
Citation: Zhang, R.; Xue, C.; Qi, Q.;

Lin, L.; Zhang, J.; Zhang, L. Bimodal

Fusion Network with Multi-Head

Attention for Multimodal Sentiment

Analysis. Appl. Sci. 2023, 13, 1915.

https://doi.org/10.3390/

app13031915

Academic Editor: Luis Javier Garcia

Villalba

Received: 2 January 2023

Revised: 27 January 2023

Accepted: 29 January 2023

Published: 2 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

Bimodal Fusion Network with Multi-Head Attention for
Multimodal Sentiment Analysis
Rui Zhang 1,2 , Chengrong Xue 1,2, Qingfu Qi 3, Liyuan Lin 2,*, Jing Zhang 1,2 and Lun Zhang 1,2

1 School of Software and Communications, Tianjin Sino-German University of Applied Sciences,
Tianjin 300222, China

2 College of Electronic Information and Automation, Tianjin University of Science & Technology,
Tianjin 300222, China

3 Gaussian Robotics Pte. Ltd., Tianjin 200100, China
* Correspondence: linly@tust.edu.cn; Tel.: +86-139-2069-0387

Abstract: The enrichment of social media expression makes multimodal sentiment analysis a research
hotspot. However, modality heterogeneity brings great difficulties to effective cross-modal fusion,
especially the modality alignment problem and the uncontrolled vector offset during fusion. In
this paper, we propose a bimodal multi-head attention network (BMAN) based on text and audio,
which adaptively captures the intramodal utterance features and complex intermodal alignment
relationships. Specifically, we first set two independent unimodal encoders to extract the semantic
features within each modality. Considering that different modalities deserve different weights, we
further built a joint decoder to fuse the audio information into the text representation, based on
learnable weights to avoid an unreasonable vector offset. The obtained cross-modal representation
is used to improve the sentiment prediction performance. Experiments on both the aligned and
unaligned CMU-MOSEI datasets show that our model achieves better performance than multiple
baselines, and it has outstanding advantages in solving the problem of cross-modal alignment.

Keywords: multimodal sentiment analysis; bimodal fusion; multi-head attention

1. Introduction

In recent years, multimedia forms such as audio and video have become important
methods for people to obtain information. Text sentiment analysis (SA) has been extended
to multiple scenes such as audio and video. Therefore, multimodal sentiment analysis
has become a popular research direction [1–3], and its purpose is to effectively extract
the sentiment intention of humans in a certain scene. By adopting various deep-learning
techniques, many models have been developed for sentiment analysis tasks and have
proven to be effective.

The existing sentiment analysis tasks are divided into single-modal sentiment analysis
and multimodal sentiment analysis [4]. Traditional sentiment analysis tasks use single-
peak text input and predict the sentiment attributes of the text content. Zhou et al. [5]
proposed a text sentiment classification model using double-word embedding methods,
which combines two models to represent the text to form a combinatory input of Bi-CNN.
However, there are many multimodal (text, audio and video modalities) scenarios in real
life, such as playing music with lyrics and video with subtitles. Moreover, multimodal
inputs tend to convey more information than single-modal inputs, making it easy to make
misjudgments in the single-modal case. For example, people can express opposite inten-
tions by using different tones, speeds and volumes, and express their sentiments through
facial expressions, body movements, situations and other information. Most of the existing
multimodal sentiment analyses use three modalities and achieve good results. Xiao et al. [6]
proposed a multichannel attentive graph convolutional network with cross-modality inter-
active learning and sentimental feature fusion. Mai et al. [7] considered sentiment intensity
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attention and time-step level fusion and proposed a multiview sequential learning model
to address the utterance-level human sentiment-comprehension problem. However, the
researchers ignored situations where the image information was difficult to access, such
as short videos with ruined images and TOEFL listening tests. In addition, image infor-
mation contains more redundancy, which creates other interference factors to multimodal
sentiment analysis.

Text and audio can complement each other well [8]. When there is ambiguity in the
text, audio can obtain the sentiment information of the speaker. While it is difficult to
obtain semantic information from audio, text can be supplemented. Some studies [9,10]
show that the information provided by the text modality plays a leading role in multimodal
sentiment analysis accuracy. Text can provide semantic information directly and effectively,
which is supplemented by other modalities. However, the problem of “vector offset” will
occur in the text modality superimposed with other modal information, which leads to the
difference between the vector features obtained and the real sentimental features expressed
by the text and finally affects the SA accuracy. Specifically, words that express sentiment
in the text modality have a specific vector space, and the introduction of other modal
information causes the intensity and direction of the word’s vector to move in the original
vector space.

Compared with single-modal sentiment analysis, bimodal sentiment analysis in the
text and audio modalities also needs to consider the heterogeneity between different modal-
ities, which will greatly increase the difficulty of the sentiment analysis. The sentiment
expressed by text and audio do not correspond to each other, and different phonetic sen-
timents have different effects on the semantic meaning of the text. That is, the text and
audio modalities often exhibit a “misaligned” nature. Some models [11–13] commonly
implemented forced word alignment before training to solve the problem of “unaligned”
nature, which aligned the visual and acoustic features to the resolution of words before
inputting them into the model. The researchers [14–16] found that attention can capture
the alignment between different modalities very well and achieve good results. How-
ever, there is no simple correspondence between the text modality and other modalities.
A textual word can correspond to multiple frames of audio and images, and a single
attention mechanism can only obtain a thin alignment.

To solve the above problems, we propose a bimodal fusion network with multi-head
attention, which is a model for dealing with “misaligned” and “vector offset” multimodal
languages. We illustrate the difference between the word alignment and the cross-modal
attention inferred by our model in Figure 1. The main contributions of our paper are
as follows:

• Provision of a novel model for processing text voice bimodal data that can solve the
dynamic change problem of cross-modal data in the time dimension and update the
cross-modal weight value by iteration;

• Solving the problem of long-term dependencies in intermodality and intramodality,
focusing on solving the “vector offset” problem caused by audio modal data to the
vector representation of textual words.

To verify the performance of our model in text–audio sentiment analysis, we conducted
experiments on a standard CMU-MOSEI dataset. Experimental results show that our model
achieves good results for text–audio sentiment analysis tasks.

This paper is organized as follows. Section 2 provides a brief literature review on
modal sentiment analysis. In Section 3, we start by describing the proposed model in
this paper, then introduce the proposed technique in detail. The experimental setup for
evaluating the system and a discussion of the results achieved by various systems are
presented in Section 4. Finally, the paper is concluded in Section 5.
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Unaligned Text The   weather  was  nice,  but  I  wasn't  happy

Aligned Text The       weather      was     nice, but        I        wasn't        happy

Audio-to-Text Alignment

happy nagetive

Audio-to-Text   happy   Attention Weights

Figure 1. Example of word alignment by cross-modal attention.

2. Related Work

Multimodal sentiment analysis involves three elements: text, audio and video. Here,
we introduce sentiment analysis tasks under text modality, audio modality and text–audio
bimodality. The model that uses only one of text, acoustic or visual information is called
a unimodal model, while the model that uses two or more kinds of information is called
a multimodal model.

2.1. Unimodal Sentiment Analysis
2.1.1. Textual Sentiment Analysis (TSA)

The TSA method usually relies on “feature engineering” to obtain useful features
related to sentiment, which can be divided into methods based on machine learning (ML)
and depth learning (DL).

ML-based models generally rely on knowledge or statistical methods. The former
models synonyms of large sentiment vocabulary, while the latter uses sentiment tags
to mark available data in the database. Blekanov et al. [17] used a method based on
multilingual knowledge to conduct sentiment analysis on events on the Twitter platform.
Due to the limitation of knowledge, such methods can only be used to understand strictly
defined concepts. TSA, which relies on statistical methods, overcomes the above problems
and can process a large quantity of data. Pak et al. [18] proposed a subgraph-based model
that represents documents as a set of subgraphs and inputs the features of these subgraphs
into the SVM classifier. Some studies have used the two methods simultaneously and
achieved good results [19].

DL-based models can automatically learn the feature representation used to iden-
tify emotions from data, including CNN and RNN. These methods are used to process
TSA tasks at the document level [20], sentence level [21] and aspect (or word) level [22].
Yin et al. [21] made full use of word information and proposed a sentence-level sentiment
analysis method using semantic words to enhance CNN. The authors of [22] proposed
a graph-convolution network using SenticNet to obtain sentiment knowledge to enhance
the sentence dependency, which realized efficient TSA.

2.1.2. Audio Sentiment Analysis (ASA)

The most common ASA method is to segment each audio into overlapping or nonover-
lapping clips that are considered static and then extract audio features from the clips [1].
ASA can also be divided into methods based on ML and methods based on DL.

The early audio-feature extraction methods usually used machine learning to represent
acoustic features. With the continuous involvement of psychology in machine learning,
people have found that psychological research related to sentiment is of great help in
extracting audio features. Therefore, people began to study the influence of sound parame-
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ters on sentiment analysis, especially pitch, speed, intensity, duration and sound quality.
Further research shows that other features [23] also play an important role in audio emotion
analysis, including formant, pause, mel frequency cepstrum coefficients (MFCC), features
based on energy operation, logarithmic frequency power coefficient (LFPC) and linear
prediction cepstrum coefficient (LPCC).

Deep learning has received extensive attention in audio feature extraction. The authors
of [24] used CNN to train the features extracted from all time frames, thus realizing the
audio-emotion analysis task. However, such models cannot model the temporal informa-
tion. To overcome this problem, long- and short-term memory (LSTM) is used to manually
extract acoustic features [25]. The method based on deep learning does not consider
feature engineering.

2.2. Text–Audio Bimodal Sentiment Analysis

The text–audio bimodal method uses both language content and voice cues to imple-
ment sentiment analysis tasks, and its performance is better than that of single-modality
sentiment analysis tasks [26]. Cai et al. [27] proposed a multimodal emotion analysis
model integrating CNN and LSTM, which can simultaneously capture spatial features and
dynamic information. Pepino et al. [28] used BERT and openSMILE to obtain text features
and acoustic features and adopted different fusion strategies to achieve sentiment analysis
tasks. Later, people considered the alignment between different modalities. Xu et al. [15]
used the attention mechanism to solve the alignment problem between voice frames and
text words and achieved good results.

3. Proposed Approach

To solve the alignment problem of different modal information and alleviate the vector
offset in multimodal representation learning, a bimodal multi-head attention network
(BMAN) is proposed. The overall BMAN framework is shown in Figure 2. It takes text
and audio sequences as the input. The main body of the model consists of two important
parts: unimodal encoder and bimodal decoder. Unimodal encoders realize information
interaction within unimodal to extract the effective syntactic and semantic features from
the given unimodal inputs and include a text encoder and audio encoder. The bimodal
decoder takes the outputs of two unimodal encoders as inputs and jointly decodes them
to fully fuse intermodal information, where the acoustic information is used as auxiliary
information to correct and supplement text semantics. Finally, the fused text representation
serves for multimodal sentiment prediction.

Since previous research [9] has proven the remarkable ability of multi-head attention in
capturing relationships, we take the transformer with multi-head attention as the backbone
network of unimodal representation learning and cross-modal alignment and design
a complete set of encoding–decoding structures to mine the dependence of different modal
information on the time dimension, expecting to fit the complex alignment relationship
between them. In contrast, the previous experimental results [29] show that removing the
textual modality causes a large decline compared with the removal of other modalities,
which demonstrates that the text modality plays a major role in multimodal sentiment
analysis. To this end, we conscientiously consider that the different modalities deserve
different weights and designed an auxiliary update scheme in which we took the text
with direct semantics as the main knowledge of the network and updated it using the
auxiliary modality. This can not only control the vector offset, but also ensure that the
vector semantics are rich and accurate.

3.1. Unimodal Encoders

We utilize two independent transformer encoders to construct the text encoder and
audio encoder, capturing text information and audio information, respectively. Given the
language input Il = [l1, l2, · · · , lN ], where ln =

[
i1, i2, · · · , iTl

]
, N and Tl are the total sample

number and word number of each sample, respectively. We first use the GloVe embedding
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tool to obtain the dl-dimensional textual embeddings Xn =
[
x1, x2, · · · , xTl

]
∈ RTl×dl .

Similarly, given the audio input IA = [A1, A2, · · · , AM], where Am = [j1, j2, · · · , jTa ], M
and Ta are the sample number of audio and the frame number of each sample, respectively.
Their initial embeddings are represented as Xa = [a1, a2, · · · , aTa ] ∈ RTa×da , where Ta and
da are the frame number and acoustic embedding dimension, respectively.
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Taking the text encoder as an example, it extracts the relations of word pairs in
parallel with the aid of attention and outputs the textual representation after full inter-
word interaction. It consists of N stacked encoders, the core function layers of which are
a multi-head attention sublayer and a feedforward sublayer, as shown in the right part of
Figure 2.

The multi-head attention learns the token weights within the sequence in parallel,
which indeed improves the computational efficiency but also means there is no order
between words. However, natural language is a sequence of knowledge arranged in
a certain order to express semantics, and this naturally determines the importance of
order [30]. To make the model maintain efficient parallel learning while accounting for
order information, we transform the absolute token position into position embedding (PE)
following the previous work [31] and add it into textual embedding via a linear operation,
called the position-aware feedforward network (PFN):

XPFN = W(xn + PE(xn)) + b (1)

Xl then serves as the input of the multi-head attention mechanism. The position
information is updated along with the network and assists attention in weight assignment:
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Xh = So f tmax

QW(h)
q ×

(
KW(h)

k

)T

√
dl

V (2)

where Q, K and V are equal to XPFN , and the h denotes the head number. The matrix
multiplication of Q and K obtains the interword correlation coefficient, and Xh is the
representation after weighting. The necessity of the multi-head is to set up multiple
semantic spaces to learn the complex relationship between words. We apply a linear
operation on the concatenation of these heads to obtain the new representation:

XMHA = concat
(

X1, X2, · · · , XH
)
×Wo (3)

Since we set N encoders, there are N multi-head attentions in the text encoder, leading
to a deep network. Excessive layers may cause vanishing or exploding gradients, leaving
the whole network unable to update. The residual connection adds the previous layer
output to the current layer, preventing the vanishing gradient in backpropagation. Layer
normalization can eliminate gradient explosion by limiting the output of each layer in
a small numerical range. These two operations ensure the normal update of the net-
work, and we apply them in every sublayer. Here, the sublayer means the multi-head
attention sublayer:

X′MHA = LayerNorm(XPFN + XMHA) (4)

Since the above operations are all linear, a feedforward network with nonlinear activa-
tion is used to fit the complex semantics in the vector space:

XFFN =
(

ReLU
(
X′MHAW1 + b1

))
W2 + b2 (5)

where W1, W2, b1, b2 are trainable parameters of the linear layer and ReLU is the activation
function. There should also be a residual connection and layer normalization after the
feedforward sublayer:

X[0]
l = LayerNorm

(
X′MHA + XFFN

)
(6)

where X[0]
l denotes the textual representation obtained by the first encoder. As mentioned

earlier, the text encoder consists of N encoders in a series. X[0]
l serves as the input of the

next encoder, and the final output of the text encoder can be denoted as X[N]
l .

Similarly, the audio encoder captures the interaction between acoustic information
and obtains acoustic representation X[N]

a .

3.2. Bimodal Decoder

As shown in Figure 3, the bimodal decoder takes the text encoder output Xl and audio
encoder output Xa as input and conducts N joint decoding steps via N decoders in series to
intelligently fuse the cross-modal information. Specifically, it matches the samples of each
time step with that of another modality via multi-head attention. Although the alignment
relationship between modalities is complicated, attention can adaptively allocate different
weights to adapt to different alignment situations:

attention(Q, K, V) = so f tmax

QW(h)
q ×

(
KW(h)

k

)T

√
dk

V (7)
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We set the textual information Xl as query Q and the acoustic information Xa as K and
V to assign weights to V according to Q. Equation (7) can be transformed as follows:

X[i]
h = so f tmax

X[i−1]
l W(h)

l ×
(

XaW(h)
a

)T

√
da

Xa (8)

X∗[i]a→l = concat
(

X[i]
1 , X[i]

2 , · · · , X[i]
H

)
×Wo (9)

where i ∈ [1, 2, · · · , N] denotes the i-th decoder and X[i−1]
l is the output of i-1-th encoder.

W(h)
l and W(h)

a denote the trainable weight matrices of the h-th attention head, and Wo is
used to fuse the outputs of the H heads. Equation (8) alleviates the alignment problem
and vector offset problem simultaneously. The i-th encoder obtains two vector sequences,
one is the text information representation of each sample X[i]

l (l ∈ [1, N]), and the other

is the acoustic information representation of each frame X[i]
a (a ∈ [1, M]). Attention will

focus on the weighted fusion of these two sequences. Specifically, take the text sequence
as the key, query the acoustic sequence, find the N × M weight matrix and multiply it
by the text vector sequence to find the integrated representation. In this process, the text
information of each sample will focus on the acoustic information of several frames related
to it with high scores, and other irrelevant frame information will not be paid attention
to. This enables acoustic–text alignment. In addition, attention can intelligently learn the
correlation between acoustic information and text information. It realizes acoustic-to-text
integration according to weights, which is more learnable than the direct concatenation of
text sequence and acoustic sequence, thereby alleviating the uncontrolled vector offset.
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We take textual information as the main representation by adding the weighted result
with the input textual vectors instead of acoustic vectors:

X[i]
l = LayerNorm

(
X[i−1]

l + X∗[i]a→l

)
(10)

After decoding N times, we finally obtain the intermodal textual representation
X[N]

l , which serves as the input of the prediction layer to calculate the probabilities of
sentiment categories:

−
y = so f tmax

(
WcX[N]

l + bc

)
(11)

where Wc and bc are trainable parameters for the prediction layer.

4. Experiments
4.1. Dataset

Experiments were conducted on the public dataset CMU-MOSEI [10], which contains
22,856 manually annotated video segments from 250 topics. Its sentiment labels are divided
into six fine-grained categories and range from the most negative label −3 to the most
positive label 3. We split the dataset according to the ratio of 7:2:1 into three parts: training
set (16,326 samples), validation set (1871 samples) and test set (4659 samples).

4.2. Baselines

We compared BMAN with a variety of multimodal sentiment analysis models:
Graph-MFN [10]: The graph memory fusion network constructs dynamic graphs for

unimodal, bimodal and trimodal representations and achieves cross-modal interactions via
dynamic connections between vertices.

EF-LSTM [32]: The early fusion LSTM (EF-LSTM) utilizes three LSTMs to extract infor-
mation from every single modality and achieves early cross-modal fusion by concatenating
their representations at each time step. It is suitable for aligned data.

BBFN(VA) [33]: A variant of the bimodal fusion network (BBFN) designs a bimodal
complementary layer based on acoustic and visual modalities. It utilizes BiGRU to capture
the internal dependency of each modality and then sets two gates to control the information
interactions during the cross-modal multi-head attention process.

CTC+EF-LSTM [34]: It is a combination of connectionist temporal classification
(CTC) [31] and EF-LSTM, where the CTC used for alignment prediction enables EF-LSTM
to handle the unaligned data.

CTC+RAVEN [35]: This is a combination of CTC and RAVEN that dynamically fuses
nonverbal information into textual representations by multimodal attention gating.

We also choose three unimodal models as baselines, called Transformer-T, Transformer-
A and Transformer-V [9]. L, A and V denote text, audio and vision, respectively. They used
a transformer structure to extract the unimodal utterance representations for the sentiment
polarity prediction.

4.3. Setup

We chose the hyperparameters according to the neg/nonneg proxy in the validation
results. The batch size was 32. The learning rate of the text encoder and audio encoder
was 0.0001, and their attention heads were 1 and 48, respectively. The learning rate of the
joint decoder was 0.001, and its number of attention heads was 12. The dimension of the
feedforward network was 320 dimensions.

We used five common matrices to evaluate all the models, including the fine-grained
accuracy Acc-7, binary accuracy Acc-2, binary F1 score, average absolute error (MAE) and
Pearson correlation (Corr). Corr denotes the correlation coefficient between the predic-
tion results and manual annotations. Note that we reported neg/nonneg and neg/pos
according to whether the neutral labels are considered. The former judges the samples
with nonnegative prediction scores as positive, while the latter strictly considers samples
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with prediction scores greater than 0 as positive. We used the –/– marker to distinguish
these two types of indicators, where neg/nonneg was on the left side and neg/pos on the
right side.

4.4. Multimodal Sentiment Analysis Results

We conducted experiments on unaligned and aligned CMU-SOSEI and report the
results as shown in Table 1. The proposed BMAN model presented overall advantages over
the baselines.

Table 1. Comparison results (%) of multimodal sentiment analysis models. Bold indicates the optimal
value of the corresponding evaluation indicators.

Model Acc-7 Acc-2 F1-Score MAE Corr Data Setting

Transformer-T 46.5 –/77.4 –/78.2 0.653 0.631 Unaligned
Transformer-A 41.4 –/65.6 –/68.8 0.764 0.31 Unaligned
Transformer-V 43.5 –/66.4 –/69.3 0.759 0.343 Unaligned
CTC+EF-LSTM 41.7 65.3/– 76.0/– 0.799 0.265 Unaligned
CTC+RAVEN 45.5 –/75.4 –/75.7 0.664 0.599 Unaligned

BMAN 48.12 79.29/78.95 78.06/77.84 0.6471 0.640 Unaligned

Graph-MFN 45.0 76.9/– 77.0/– 0.71 0.54 Aligned
EF-LSTM 46.7 79.1/72.02 79.89/61.89 0.674 0.704 Aligned
BBFN(VA) 41.1 –/71.1 –/64.5 0.816 0.261 Aligned

BMAN 46.84 75.55/78.5 76.11/78.32 0.656 0.624 Aligned

Obviously, BMAN outperformed unimodal models. Compared with Transformer-T,
Transformer-A and Transformer-V, BMAN achieved average improvements of
4.32% (Acc-7), 9.15% (Acc-2) and 5.74% (F1), respectively. This is because these unimodal
models focus on capturing intermodal dependency but lack support from other modal
information. Moreover, we noticed that the unimodal model using audio only presented
a great performance decline compared with the model using text only. This is consistent
with our previous assumption that text plays the most important role in various modal-
ities and implies the rationality of taking the text as the main information and audio as
auxiliary information.

Compared with RNN-based models, such as CTC+EF-LSTM and CTC+RAVEN,
BMAN achieved average improvements of 4.52% (Acc-7), 8.6% (Acc-2) and 1.99% (F1)
on the unaligned dataset. This is reasonable because CTC+EF-LSTM fuses multimodal
information via direct concatenation, ignoring the importance among various modalities
as well as the vector offset during the fusion process, thereby presenting disappointing
performance. CTC+RAVEN improved the flexibility of multimodal information fusion
by placing multimodal attention gating after unimodal LSTM encoders; however, thin
attention cannot fit the complex cross-modal interaction relationship. In contrast, BMAN
achieved full cross-modal interactions via deep multi-head attention and abstractly fused
acoustic information into textual representation in the form of joint decoding, alleviating
the vector offset caused by audio modality to text modality.

In addition, we also observed that the proposed BMAN on the unaligned dataset has
greater advantages over that on the aligned dataset. On unaligned CMU-MOSEI, BMAN
outperformed CTC-LSTM with a considerable improvement of 6.42% (Acc-7), 13.99% (Acc-
2) and 2.06% (F1), while this advantage appeared to be reduced on the aligned dataset.
This is ascribed to our joint decoder being better at solving the alignment problem of
multiple modalities. Its cross-modal attention assigns weights to all the audio frames
according to the text samples. In this way, the text information of a certain sample will
focus on the acoustic information of several frames related to it with high scores, and other
irrelevant frame information will not be paid attention to, thereby achieving alignment
between text samples and audio frames. Compared with models using CTC to obtain
alignment sequences, our model internalized the data alignment into an intermediate step
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of representation learning to facilitate the learning of the overall model, thereby presenting
strong competitiveness on unaligned datasets.

5. Conclusions

In this paper, we proposed a multi-head attention bimodal fusion network for text–
audio sentiment analysis tasks. The proposed network uses the multi-head attention
mechanism to capture the attention weight of different audio to textual words and realizes
cross-modal information alignment. The dual-modal decoder alleviates the vector offset
problem caused by audio modality to text modality. Experiments show the proposed
BMAN has good performance in multimodal sentiment analysis tasks. However, the
design idea of our model is to give priority to the text modality, supplemented by the audio
modality. Special situations where acoustic or visual modes are dominant are not fully
considered, such as audio and video with ambiguous and sparse text. One direction in the
future will be to explore a method to adaptively determine the dominant information in
multimodal input.
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