rate is the most intuitive way to characterize the change in each
bit. First, Equation (1) is used to calculate the number of flips of the jth bit in the message
with ID n (BFNn, j), and the standard CAN protocol with a bit length of 64 bits is taken as
an example, where |idn| indicates the number of messages with ID n and Vn,i,j indicates the
value of the jth bit in the i-th message with ID n. After that, Equation (2) is used to get the
flip rate BFRn,j of the jth bit in the message with ID n. By traversing all bits in each legal ID
in the CAN traffic, the flip rate of each bit in each message can be obtained. In this step, we
perform the bit flip rate calculation operation for each ID appearing in the three datasets
(Ωs, Ωm, Ωb) to get the flip rate of each ID corresponding to the message.

BFNn,j =
|idn |−1

∑
i=1

1 i f Vn,i,j 6= Vn,i+1,j (1)

BFRn,j =
BFNn,j

|idn|
(2)

After that, the data bits of each ID is labeled based on the result of the bit flip rate
calculation in the three datasets. Table 2 shows the mapping between the labels of the bits
corresponding to each ID and the results of the bit-flip rate calculation in each dataset. First,
the bits in all three datasets with a bit flip rate of 0 are labeled “None”. Second, the label is
kept consistent with the dataset for the bits with a non-zero bit flip rate in only one of the
datasets. In addition, bits with non-zero results in any two data sets are labeled “Double”.
Finally, the bits with non-zero results in all three datasets are labeled “All”. Figure 5 shows
the process and outcomes of label mapping for the bit-flip rate inversion of the message
with the ID 0x225.

Table 2. Mapping of bit flip rate results to labels.

Bit-Flip Calculation Results Label Results

Bit-flip rate is 0 in all datasets None
Non-zero results exist only in Ωs S
Non-zero results exist only in Ωm M
Non-zero results exist only in Ωb B

Non-zero results in only two datasets Double
Non-zero results in all datasets All

ID Data fields
0x225 1 2 3 4 … 63 64

Bit flip rate results
𝛀𝒔 0.1 0.1 0 0 … 0 0
𝛀𝒎 0.2 0 0 0.15 … 0.2 0
𝛀𝒃 0.15 0 0 0 … 0.07 0.23

0x225 1 2 3 4 … 63 64
Label results All S None M … Double B

Mapping of bit flip rate results to labels

Figure 5. Examples of Labeling.

Based on the labeling results, our method can more quickly filter out messages related
to car body behavior and the bits in the message data fields that control or represent the
body state than other methods. The analysis of the tags revealed that bits with only B tags
are most likely to handle/represent the state of the car body and can be directly used as
valid bits in the candidate messages. The bits with other labels are related to driving, the
stationary state, CTR, and checksum.

Appl. Sci. 2023, 13, 1942 8 of 16

After this process, the CAN messages related to the body and the bits in these messages
describing the body behavior are filtered out. This data can be further used as the basis to
reverse further and determine how the body behavior is portrayed in the CAN messages.

3.3. Fuzzing and Package Analysis

Based on the labeling and filtering results, we determined which IDs correspond
to data fields containing bits with potential for body behavior. In this phase, fuzzing
and packet analysis are used to collect candidate messages that can trigger a vehicle
body response.

First, messages with data fields containing bits labeled B are used as base messages.
The approach described in this paper utilizes the idea of fuzzy testing by fuzzifying the
bits marked B in the base message. In contrast, the non-candidate bits are left unchanged
from the original data, thus allowing the test message to be obtained. An example of test
message generation is given in Figure 6. First, based on the tagging and message filtering
results, the ID corresponding to the message with the B tag in the data field is found. A real
CAN message corresponding to this ID is randomly selected from the obtained messages.
Afterward, the bits marked with B are fuzzed (randomized or traversed) according to the
message marking results. Finally, the bits not marked with B are left unchanged, and a
set of test messages corresponding to this ID is generated. Once the set of test messages
has been obtained, the test messages are sent sequentially to the vehicle’s CAN network
via the OBD-II interface using the same cable combinations as used in the data collection
phase. After each test message has been sent, we record each message that triggers the car’s
behavior and the body response it triggers. After this operation, we can obtain candidate
messages that can trigger a specific response from the vehicle.

41

B

42

B

43

B

44

Double

45

All

63

M

64

M
…
…

…
…

ID 1

0x129 S

2

None

Labeling results

41

1

42

1

43

0

44

0

45

1

63

0

64

0
…
…

…
…

ID 1

0x129 1

2

0

Real CAN messageCollected datasets

41

1

42

1

43

1

44

0

45

1

63

0

64

0
…
…

…
…

ID 1

0x129 1

2

0

41

0

42

1

43

1

44

0

45

1

63

0

64

0
…
…

…
…

ID 1

0x129 1

2

0

… … …

41

0

42

0

43

0

44

0

45

1

63

0

64

0
…
…

…
…

ID 1

0x129 1

2

0

Test Message 1

Test Message 2

…

Test Message n

Fuzzing

Figure 6. Test message generation process.

Although the fuzzed test messages can trigger most car body responses, there are
still some car body behaviors that cannot be triggered by the test messages. The reason
for this is that these body behaviors are controlled by the driver rather than by CAN
messages, e.g., seat belts and vehicle lights, and CAN messages only characterize the state
of the part. In order to obtain a description of the state of these messages, the packet
analysis method is used to obtain candidate messages. In order to capture CAN messages
containing descriptions of specific states of the body, specific operations are performed
for short periods of time, with the CAN message recorded in the CAN network during
these periods. Based on the screening and marking results obtained in the previous stage,
the CAN traffic captured during a specific operation is screened, and the number of flips

Appl. Sci. 2023, 13, 1942 9 of 16

is calculated based on the bit marked B. If the number of flips matches the number of
operations, the marked bit characterizes the status of the part being operated. Since CAN
messages usually use 1 to represent the dominant result, the message corresponding to the
marker bit of 1 is recorded as a candidate message.

3.4. AND Bit-by-Bit

In the previous steps, the IDs related to the vehicle body behavior were filtered, and
the bits related to the body in the corresponding messages were marked. Afterward, using
fuzzified test messages and packet analysis, a large number of candidate messages that
could trigger the body behavior and describe the vehicle behavior was obtained. In this
phase, the bit-by-bit AND operation are used to quickly locate the bits in the candidate
telegrams that are related to the control or state of a specific body behavior.

Based on the analysis of a large number of DBC files, the control bits in CAN messages
with a value of 1 are usually valid, i.e., there is a body action response when the control
bit is 1. Therefore, in the control and description messages corresponding to the collected
vehicle behaviors, the valid bits controlling the behavior must all have a value of 1, while
the bits not related to the behaviors usually do not have a value of 1. Based on this, in this
method, a column AND bit-by-bit process are performed for the candidate messages while
reversing the valuable bits. After this operation, the value of the AND is also 1 because all
valid bits have a value of 1. For non-valid bits, the value obtained is 0 because these bits do
not all have a value of 1. Therefore, AND is suitable for quickly locating the bits of the data
field with a value of “1” from the candidate information that can trigger the body behavior
and describe the vehicle behaviors. This method is faster and more accurate than manual
screening and other logical operations. Based on this theory, the method described in this
paper can quickly locate the valid bits that control specified body behaviors. This phase
involves the following steps:

• First, all the bits in the candidate message that are not marked B are set to 0 to prevent
other vehicle behaviors from interfering with the inverse result;

• After that, the values of the bits marked B in the data field of the candidate message
undergo the column AND bit-by-bit process, and each data bit marked B is traversed.
The control bits associated with the body operation have a value of 1, as shown for
bits 41, 42, and 43 of each message in Figure 7. Unrelated bits have a value of 0; for
example, bits 44 and 45 are shown in Figure 7;

• After this operation, this study obtained the valid bits that control or indicate the body
behavior in the candidate messages.

41

1

1

1

42

1

1

1

43

1

1

1

44

1

0

1

45

1

1

0

63

0

0

0

64

0

0

0

…
… …

…
1

0

0

0

2

0

0

0… … … …

0

0

0

0

1

1

1

1

1

1
1

0

1

1

0

0

0

0

0 0 1 1 1 0 0 0 0Column AND
Bit-by-Bit

Candidate
Messages

Figure 7. Column AND bit-by-bit.

4. Performance Evaluation

To evaluate the performance of the method proposed in this paper, it was implemented
on an actual vehicle. The reversal was done to obtain the messages and specific bits that
control or represent the car body’s behaviors in CAN traffic. The algorithm’s accuracy was
evaluated with real applications based on existing DBC files using inverse results. In addi-

Appl. Sci. 2023, 13, 1942 10 of 16

tion, we evaluated the execution performance of the framework. Finally, we investigated
the algorithm’s advantages for applications.

4.1. Performance in a Real Vehicle

In order to evaluate the inverse method proposed in this paper realistically and
effectively, a mid-size sedan manufactured in 2017 was used as the test vehicle, and a
representative internal network implementing the standard CAN protocol was employed.
This means that the ECU in the CAN network could send and receive telegrams with a
data field lengths of 64 bits. In addition, the DBC file for this vehicle was obtained [29]
and used to evaluate the ground truth of our method. To obtain the experimental data, we
used a combination cable to connect the vehicle’s OBD-II interface to the USB interface of a
laptop, and we used a script to write the data to a local log file. Following the experimental
approach used in this paper, we collected the CAN traffic from the car when it was at
a standstill (Ωs), at a standstill performing only body operations (Ωb), and during daily
driving (Ωm) in the data collection phase. Quantitative descriptions of the datasets are
given in Table 3.

Table 3. Datasets and message counts.

Dataset Type CAN Message Count

Standstill(Ωs) 159,890
Only body operations(Ωb) 605,112

Driving(Ωm) 132,707

The CAN traffic data collected from the test car under different conditions were first
grouped by ID, and for each ID corresponding data field, the bit flip rate was calculated for
the time series. The data fields corresponding to each ID were labeled based on the results
of the bit-flip rate. In the actual experiment, we collected 81 IDs from the CAN traffic, of
which 8 IDs were filtered and determined to be related to body behaviors based on the
labeling results because their data fields contained only B-labeled messages.

For the filtered CAN message, fuzzing was performed on the bits in each message
with only B tags, and the original data from the irrelevant bits were kept to generate the
test messages. As shown in Table 4, eight body operations can be triggered by sending a
test message. We recorded each message that triggered the body behavior and executed
the AND bit-by-bit process. We executed the possible body operations five times for the
behaviors that could not be triggered by the test message. We recorded the number of
changes in the bits marked as B. A message with five changes was recorded, and the AND
bit-by-bit process was executed for messages with a marked bit value of 1. Eventually,
we obtained the CAN messages describing the specified automobile body behaviors in
the CAN traffic and determined which bits in the data field controlled or indicated those
body behaviors. The reverse results are shown in Figure 8. The results show that the
CAN messages controlling the automobile body behaviors are concentrated in operations
such as lights and wipers. The number of bits controlling these behaviors is small, usually
1–3 bits. Most of the other typical body behaviors, such as pedals, seat belts, and doors, are
controlled by the driver, and CAN messages only describe their statuses. The number of
data bits characterizing these vehicle behaviors was usually high, e.g., above 4 bits.

Appl. Sci. 2023, 13, 1942 11 of 16

Table 4. Triggerable and non-triggerable body behaviors.

Vehicle Body Operation Triggered by Testing Non-Triggered Automotive Body Operations

Hazard Lights Brake Pedal
Left Turn Signal Accelerator Pedal

Right Turn Signal Gear
Low Beam Lights Driver’s Seat Belt
High Beam Lights Passenger’s Seat Belt

Fog Lights Driver’s Door
Emergency Flashers Passenger’s Door

Trunk Left Back Door
Right Back Door

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

Hazard Lights 0x091 √
0x091 √
0x09A √
0x091 √
0x09A √

Low Beam Lights 0x09A √ √ √
High Beam Lights 0x09A √ √ √

Fog Lights 0x09A √ √
Emergency Flashers 0x09A √ √

Low Windshield Wipers 0x09A √
High Windshield Wipers 0x09A √

0x165 √ √ √ √ √
0x415 √ √
0x165 √ √ √ √ √ √
0x420 √
0x165 √ √ √ √ √
0x228 √ √ √ √ √ √ √ √ √

Driver's Seat Belt 0x340 √
Passenger's Seat Belt 0x340 √

Driver's Door 0x43E √
Passenger's Door 0x43E √

Left Back Door 0x43E √
Right Back Door 0x43E √
All Doors Closed 0x43E √

Trunk 0x43E √

Gear

Body-related Event ID
Data Field

Left Turn Signal

Right Turn Signal

Brake Pedal

Accelerator Pedal

Figure 8. Reverse results of vehicle body-related CAN messages.

4.2. Accuracy

To assess the accuracy of the methods, we compared the reverse results with the
definitions contained in the DBC file for each data bit in each ID. Since this DBC file is
specific to this range of models and some features are not optional for our test vehicle, we
artificially filtered the defined information in the DBC file. By analyzing and filtering the
82 IDs contained in the DBC file, giving a total of 5248 bits, we filtered and found that
51 bits were related to body operations. The rest represent kinematic-related bits, constant
heartbeat packet bits, and many CTR and checksum bits.

Since the reverse body-related CAN messages involved in this study are similar
to those used in the classification problem, three metrics were used to evaluate their
performance, accuracy, precision, and recall, the values of which were calculated using
Equations (3)–(5), respectively. We recorded true positives (TP) as those bits defined in
the DBC file as controlling or indicating body behaviors and whose reverse results were
consistent with that definition. Bits in the DBC file specified as unrelated to body behaviors
and whose results excluded them were recorded as true negatives (TN). Bits in the DBC file
defined as irrelevant to the body but whose reverse result was related to the body were
recorded as false positives (FP). Bits in the DBC file specified as being related to the body
but whose inverse result was not related to the body were recorded as false negatives (FN).

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

After counting, the 1340 bits were classified as TNs, 45 bits were TPs, 3 bits were
FPs, and 6 bits were FNs. The method proposed in this paper was shown to have 99.35%
accuracy, 93.75% precision, and 88.24% recall. The main reason for a precision value of

Appl. Sci. 2023, 13, 1942 12 of 16

only 93.75% is that some bits indicated that the stationary state of the car changed with the
use of the brake or gas pedal, so these bits were classified as brake and gas pedal events.
The recall rate was only 88.24% because we used a home car as the test vehicle, and we
could not carry out some body-related events, such as the opening of airbags. Although the
above reasons caused decreases in the accuracy and recall rate, the reverse method based
on marker bits proposed in this paper was shown to have substantially improved efficiency
and accuracy values than the traditional manual reverse method.

4.3. Strengths and Efficiency
4.3.1. Strengths

In this paper, we achieve bit-level inversion of CAN messages related to body behav-
iors based on the labeled bits of data fields, and the results showed an accuracy level of
99.35%. In the experiments, in addition to the test messages generated using the fuzzing
scheme, the packet analysis method was employed to compensate for the reverse results of
vehicle behaviors that could not be triggered by the test messages. In addition, the AND
bit-by-bit method was used for the valid bits in the final location. On the one hand, this
improved the accuracy compared with manual inversion. On the other hand, it does not
require a high number of test messages and thus increases the speed of inversion.

To translate those operations that fuzzing could not identify, we performed a packet
analysis of the subject’s operation. In the case of braking, for example, the fuzzing method
does not work due to the checksum in the data field. Without any other operation, we
captured the CAN bus data from the test vehicle, which had brakes that had never been
applied to the stepped state. Through the packet analysis, we obtained two sets of valid
information. One group had an ID of 0x165 with the corresponding bits 1, 2, 4, 8, and 9, and
the other had an ID of 0x415 with the corresponding bits 11 and 12. Considering the CAN
bus’s arbitration mechanism, we know that ID 0x165 corresponds to the control signal of
the brake, while ID 0x415 indicates the status of the brake.

When undergoing the AND bit-by-bit process, the method described in this paper
can translate vehicle body behaviors using just 10 candidate messages. In the case that the
number of candidate messages is n, if the probability of any bit in the data field is set to 1
is p, the probability of the irrelevant bit AND bit-by-bit resulting in 0 is 1− pn. Then the
correct rate at this point is (1− pn)m (where m is the number of irrelevant bits). During our
experiments, we calculated that the maximum number of potential body data bits in the
data field of 12. However, a more extreme value of 20 bits was used to verify the accuracy,
and it was assumed that only 15 bits were valid (which also means that 5 bits are actually
not body-related). Since these are independent, we considered the value of P to be 0.5.
Figure 9 showed an accuracy of 99.5% when n was 10 for the assumed extreme case. In
actual vehicle experiments, the bit-tagging method in this paper would not result in m
being greater than 5, so the accuracy would be higher in the actual case.

0
10
20
30
40
50
60
70
80
90
100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A
cc

ur
ac

y (
%

)

 The number of candidate messages (n)

Figure 9. Accuracy versus candidate messages.

Appl. Sci. 2023, 13, 1942 13 of 16

4.3.2. Efficiency

In order to evaluate the time consumption of the inverse process in this paper, we
performed time statistics for the whole process. Since some parts involved in the inverse
process need to be performed manually, we only retrieved accurate time statistics for the
data processing and analysis part, as well as rough estimates for the manual parts. The
experiment was divided into four parts: data collection, labeling and filtering, fuzzing and
packet analysis, and bit localization. Data processing and analysis were performed on a
64-bit CentOS 7.4.1708 server using python 3.7.1. The server had 8G RAM and the Intel(R)
Xeon(R) Gold 6248 CPU @ 2.50GHz with four cores and four threads. All code was run in
a single thread, and the final efficiency in terms of time consumption is shown in Table 5.
The total time taken to retrieve the body-related messages from the reverse experimental
vehicle was 4087.85 s.

Table 5. Time consumption of the reverse method.

Step Time Cost (s)

Data Collection a 1380
Labeling and Filtering b 97.85

Fuzzing b 2460
Packet Analysis a,b 150
AND Bit-by-Bit b 0.00001

a Performed manually; b Performed automatically.

4.4. Application and Discussion
4.4.1. Application

The translation method proposed in this paper for vehicle body-related messages
based on labeled bits can be applied to almost all commercially available vehicles. The
method described in this paper only needs to collect CAN traffic and send test messages
through the OBD-II interface. All vehicles must be equipped with the OBD-II interface [30]
as a common automotive standard before they are launched [31–34], because our method
can use the OBD-II interface for data collection and sending for any vehicle model. In
addition, OBD-II connection devices are now readily available in the market, ranging in
price from tens [35] to hundreds of dollars [36], all of which can be easily used to send and
receive CAN messages. Therefore, the method proposed in this paper can be easily applied
to most car models.

4.4.2. Contribution to Automotive IDS

The CAN message translation method proposed in this paper can assist with research
on automotive intrusion detection systems (IDS). The CAN intrusion detection system
was proposed to detect anomalies by analyzing CAN traffic [37–41]. However, studies
on this system were based on message transmission characteristics, such as periodicity,
entropy [38], and remote frames [37], which are irrelevant to the behavior and state of the
vehicle. These methods are almost ineffective when an attacker sends attack messages
with transmission characteristics that are consistent with those of regular messages. The
method proposed in this paper can help researchers quickly obtain the specific meaning
contained in CAN messages so that they can use the message contents to design more
direct and effective intrusion detection rules, e.g., no control commands for stalling or
braking should appear while the vehicle is driving normally and no doors should appear
open when the vehicle is accelerating. Therefore, IDS researchers and designers can use the
results obtained with the method described in this paper to design content-based intrusion
detection systems that can identify attacks with greater efficiency than existing methods. In
addition, the content-based approach is faster and more applicable than IDSs, which utilize
machine learning algorithms.

Appl. Sci. 2023, 13, 1942 14 of 16

4.4.3. Discussion

In this study, we proposed a reverse method for body-related CAN messages based on
tagged bits. This method collects CAN traffic from different vehicle states and tags the data
fields of the message based on these states. The messages are filtered, fuzzed, and packet
analyzed based on the tagging results. Finally, the bits that control or characterize body
behaviors are located using the column AND bit-by-bit operation. Thus, the definition of
body behaviors is obtained from the DBC file. In actual vehicle experiments, our method
was shown to have high reverse accuracy. The lack of perfection in the results is because the
car body cannot be triggered or interfered with by other information. The packet analysis
process used in this method enables the reverse results to cover more body behaviors, and
the column AND bit-by-bit process improve the accuracy and speed. Finally, our approach
can help researchers in automotive IDS to design more efficient content-based intrusion
detection methods. In terms of applications, the process can be applied to CAN information
inversion work for all vehicle models.

5. Conclusions

In this paper, a reverse method for body-related CAN messages based on labeled
bits was proposed. This method tags each bit of the data field according to the different
states of the vehicle. Based on the results of the bit labeling, messages related to the body
were filtered out, and fuzzy messages and packet analysis were combined to discover
candidate messages. AND bit-by-bit quickly located the bits in the CAN message that
can control or characterize specific body operations. The inverse method achieved an
accuracy level of 99.35%. In addition, the method utilized only the OBD-II interface to
send and receive data, a process that can be model-independent. Our method could help
automotive security researchers quickly obtain body-related control CAN message or CAN
status messages without DBC files which, in turn, would allow them to propose intrusion
detection schemes based on message content. Finally, the results of the inverse method
proposed in this paper could be used to advance the automotive IDS research field and
could also be equally valuable for research on autonomous driving, implicit authentication,
and other related fields.

Author Contributions: Methodology, Z.B.; Software, S.Z.; Formal analysis, C.W.; Investigation, Z.B.;
Data curation, S.Z.; Writing—review & editing, C.W.; Supervision, G.X. (Guosheng Xu); Project
administration, G.X. (Guosheng Xu) and G.X. (Guoai Xu); Funding acquisition, G.X. (Guoai Xu). All
authors have read and agreed to the published version of the manuscript.

Funding: This work is supported by the National Key Research and Development Program of China
under Grant No.2021YFB3101500, China Postdoctoral Science Foundation under Grant No.2021T140074,
and the National Natural Science Foundation of China under grant No.62102042.

Data Availability Statement: The data supporting this study’s findings are available from the
corresponding author upon reasonable request.

Acknowledgments: The authors would like to thank the editors and all the reviewers for their
valuable comments.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Writer, S. 5 Advantages of CAN Bus Protocol. Available online: https://www.totalphase.com/blog/2019/08/5-advantages-of-

can-bus-protocol/ (accessed on 1 December 2022).
2. Bozdal, M.; Samie, M.; Aslam, S.; Jennions, I. Evaluation of can bus security challenges. Sensors 2020, 20, 2364. [CrossRef]

[PubMed]
3. Greenberg, A. Hackers Remotely Kill a Jeep on the Highway—With Me in It. Available online: https://www.wired.com/2015/0

7/hackers-remotely-kill-jeep-highway/ (accessed on 1 December 2022).
4. Weinmann, R.P.; Schmotzle, B. TBONE—A zero-click exploit for Tesla MCUs. Available online: https://kunnamon.io/tbone/

tbone-v1.0-redacted.pdf (accessed on 1 December 2022).

https://www.totalphase.com/blog/2019/08/5-advantages-of-can-bus-protocol/
https://www.totalphase.com/blog/2019/08/5-advantages-of-can-bus-protocol/
http://doi.org/10.3390/s20082364
http://www.ncbi.nlm.nih.gov/pubmed/32326272
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://kunnamon.io/tbone/tbone-v1.0-redacted.pdf
https://kunnamon.io/tbone/tbone-v1.0-redacted.pdf

Appl. Sci. 2023, 13, 1942 15 of 16

5. CSS Electronics. CAN DBC File Explained—A Simple Intro [+Editor Playground]. Available online: https://www.csselectronics.
com/pages/can-dbc-file-database-intro (accessed on 1 December 2022).

6. Bi, Z.; Xu, G.; Xu, G.; Tian, M.; Jiang, R.; Zhang, S. Intrusion Detection Method for In-Vehicle CAN Bus Based on Message and
Time Transfer Matrix. Secur. Commun. Netw. 2022, 2022, 2554280. [CrossRef]

7. Refat, R.U.D.; Elkhail, A.A.; Hafeez, A.; Malik, H. Detecting can bus intrusion by applying machine learning method to graph
based features. In Proceedings of the Proceedings of SAI Intelligent Systems Conference, Amsterdam, The Netherlands, 2–3
September 2021; Springer: Berlin/Heidelberg, Germany, 2021; pp. 730–748.

8. Sharmin, S.; Mansor, H. Intrusion detection on the in-vehicle network using machine learning. In Proceedings of the 2021 3rd
International Cyber Resilience Conference (CRC), Virtual, 29–31 January 2021; pp. 1–6.

9. Amato, F.; Coppolino, L.; Mercaldo, F.; Moscato, F.; Nardone, R.; Santone, A. CAN-bus attack detection with deep learning. IEEE
Trans. Intell. Transp. Syst. 2021, 22, 5081–5090. [CrossRef]

10. Lee, H.; Choi, K.; Chung, K.; Kim, J.; Yim, K. Fuzzing can packets into automobiles. In Proceedings of the 2015 IEEE 29th
International Conference on Advanced Information Networking and Applications, Gwangju, Republic of Korea, 24–27 March
2015; pp. 817–821.

11. McShane, J.; Kultinov, K. CAN Bus Fuzz Testing with Artificial Intelligence. ATZelectronics Worldw. 2021, 16, 62–64. [CrossRef]
12. Fowler, D.S.; Bryans, J.; Cheah, M.; Wooderson, P.; Shaikh, S.A. A method for constructing automotive cybersecurity tests, a CAN

fuzz testing example. In Proceedings of the 2019 IEEE 19th International Conference on Software Quality, Reliability and Security
Companion (QRS-C), Sofia, Bulgaria, 22–26 July 2019; pp. 1–8.

13. Fowler, D.S. A Fuzz Testing Methodology for Cyber-Security Assurance of the Automotive CAN Bus. Ph.D. Thesis, Coventry
University, Coventry, UK, 2019.

14. Markovitz, M.; Wool, A. Field classification, modeling and anomaly detection in unknown CAN bus networks. Veh. Commun.
2017, 9, 43–52. [CrossRef]

15. Marchetti, M.; Stabili, D. READ: Reverse engineering of automotive data frames. IEEE Trans. Inf. Forensics Secur. 2018,
14, 1083–1097. [CrossRef]

16. Pesé, M.D.; Stacer, T.; Campos, C.A.; Newberry, E.; Chen, D.; Shin, K.G. LibreCAN: Automated CAN message translator. In
Proceedings of the Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications Security, London, UK,
11–15 November 2019; pp. 2283–2300.

17. Buscemi, A.; Castignani, G.; Engel, T.; Turcanu, I. A data-driven minimal approach for CAN bus reverse engineering. In
Proceedings of the 2020 IEEE 3rd Connected and Automated Vehicles Symposium (CAVS), Victoria, BC, Canada, 18 November–16
December 2020; pp. 1–5.

18. Ezeobi, U.; Olufowobi, H.; Young, C.; Zambreno, J.; Bloom, G. Reverse engineering controller area network messages using
unsupervised machine learning. IEEE Consum. Electron. Mag. 2020, 11, 50–56. [CrossRef]

19. Song, H.M.; Kim, H.K. Discovering can specification using on-board diagnostics. IEEE Des. Test 2020, 38, 93–103. [CrossRef]
20. Blaauwendraad, B.; Kieberl, V. Automated Reverse-Engineering of CAN Messages Using OBD-II and Correlation Coefficients.

Available online: https://www.os3.nl/_media/2019-2020/courses/rp2/p103_report.pdf (accessed on 23 January 2022)
21. Bi, Z.; Xu, G.; Xu, G.; Wang, C.; Zhang, S. Bit-Level Automotive Controller Area Network Message Reverse Framework Based on

Linear Regression. Sensors 2022, 22, 981. [CrossRef] [PubMed]
22. Takanen, A.; Demott, J.D.; Miller, C.; Kettunen, A. Fuzzing for Software Security Testing and Quality Assurance, 2nd ed.; Artech:

Hong Kong, China, 2018.
23. Godefroid, P. Fuzzing: Hack, art, and science. Commun. ACM 2020, 63, 70–76. [CrossRef]
24. Kang, T.U.; Song, H.M.; Jeong, S.; Kim, H.K. Automated reverse engineering and attack for CAN using OBD-II. In Proceedings of

the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–7.
25. Verma, M.; Bridges, R.; Hollifield, S. ACTT: Automotive CAN tokenization and translation. In Proceedings of the 2018

International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA, 12–14 December
2018; pp. 278–283.

26. Young, C.; Svoboda, J.; Zambreno, J. Towards reverse engineering controller area network messages using machine learning. In
Proceedings of the 2020 IEEE 6th World Forum on Internet of Things (WF-IoT), New Orleans, LA, USA, 2–16 June 2020; pp. 1–6.

27. Yu, S.; Xu, G.; Bi, Z.; Xu, G.; Zhang, X. CAN reverse engineering based on the differential method. In Proceedings of the 2021
20th International Conference on Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS), London, UK,
20–22 December 2021; pp. 164–171.

28. PEAK-System. PCAN-USB CAN Interface for USB. Available online: https://www.peak-system.com/PCAN-USB.199.0.html?
&L=1 (accessed on 1 December 2022).

29. Opendbc. Available online: https://github.com/commaai/opendbc (accessed on 1 December 2022).
30. Wikipedia. On-Board Diagnostics. Available online: https://en.wikipedia.org/wiki/On-board_diagnostics#OBD-II (accessed

on 1 December 2022).
31. Devices, P. Is Your Vehicle OBD II Compliant? Available online: https://www.plxdevices.com/obdii-compliant-vehicles-s/153.

htm (accessed on 1 December 2022).
32. Road vehicles—Diagnostics on Controller Area Networks. Available online: https://www.iso.org/standard/33619.html

(accessed on 1 December 2022).

https://www.csselectronics.com/pages/can-dbc-file-database-intro
https://www.csselectronics.com/pages/can-dbc-file-database-intro
http://dx.doi.org/10.1155/2022/2554280
http://dx.doi.org/10.1109/TITS.2020.3046974
http://dx.doi.org/10.1007/s38314-021-0690-z
http://dx.doi.org/10.1016/j.vehcom.2017.02.005
http://dx.doi.org/10.1109/TIFS.2018.2870826
http://dx.doi.org/10.1109/MCE.2020.3023538
http://dx.doi.org/10.1109/MDAT.2020.3011036
https://www.os3.nl/_media/2019-2020/courses/rp2/p103_report.pdf
http://dx.doi.org/10.3390/s22030981
http://www.ncbi.nlm.nih.gov/pubmed/35161725
http://dx.doi.org/10.1145/3363824
https://www.peak-system.com/PCAN-USB.199.0.html?&L=1
https://www.peak-system.com/PCAN-USB.199.0.html?&L=1
https://github.com/commaai/opendbc
https://en.wikipedia.org/wiki/On-board_diagnostics#OBD-II
https://www.plxdevices.com/obdii-compliant-vehicles-s/153.htm
https://www.plxdevices.com/obdii-compliant-vehicles-s/153.htm
https://www.iso.org/standard/33619.html

Appl. Sci. 2023, 13, 1942 16 of 16

33. CSS Electronics. CAN Bus Explained—A Simple Intro. 2022. Available online: https://www.csselectronics.com/pages/can-bus-
simple-intro-tutorial (accessed on 1 December 2022).

34. General Administration of Quality Supervision, Inspection and Quarantine. Limits and Measurement Methods for Emissions
from Light-Duty Vehicles. Available online: https://www.chinesestandard.net/PDF/BOOK.aspx/GB18352.6-2016 (accessed on
1 December 2022).

35. OBD2 Diagnostic Cable Interface Scanner. Available online: https://www.amazon.com/Universal-Diagnostic-Interface-Keenso-
Connector/dp/B07MNX424C/ref=sr_1_5?crid=SEHIDIO9OCCC&keywords=obd2+connector+for+laptop&qid=1669830823
&sprefix=obd2+connector%2Caps%2C572&sr=8-5 (accessed on 1 December 2022).

36. OBD2 Breakout Box OBDII Protocol Detector ECU Connector Diagnostic Data Link Connector. Available online:
https://www.amazon.com/Connector-Diagnostic-Maintenance-Diagnosis-Programming/dp/B0995JBXVS/ref=sr_1_1?crid=
SEHIDIO9OCCC&keywords=obd2+connector+for+laptop&qid=1669830923&sprefix=obd2+connector%2Caps%2C572&sr=8-1
(accessed on 1 December 2022).

37. Lee, H.; Jeong, S.H.; Kim, H.K. OTIDS: A novel intrusion detection system for in-vehicle network by using remote frame. In
Proceedings of the 2017 15th Annual Conference on Privacy, Security and Trust (PST), Calgary, AB, Canada, 28–30 August 2017;
pp. 57–5709.

38. Yu, K.S.; Kim, S.H.; Lim, D.W.; Kim, Y.S. A multiple Rényi entropy based intrusion detection system for connected vehicles.
Entropy 2020, 22, 186. [CrossRef]

39. Song, H.M.; Woo, J.; Kim, H.K. In-vehicle network intrusion detection using deep convolutional neural network. Veh. Commun.
2020, 21, 100198. [CrossRef]

40. Marchetti, M.; Stabili, D. Anomaly detection of CAN bus messages through analysis of ID sequences. In Proceedings of the 2017
IEEE Intelligent Vehicles Symposium (IV), Los Angeles, CA, USA, 11–14 June 2017; pp. 1577–1583.

41. Tariq, S.; Lee, S.; Kim, H.K.; Woo, S.S. CAN-ADF: The controller area network attack detection framework. Comput. Secur. 2020,
94, 101857. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.csselectronics.com/pages/can-bus-simple-intro-tutorial
https://www.chinesestandard.net/PDF/BOOK.aspx/GB18352.6-2016
https://www.amazon.com/Universal-Diagnostic-Interface-Keenso-Connector/dp/B07MNX424C/ref=sr_1_5?crid=SEHIDIO9OCCC&keywords=obd2+connector+for+laptop&qid=1669830823&sprefix=obd2+connector%2Caps%2C572&sr=8-5
https://www.amazon.com/Universal-Diagnostic-Interface-Keenso-Connector/dp/B07MNX424C/ref=sr_1_5?crid=SEHIDIO9OCCC&keywords=obd2+connector+for+laptop&qid=1669830823&sprefix=obd2+connector%2Caps%2C572&sr=8-5
https://www.amazon.com/Universal-Diagnostic-Interface-Keenso-Connector/dp/B07MNX424C/ref=sr_1_5?crid=SEHIDIO9OCCC&keywords=obd2+connector+for+laptop&qid=1669830823&sprefix=obd2+connector%2Caps%2C572&sr=8-5
https://www.amazon.com/Connector-Diagnostic-Maintenance-Diagnosis-Programming/dp/B0995JBXVS/ref=sr_1_1?crid=SEHIDIO9OCCC&keywords=obd2+connector+for+laptop&qid=1669830923&sprefix=obd2+connector%2Caps%2C572&sr=8-1
https://www.amazon.com/Connector-Diagnostic-Maintenance-Diagnosis-Programming/dp/B0995JBXVS/ref=sr_1_1?crid=SEHIDIO9OCCC&keywords=obd2+connector+for+laptop&qid=1669830923&sprefix=obd2+connector%2Caps%2C572&sr=8-1
http://dx.doi.org/10.3390/e22020186
http://dx.doi.org/10.1016/j.vehcom.2019.100198
http://dx.doi.org/10.1016/j.cose.2020.101857

	Introduction
	Background and Related Work
	Controller Area Network(CAN)
	Fuzzy Test
	Related Works

	Methodology
	Data Collection
	Labeling and Filtering
	Fuzzing and Package Analysis
	AND Bit-by-Bit

	Performance Evaluation
	Performance in a Real Vehicle
	Accuracy
	Strengths and Efficiency
	Strengths
	Efficiency

	Application and Discussion
	Application
	Contribution to Automotive IDS
	Discussion

	Conclusions
	References

